A virtual node placement strategy based on service-aware is proposed for an information acquisition platform. The performance preferences and types of services in the information acquisition platform are analyzed as w...A virtual node placement strategy based on service-aware is proposed for an information acquisition platform. The performance preferences and types of services in the information acquisition platform are analyzed as well as a comparison of the running time of services both in virtual node centralized and decentralized placing. All physical hosts are divided into different sub-clusters by using the analytic hierarchy process( AHP),in order to fit service of different performance preferences. In the sub-cluster,both load balance and quality of service are taken into account. Comparing with the heuristic algorithm,the experiment results show that the proposed placement strategy is running for a shorter time. And comparing with the virtual node placement strategy provided by OpenStack,the experiment results show that the proposed placement strategy can improve the execution speed of service in the information acquisition platform,and also can balance the load which improves resources utilization.展开更多
The focus of this paper is on base functionalities required for UAV-based rapid deployment of an ad hoc communication infrastructure in the initial phases of rescue operations.The main idea is to use heterogeneous tea...The focus of this paper is on base functionalities required for UAV-based rapid deployment of an ad hoc communication infrastructure in the initial phases of rescue operations.The main idea is to use heterogeneous teams of UAVs to deploy communication kits that include routers,and are used in the generation of ad hoc Wireless Mesh Networks(WMN).Several fundamental problems are considered and algorithms are proposed to solve these problems.The Router Node Placement problem(RNP)and a generalization of it that takes into account additional constraints arising in actual field usage is considered first.The RNP problem tries to determine how to optimally place routers in a WMN.A new algorithm,the RRT-WMN algorithm,is proposed to solve this problem.It is based in part on a novel use of the Rapidly Exploring Random Trees(RRT)algorithm used in motion planning.A comparative empirical evaluation between the RRT-WMN algorithm and existing techniques such as the Covariance Matrix Adaptation Evolution Strategy(CMA-ES)and Particle Swarm Optimization(PSO),shows that the RRT-WMN algorithm has far better performance both in amount of time taken and regional coverage as the generalized RNP problem scales to realistic scenarios.The Gateway Node Placement Problem(GNP)tries to determine how to locate a minimal number of gateway nodes in a WMN backbone network while satisfying a number of Quality of Service(QoS)constraints.Two alternatives are proposed for solving the combined RNP-GNP problem.The first approach combines the RRT-WMN algorithm with a preexisting graph clustering algorithm.The second approach,WMNbyAreaDecomposition,proposes a novel divide-and-conquer algorithm that recursively partitions a target deployment area into a set of disjoint regions,thus creating a number of simpler RNP problems that are then solved concurrently.Both algorithms are evaluated on real-world GIS models of different size and complexity.WMNbyAreaDecomposition is shown to outperform existing algorithms using 73%to 92%fewer router nodes while at the same time satisfying all QoS requirements.展开更多
The reliability and real time of industrial wireless sensor networks (IWSNs) are the absolute requirements for industrial systems, which are two fore- most obstacles for the large-scale applications of IWSNs. This p...The reliability and real time of industrial wireless sensor networks (IWSNs) are the absolute requirements for industrial systems, which are two fore- most obstacles for the large-scale applications of IWSNs. This paper studies the multi-objective node placement problem to guarantee the reliability and real time of IWSNs from the perspective of systems. A novel multi-objective node deployment model is proposed in which the reliabil- ity, real time, costs and scalability of IWSNs are addressed. Considering that the optimal node placement is an NP-hard problem, a new multi-objective binary differential evolu- tion harmony search (MOBDEHS) is developed to tackle it, which is inspired by the mechanism of harmony search and differential evolution. Three large-scale node deploy- ment problems are generated as the benCHmarks to verify the proposed model and algorithm. The experimental results demonstrate that the developed model is valid and can be used to design large-scale IWSNs with guaranteed reliability and real-time performance efficiently. Moreover, the comparison results indicate that the proposed MOB- DEHS is an effective tool for multi-objective node place- ment problems and superior to Pareto-based binary differential evolution algorithms, nondominated sorting genetic algorithm II (NSGA-II) and modified NSGA-II.展开更多
边缘计算将计算资源部署在离终端用户更近的边缘计算节点,从待选的位置中选择合适的边缘计算节点部署位置能提升边缘计算服务的节点容量以及用户服务质量(QoS)。然而,目前对于如何放置边缘计算节点以降低边缘计算成本的研究较少。此外,...边缘计算将计算资源部署在离终端用户更近的边缘计算节点,从待选的位置中选择合适的边缘计算节点部署位置能提升边缘计算服务的节点容量以及用户服务质量(QoS)。然而,目前对于如何放置边缘计算节点以降低边缘计算成本的研究较少。此外,在边缘服务的时延等QoS因素的约束下,目前尚没有一种边缘计算节点部署算法能最大限度地提高边缘服务的鲁棒性同时最小化边缘节点部署成本。针对上述问题,首先,通过建立计算节点、用户传输时延和鲁棒性的模型将边缘计算节点放置问题转化为带约束条件的最小支配集问题;随后,提出重合支配的概念,基于重合支配衡量网络鲁棒性,设计了基于重合支配的边缘计算节点放置算法——CHAIN(edge server plaCement algoritHm based on overlApping domINation)。仿真实验结果表明,与面向覆盖的近似算法和面向基站的随机算法相比,CHAIN的系统时延降低了50.54%与50.13%。展开更多
基金Supported by the National Natural Science Foundation of China(No.61100189,61370215,61370211,61402137)the National Key Technology R&D Program(No.2012BAH45B01)the Open Project Foundation of Information Security Evaluation Center of Civil Aviation,Civil Aviation University of China(No.CAAC-ISECCA-201703)
文摘A virtual node placement strategy based on service-aware is proposed for an information acquisition platform. The performance preferences and types of services in the information acquisition platform are analyzed as well as a comparison of the running time of services both in virtual node centralized and decentralized placing. All physical hosts are divided into different sub-clusters by using the analytic hierarchy process( AHP),in order to fit service of different performance preferences. In the sub-cluster,both load balance and quality of service are taken into account. Comparing with the heuristic algorithm,the experiment results show that the proposed placement strategy is running for a shorter time. And comparing with the virtual node placement strategy provided by OpenStack,the experiment results show that the proposed placement strategy can improve the execution speed of service in the information acquisition platform,and also can balance the load which improves resources utilization.
