For wired local area networks(LANs),their effectiveness and invulnerability are very critical.It is extraordinarily significant to evaluate the network performance effectively in the design of a reasonable network top...For wired local area networks(LANs),their effectiveness and invulnerability are very critical.It is extraordinarily significant to evaluate the network performance effectively in the design of a reasonable network topology and the performance improvement of the networks.However,there are many factors affecting the performance of the networks,and the relation among them is also complicated.How to evaluate the performance of the wired LANs more accurately has been a heavy challenge in the network research.In order to solve the problem,this paper presents a performance evaluation method that evaluates the effectiveness and invulnerability of the wired LANs.Compared to traditional statistical methods,it has the distinct advantage of being able to handle several dependent variables simultaneously and tolerates the measurement errors among these independent variables and dependent variables.Finally,the rationality and validity of this method are verified by the extensive experimental simulation.展开更多
In the context of enterprise systems,intrusion detection(ID)emerges as a critical element driving the digital transformation of enterprises.With systems spanning various sectors of enterprises geographically dispersed...In the context of enterprise systems,intrusion detection(ID)emerges as a critical element driving the digital transformation of enterprises.With systems spanning various sectors of enterprises geographically dispersed,the necessity for seamless information exchange has surged significantly.The existing cross-domain solutions are challenged by such issues as insufficient security,high communication overhead,and a lack of effective update mechanisms,rendering them less feasible for prolonged application on resource-limited devices.This study proposes a new cross-domain collaboration scheme based on federated chains to streamline the server-side workload.Within this framework,individual nodes solely engage in training local data and subsequently amalgamate the final model employing a federated learning algorithm to uphold enterprise systems with efficiency and security.To curtail the resource utilization of blockchains and deter malicious nodes,a node administration module predicated on the workload paradigm is introduced,enabling the release of surplus resources in response to variations in a node’s contribution metric.Upon encountering an intrusion,the system triggers an alert and logs the characteristics of the breach,facilitating a comprehensive global update across all nodes for collective defense.Experimental results across multiple scenarios have verified the security and effectiveness of the proposed solution,with no loss of its recognition accuracy.展开更多
提前获知或预测网络的关键节点,便可根据关键节点的相关信息对网络进行优化,当网络瘫痪时,可第一时间排查关键节点,减少网络维护时间和成本.现有静态无线传感器网络关键节点预测方法,不适用于机会传感器网络(opportunistic sensor netwo...提前获知或预测网络的关键节点,便可根据关键节点的相关信息对网络进行优化,当网络瘫痪时,可第一时间排查关键节点,减少网络维护时间和成本.现有静态无线传感器网络关键节点预测方法,不适用于机会传感器网络(opportunistic sensor networks,OSNs).针对机会传感器网络结构动态变化、消息传输时延高的特点,分析多区域机会传感器网络分层结构的消息传输过程,定义阶段贡献度反映Ferry节点在消息传输过程中的贡献程度,定义区域贡献度反映Ferry节点对区域的贡献程度.在此基础上,以Ferry节点在网络中的综合贡献度作为判断关键节点的依据,提出基于多属性决策中理想点法(technique for order preference by similarity to ideal solution,TOPSIS)的关键节点预测方法.实验结果表明:采用改进TOPSIS算法能够获得更高的预测精度;搭建了实验床以进一步验证提出的预测方法,结果表明,采用改进TOPSIS算法的预测精度更高.展开更多
针对无标度网络的节点重要度评估问题,通过分析节点的邻居数量与其邻居间的拓扑结构,得到节点的结构洞重要性指标,再融合相邻节点的 K 核重要性指标值来确定相邻节点间的重要度贡献,以此表征相邻节点的局部信息;在此基础上,再结合表征...针对无标度网络的节点重要度评估问题,通过分析节点的邻居数量与其邻居间的拓扑结构,得到节点的结构洞重要性指标,再融合相邻节点的 K 核重要性指标值来确定相邻节点间的重要度贡献,以此表征相邻节点的局部信息;在此基础上,再结合表征节点位置信息的节点自身的 K 核重要性,从而提出一种基于节点间重要度贡献关系来评估无标度网络的节点重要度的方法.该方法综合考虑了节点的结构洞特征和 K 核中心性特征来确定节点的重要度,同时兼顾到了网络的局部和全局重要性.理论分析表明,此方法的时间复杂度仅为 o(n^2).与其他几种算法仿真对比的结果表明,该方法可行有效,拥有理想计算能力,适用无标度网络.展开更多
基金supported by the National Natural Science Foundations of China (Nos.61572435,61472305, 61473222)the Ningbo Natural Science Foundations(Nos. 2016A610035,2017A610119)+1 种基金the Complex Electronic System Simulation Laboratory (No.DXZT-JC-ZZ-2015015)the Joint Fund of China State Shipbuilding Corporation(No.6141B03010103)
文摘For wired local area networks(LANs),their effectiveness and invulnerability are very critical.It is extraordinarily significant to evaluate the network performance effectively in the design of a reasonable network topology and the performance improvement of the networks.However,there are many factors affecting the performance of the networks,and the relation among them is also complicated.How to evaluate the performance of the wired LANs more accurately has been a heavy challenge in the network research.In order to solve the problem,this paper presents a performance evaluation method that evaluates the effectiveness and invulnerability of the wired LANs.Compared to traditional statistical methods,it has the distinct advantage of being able to handle several dependent variables simultaneously and tolerates the measurement errors among these independent variables and dependent variables.Finally,the rationality and validity of this method are verified by the extensive experimental simulation.
