文摘现有的基于图神经网络(Graph Neural Network,GNN)的欺诈检测方法还存在三个方面的不足:(1)没有充分考虑到样本标签分布不平衡的问题;(2)没有考虑欺诈者为了躲避检测器的检测,故意制造噪声干扰检测的问题;(3)没有考虑欺诈类型数据联系稀疏问题.为此,本文提出一种基于噪声过滤与特征增强的图神经网络欺诈检测方法NFE-GNN(Noise Filtering and feature Enhancement based Graph Neural Network method for fraud detection)来改善欺诈检测性能.该方法首先基于数据集的欺诈率对样本进行平衡采样;在此基础上,采用一个参数化距离函数计算节点间的相似度,并通过强化学习得到最优的噪声过滤阈值;最后,通过创建欺诈样本间的联系,丰富拓扑信息,以达到增强欺诈类特征嵌入表示的目的.在两个公开数据集上的实验结果表明,本文所提NFE-GNN方法的性能优于目前主流的图神经网络欺诈检测方法.