基金Supported by the ELLIIT Network Organization for Information and Communication Technology,Swedenthe Swedish Foundation for Strategic Research SSF(Smart Systems Project RIT15-0097)+2 种基金the Wallenberg AI,Autonomous Systems and Software Program:WASP WARA-PS ProjectThe 3rd author is also supported by an RExperts Program Grant 2020A1313030098 fromthe Guangdong Department of Science and Technology,China and a Sichuan Province International Science and Technology Innovation Cooperation Project Grant 2020YFH0160.
文摘The focus of this paper is on base functionalities required for UAV-based rapid deployment of an ad hoc communication infrastructure in the initial phases of rescue operations.The main idea is to use heterogeneous teams of UAVs to deploy communication kits that include routers,and are used in the generation of ad hoc Wireless Mesh Networks(WMN).Several fundamental problems are considered and algorithms are proposed to solve these problems.The Router Node Placement problem(RNP)and a generalization of it that takes into account additional constraints arising in actual field usage is considered first.The RNP problem tries to determine how to optimally place routers in a WMN.A new algorithm,the RRT-WMN algorithm,is proposed to solve this problem.It is based in part on a novel use of the Rapidly Exploring Random Trees(RRT)algorithm used in motion planning.A comparative empirical evaluation between the RRT-WMN algorithm and existing techniques such as the Covariance Matrix Adaptation Evolution Strategy(CMA-ES)and Particle Swarm Optimization(PSO),shows that the RRT-WMN algorithm has far better performance both in amount of time taken and regional coverage as the generalized RNP problem scales to realistic scenarios.The Gateway Node Placement Problem(GNP)tries to determine how to locate a minimal number of gateway nodes in a WMN backbone network while satisfying a number of Quality of Service(QoS)constraints.Two alternatives are proposed for solving the combined RNP-GNP problem.The first approach combines the RRT-WMN algorithm with a preexisting graph clustering algorithm.The second approach,WMNbyAreaDecomposition,proposes a novel divide-and-conquer algorithm that recursively partitions a target deployment area into a set of disjoint regions,thus creating a number of simpler RNP problems that are then solved concurrently.Both algorithms are evaluated on real-world GIS models of different size and complexity.WMNbyAreaDecomposition is shown to outperform existing algorithms using 73%to 92%fewer router nodes while at the same time satisfying all QoS requirements.
文摘The reliability and real time of industrial wireless sensor networks (IWSNs) are the absolute requirements for industrial systems, which are two fore- most obstacles for the large-scale applications of IWSNs. This paper studies the multi-objective node placement problem to guarantee the reliability and real time of IWSNs from the perspective of systems. A novel multi-objective node deployment model is proposed in which the reliabil- ity, real time, costs and scalability of IWSNs are addressed. Considering that the optimal node placement is an NP-hard problem, a new multi-objective binary differential evolu- tion harmony search (MOBDEHS) is developed to tackle it, which is inspired by the mechanism of harmony search and differential evolution. Three large-scale node deploy- ment problems are generated as the benCHmarks to verify the proposed model and algorithm. The experimental results demonstrate that the developed model is valid and can be used to design large-scale IWSNs with guaranteed reliability and real-time performance efficiently. Moreover, the comparison results indicate that the proposed MOB- DEHS is an effective tool for multi-objective node place- ment problems and superior to Pareto-based binary differential evolution algorithms, nondominated sorting genetic algorithm II (NSGA-II) and modified NSGA-II.
文摘边缘计算将计算资源部署在离终端用户更近的边缘计算节点,从待选的位置中选择合适的边缘计算节点部署位置能提升边缘计算服务的节点容量以及用户服务质量(QoS)。然而,目前对于如何放置边缘计算节点以降低边缘计算成本的研究较少。此外,在边缘服务的时延等QoS因素的约束下,目前尚没有一种边缘计算节点部署算法能最大限度地提高边缘服务的鲁棒性同时最小化边缘节点部署成本。针对上述问题,首先,通过建立计算节点、用户传输时延和鲁棒性的模型将边缘计算节点放置问题转化为带约束条件的最小支配集问题;随后,提出重合支配的概念,基于重合支配衡量网络鲁棒性,设计了基于重合支配的边缘计算节点放置算法——CHAIN(edge server plaCement algoritHm based on overlApping domINation)。仿真实验结果表明,与面向覆盖的近似算法和面向基站的随机算法相比,CHAIN的系统时延降低了50.54%与50.13%。
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.90405016)教育部新世纪优秀人才支持计划(the New Century Excellent Talents in University Foundation of China)陕西省自然科学基金(the Natural Science Foundation of Shaanxi Province of China under Grant No.2006A05)。