基金supported by the Project of National Natural Science Foundation of China under the grant titled“Research on Intermittent Fault Diagnosis of New Interconnection Networks under Comparative Model”(Approval Number:61862003).
文摘In the context of enterprise systems,intrusion detection(ID)emerges as a critical element driving the digital transformation of enterprises.With systems spanning various sectors of enterprises geographically dispersed,the necessity for seamless information exchange has surged significantly.The existing cross-domain solutions are challenged by such issues as insufficient security,high communication overhead,and a lack of effective update mechanisms,rendering them less feasible for prolonged application on resource-limited devices.This study proposes a new cross-domain collaboration scheme based on federated chains to streamline the server-side workload.Within this framework,individual nodes solely engage in training local data and subsequently amalgamate the final model employing a federated learning algorithm to uphold enterprise systems with efficiency and security.To curtail the resource utilization of blockchains and deter malicious nodes,a node administration module predicated on the workload paradigm is introduced,enabling the release of surplus resources in response to variations in a node’s contribution metric.Upon encountering an intrusion,the system triggers an alert and logs the characteristics of the breach,facilitating a comprehensive global update across all nodes for collective defense.Experimental results across multiple scenarios have verified the security and effectiveness of the proposed solution,with no loss of its recognition accuracy.
文摘提前获知或预测网络的关键节点,便可根据关键节点的相关信息对网络进行优化,当网络瘫痪时,可第一时间排查关键节点,减少网络维护时间和成本.现有静态无线传感器网络关键节点预测方法,不适用于机会传感器网络(opportunistic sensor networks,OSNs).针对机会传感器网络结构动态变化、消息传输时延高的特点,分析多区域机会传感器网络分层结构的消息传输过程,定义阶段贡献度反映Ferry节点在消息传输过程中的贡献程度,定义区域贡献度反映Ferry节点对区域的贡献程度.在此基础上,以Ferry节点在网络中的综合贡献度作为判断关键节点的依据,提出基于多属性决策中理想点法(technique for order preference by similarity to ideal solution,TOPSIS)的关键节点预测方法.实验结果表明:采用改进TOPSIS算法能够获得更高的预测精度;搭建了实验床以进一步验证提出的预测方法,结果表明,采用改进TOPSIS算法的预测精度更高.
文摘针对无标度网络的节点重要度评估问题,通过分析节点的邻居数量与其邻居间的拓扑结构,得到节点的结构洞重要性指标,再融合相邻节点的 K 核重要性指标值来确定相邻节点间的重要度贡献,以此表征相邻节点的局部信息;在此基础上,再结合表征节点位置信息的节点自身的 K 核重要性,从而提出一种基于节点间重要度贡献关系来评估无标度网络的节点重要度的方法.该方法综合考虑了节点的结构洞特征和 K 核中心性特征来确定节点的重要度,同时兼顾到了网络的局部和全局重要性.理论分析表明,此方法的时间复杂度仅为 o(n^2).与其他几种算法仿真对比的结果表明,该方法可行有效,拥有理想计算能力,适用无标度网络.