As far as the weight digraph is considered, based on the table instead of the weightdigraph, an optimal spanning tree method called the Table Operations Method (TOM) is proposed.And the optimality is proved and a nume...As far as the weight digraph is considered, based on the table instead of the weightdigraph, an optimal spanning tree method called the Table Operations Method (TOM) is proposed.And the optimality is proved and a numerical example is demonstrated.展开更多
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so...Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.展开更多
The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage syst...The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage system is a mandatory.This paper investigates WT system operating at variable speed.The system contains of a permanent magnet synchronous generator(PMSG)supported by a battery storage system(BSS).To enhance the quality of active and reactive power injected into the network,direct power control(DPC)scheme utilizing space-vector modulation(SVM)technique based on proportional-integral(PI)control is proposed.Meanwhile,to improve the rendition of this method(DPC-SVM-PI),the rooted tree optimization technique(RTO)algorithm-based controller parameter identification is used to achieve PI optimal gains.To compare the performance ofRTO-based controllers,they were implemented and tested along with some other popular controllers under different working conditions.The obtained results have shown the supremacy of the suggested PIRTO algorithm compared to competing controllers regarding total harmonic distortion(THD),overshoot percentage,settling time,rise time,average active power value,overall efficiency,and active power steadystate error.展开更多
This paper aims to design an optimizer followed by a Kawahara filter for optimal classification and prediction of employees’performance.The algorithm starts by processing data by a modified K-means technique as a hie...This paper aims to design an optimizer followed by a Kawahara filter for optimal classification and prediction of employees’performance.The algorithm starts by processing data by a modified K-means technique as a hierarchical clustering method to quickly obtain the best features of employees to reach their best performance.The work of this paper consists of two parts.The first part is based on collecting data of employees to calculate and illustrate the performance of each employee.The second part is based on the classification and prediction techniques of the employee performance.This model is designed to help companies in their decisions about the employees’performance.The classification and prediction algorithms use the Gradient Boosting Tree classifier to classify and predict the features.Results of the paper give the percentage of employees which are expected to leave the company after predicting their performance for the coming years.Results also show that the Grasshopper Optimization,followed by“KF”with the Gradient Boosting Tree as classifier and predictor,is characterized by a high accuracy.The proposed algorithm is compared with other known techniques where our results are fund to be superior.展开更多
The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the d...The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the data from Hongshi Forestry Bureau, in Changbai Mountain region, Jilin Province, China. The data were measured in 232 permanent sample plots. With the data of permanent sample plots, the parameters of transition probability and ingrowth models were estimated, and some models were compared and partly modified. During the simulation of stand structure, four factors such as largest diameter residual tree (LDT), the ratio of the number of trees in a given diameter class to those in the next larger diameter class (q), residual basal area (RBA) and selective cutting cycle (C) were considered. The simulation results showed that the optimum stand structure parameters for large diameter trees are as follows: q is 1.2, LDT is 46cm, RBA is larger than 26 m^2 and selective cutting cycle time (C) is between 10 and 20 years.展开更多
A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on th...A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on the parent/child relationships among the tool-path loops (TPLs) is presented. The direction, tool-path loop, leaf/branch, layer number, and the corresponding points of the TPL-tree are introduced. By defining TPL as a vector, and by traveling throughout the tree, a CPO tool-path without tool-retractions can be derived.展开更多
This paper firstly extends the single period forest optimal harvesting decision model to infinite periods,in order to indicate how to determine the optimal rotation period aimed at maximizing forest revenue in all dir...This paper firstly extends the single period forest optimal harvesting decision model to infinite periods,in order to indicate how to determine the optimal rotation period aimed at maximizing forest revenue in all directions when repeat planting and harvesting trees on the same plot of earth till infinite future.The study also analyzes the influence of discounted rates,timber price,harvesting costs,planting costs,and tax on the determination of optimal rotation period;and how the optimal rotation period will change when we introduce the factors of continuously rising timber price and ecological revenue.Secondly,the authors introduce the intergenerational equity principle into the above model to design a resource-exploiting mode which satisfies bom the dynamic efficiency principle and the intergenerational equity principle.Last but not least,the research applies the above model to the analysis of Chinese forestry economic policy and explains the economic theory of institutions such as Government Purchasing Ecological Forest,Tree Compensation,and Forestry Subsidization,which provides a necessary theoretical foundation for future application of these new institutions.Besides,in regard to mis theoretical framework,the authors analyze the necessity of the Natural Forest Protection and Grain for Green projects which are currently being implemented in China.We also point out the emphasis of work to insure the project sustainable and successful.Finally,the research discusses the enterprise's incentive to over-the-quota harvesting and the government's means of restricting such behavior,which highlights the fact mat improved supervision and higher penalties are helpful in restricting over-the-quota harvesting.展开更多
Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminar...Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems.展开更多
A new Faustmann optimal rotation harvesting stands’ problem under Brown geometric price and Logistic and Gompertz wood stock, diffusions is presented. The optimal cut policies for the stochastic Faustmann model and t...A new Faustmann optimal rotation harvesting stands’ problem under Brown geometric price and Logistic and Gompertz wood stock, diffusions is presented. The optimal cut policies for the stochastic Faustmann model and the single harvest rotation or Vicksell model are evaluated in the case of a Chilean Radiata pine forest company. The company cut policy validates the Vicksell model, its optimal cut policies overestimate the company policy cut in 1.2%, in the Gompertz case, and underestimate it in 2.3%, in the Logistic case. The Faustmann optimal cut policies present a larger underestimation of the company cut policy in 10.1%, in the Gompertz case, and in 21.5%, in the Logistic case. The preference for shorter evaluation period that the company shows is due to the organizational risk that the forest economic sectors has in Chile.展开更多
The use of prediction error to optimize the number of splitting rules in a tree model does not control the probability of the emergence of splitting rules with a predictor that has no functional relationship with the ...The use of prediction error to optimize the number of splitting rules in a tree model does not control the probability of the emergence of splitting rules with a predictor that has no functional relationship with the target variable. To solve this problem, a new optimization method is proposed. Using this method, the probability that the predictors used in splitting rules in the optimized tree model have no functional relationships with the target variable is confined to less than 0.05. It is fairly convincing that the tree model given by the new method represents knowledge contained in the data.展开更多
Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base locat...Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location.A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators.Firstly,research problems and contents are outlined.And then the feasible area for the manipulator base installation is discussed.Next,index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined.Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree(RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed.And then,the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria.Finally,the conclusions could be proved effective from the simulation results.展开更多
Optimizing deployment of sensors with self-healing ability is an efficient way to solve the problems of cov-erage, connectivity and the dead nodes in WSNs. This work discusses the particular relationship between the m...Optimizing deployment of sensors with self-healing ability is an efficient way to solve the problems of cov-erage, connectivity and the dead nodes in WSNs. This work discusses the particular relationship between the monitoring range and the communication range, and proposes an optimal deployment with self-healing movement algorithm for closed or semi-closed area with irregular shape, which can not only satisfy both coverage and connectivity by using as few nodes as possible, but also compensate the failure of nodes by mobility in WSNs. We compute the maximum efficient range of several neighbor sensors based on the dif-ferent relationships between monitoring range and communication range with consideration of the complex boundary or obstacles in the region, and combine it with the Euclidean Minimum Spanning Tree (EMST) algorithm to ensure the coverage and communication of Region of Interest (ROI). Besides, we calculate the location of dead nodes by Geometry Algorithm, and move the higher priority nodes to replace them by an-other Improved Virtual Force Algorithm (IVFA). Eventually, simulation results based-on MATLAB are presented, which do show that this optimal deployment with self-healing movement algorithm can ensure the coverage and communication of an entire region by requiring the least number of nodes and effectively compensate the loss of the networks.展开更多
A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking in...A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking into account the order of transactions.This work will present the implementation of sequence pattern mining for recommender systems within the domain of e-com-merce.This work will execute the Systolic tree algorithm for mining the frequent patterns to yield feasible rules for the recommender system.The feature selec-tion's objective is to pick a feature subset having the least feature similarity as well as highest relevancy with the target class.This will mitigate the feature vector's dimensionality by eliminating redundant,irrelevant,or noisy data.This work pre-sents a new hybrid recommender system based on optimized feature selection and systolic tree.The features were extracted using Term Frequency-Inverse Docu-ment Frequency(TF-IDF),feature selection with the utilization of River Forma-tion Dynamics(RFD),and the Particle Swarm Optimization(PSO)algorithm.The systolic tree is used for pattern mining,and based on this,the recommendations are given.The proposed methods were evaluated using the MovieLens dataset,and the experimental outcomes confirmed the efficiency of the techniques.It was observed that the RFD feature selection with systolic tree frequent pattern mining with collaborativefiltering,the precision of 0.89 was achieved.展开更多
文摘As far as the weight digraph is considered, based on the table instead of the weightdigraph, an optimal spanning tree method called the Table Operations Method (TOM) is proposed.And the optimality is proved and a numerical example is demonstrated.
基金Supported by the National Natural Science Foundation of China(60073043,70071042,60133010)
文摘Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has some shortcoming s, in this paper, we proposed a new method using tree structure to express the relationship of solutions. Experiments prove that the method can reach the Pare-to front, retain the diversity of the population, and use less time.
