In Elastic Optical Networks(EONs)with flexible bandwidth allocation,the blocking probability is high because of spectral contention.Similar to the functionality of wavelength conversion in Wavelength-Division-Multiple...In Elastic Optical Networks(EONs)with flexible bandwidth allocation,the blocking probability is high because of spectral contention.Similar to the functionality of wavelength conversion in Wavelength-Division-Multiplexing(WDM)networks,waveband conversion has been proposed to solve spectral contention in EONs.In this paper,we discuss the design of node architectures for an EON with waveband conversion.Four node architectures with shared Tuneable Waveband Converters(TWBCs)are proposed,and their blocking performances are evaluated by simulation.Simulation results show that the blocking probability of a node is significantly improved by waveband conversion.The sharing efficiency of waveband converters is also investigated.Simulation results show that at the same blocking rate,the node architecture with converters shared per node can save more than 20% waveband converters compared with that of the one with converters shared per link.展开更多
In Ad-hoc wireless network, connectivity is a fundamental issue which restricts the design of system protocol. Based on the theory of stochastic geometry, a connectivity model focused on signal-to-interference (SIR)...In Ad-hoc wireless network, connectivity is a fundamental issue which restricts the design of system protocol. Based on the theory of stochastic geometry, a connectivity model focused on signal-to-interference (SIR) ratio is set up in presence of Nakagami-m fading and interference. This paper derives a close formula of connectivity probability with interference and Nakagami-m fading which is never obtained in previous works. Two-dimension shot-noise theory in stochastic geometry for interference is well applied. The formula is verified by simulation. The results show that the connectivity is affected by the scatter of users, wireless propagation environment, interference and so on.展开更多
基金supported by the National Key Basic Research Program of China (973 Program) under Grants No. 2010CB328201,No.2010CB328202the National Natural Science Foundation of China under Grants No. 60907030,No. 61275071,No. 60736003,No. 60931160439the National High Technical Research and Development Program of China (863 Program)under Grant No. 2011AA01A106
文摘In Elastic Optical Networks(EONs)with flexible bandwidth allocation,the blocking probability is high because of spectral contention.Similar to the functionality of wavelength conversion in Wavelength-Division-Multiplexing(WDM)networks,waveband conversion has been proposed to solve spectral contention in EONs.In this paper,we discuss the design of node architectures for an EON with waveband conversion.Four node architectures with shared Tuneable Waveband Converters(TWBCs)are proposed,and their blocking performances are evaluated by simulation.Simulation results show that the blocking probability of a node is significantly improved by waveband conversion.The sharing efficiency of waveband converters is also investigated.Simulation results show that at the same blocking rate,the node architecture with converters shared per node can save more than 20% waveband converters compared with that of the one with converters shared per link.
基金supported by the National Natural Science Foundation of China(61171094)National Science & Technology Key Project(2011ZX03001-006-02,2011ZX03005-004-03)+1 种基金the Key Project of Jiangsu Provincial Natural Science Foundation (BK2011027)the Graduate Student Innovation Plan of Jiangsu Province(CXZZ11_0387)
文摘In Ad-hoc wireless network, connectivity is a fundamental issue which restricts the design of system protocol. Based on the theory of stochastic geometry, a connectivity model focused on signal-to-interference (SIR) ratio is set up in presence of Nakagami-m fading and interference. This paper derives a close formula of connectivity probability with interference and Nakagami-m fading which is never obtained in previous works. Two-dimension shot-noise theory in stochastic geometry for interference is well applied. The formula is verified by simulation. The results show that the connectivity is affected by the scatter of users, wireless propagation environment, interference and so on.