文摘The integration of wind turbines(WTs)in variable speed drive systems belongs to the main factors causing lowstability in electrical networks.Therefore,in order to avoid this issue,WTs hybridization with a storage system is a mandatory.This paper investigates WT system operating at variable speed.The system contains of a permanent magnet synchronous generator(PMSG)supported by a battery storage system(BSS).To enhance the quality of active and reactive power injected into the network,direct power control(DPC)scheme utilizing space-vector modulation(SVM)technique based on proportional-integral(PI)control is proposed.Meanwhile,to improve the rendition of this method(DPC-SVM-PI),the rooted tree optimization technique(RTO)algorithm-based controller parameter identification is used to achieve PI optimal gains.To compare the performance ofRTO-based controllers,they were implemented and tested along with some other popular controllers under different working conditions.The obtained results have shown the supremacy of the suggested PIRTO algorithm compared to competing controllers regarding total harmonic distortion(THD),overshoot percentage,settling time,rise time,average active power value,overall efficiency,and active power steadystate error.
文摘This paper aims to design an optimizer followed by a Kawahara filter for optimal classification and prediction of employees’performance.The algorithm starts by processing data by a modified K-means technique as a hierarchical clustering method to quickly obtain the best features of employees to reach their best performance.The work of this paper consists of two parts.The first part is based on collecting data of employees to calculate and illustrate the performance of each employee.The second part is based on the classification and prediction techniques of the employee performance.This model is designed to help companies in their decisions about the employees’performance.The classification and prediction algorithms use the Gradient Boosting Tree classifier to classify and predict the features.Results of the paper give the percentage of employees which are expected to leave the company after predicting their performance for the coming years.Results also show that the Grasshopper Optimization,followed by“KF”with the Gradient Boosting Tree as classifier and predictor,is characterized by a high accuracy.The proposed algorithm is compared with other known techniques where our results are fund to be superior.
基金This paper was supported by National Strategy Key Project, Research and Paradigm on Ecological Harvesting and Regeneration Tech-nique for Northeast Natural Forest (2001BA510B07-02)
文摘The optimum models of harvesting yield and net profits of large diameter trees for broadleaved forest were developed, of which include matrix growth sub-model, harvesting cost and wood price sub-models, based on the data from Hongshi Forestry Bureau, in Changbai Mountain region, Jilin Province, China. The data were measured in 232 permanent sample plots. With the data of permanent sample plots, the parameters of transition probability and ingrowth models were estimated, and some models were compared and partly modified. During the simulation of stand structure, four factors such as largest diameter residual tree (LDT), the ratio of the number of trees in a given diameter class to those in the next larger diameter class (q), residual basal area (RBA) and selective cutting cycle (C) were considered. The simulation results showed that the optimum stand structure parameters for large diameter trees are as follows: q is 1.2, LDT is 46cm, RBA is larger than 26 m^2 and selective cutting cycle time (C) is between 10 and 20 years.
文摘A contour-parallel offset (CPO) tool-path linking algorithm is derived without toolretractions and with the largest practicability. The concept of "tool-path loop tree" (TPL-tree) providing the information on the parent/child relationships among the tool-path loops (TPLs) is presented. The direction, tool-path loop, leaf/branch, layer number, and the corresponding points of the TPL-tree are introduced. By defining TPL as a vector, and by traveling throughout the tree, a CPO tool-path without tool-retractions can be derived.
文摘This paper firstly extends the single period forest optimal harvesting decision model to infinite periods,in order to indicate how to determine the optimal rotation period aimed at maximizing forest revenue in all directions when repeat planting and harvesting trees on the same plot of earth till infinite future.The study also analyzes the influence of discounted rates,timber price,harvesting costs,planting costs,and tax on the determination of optimal rotation period;and how the optimal rotation period will change when we introduce the factors of continuously rising timber price and ecological revenue.Secondly,the authors introduce the intergenerational equity principle into the above model to design a resource-exploiting mode which satisfies bom the dynamic efficiency principle and the intergenerational equity principle.Last but not least,the research applies the above model to the analysis of Chinese forestry economic policy and explains the economic theory of institutions such as Government Purchasing Ecological Forest,Tree Compensation,and Forestry Subsidization,which provides a necessary theoretical foundation for future application of these new institutions.Besides,in regard to mis theoretical framework,the authors analyze the necessity of the Natural Forest Protection and Grain for Green projects which are currently being implemented in China.We also point out the emphasis of work to insure the project sustainable and successful.Finally,the research discusses the enterprise's incentive to over-the-quota harvesting and the government's means of restricting such behavior,which highlights the fact mat improved supervision and higher penalties are helpful in restricting over-the-quota harvesting.
文摘Image processing,agricultural production,andfield monitoring are essential studies in the researchfield.Plant diseases have an impact on agricultural production and quality.Agricultural disease detection at a preliminary phase reduces economic losses and improves the quality of crops.Manually identifying the agricultural pests is usually evident in plants;also,it takes more time and is an expensive technique.A drone system has been developed to gather photographs over enormous regions such as farm areas and plantations.An atmosphere generates vast amounts of data as it is monitored closely;the evaluation of this big data would increase the production of agricultural production.This paper aims to identify pests in mango trees such as hoppers,mealybugs,inflorescence midges,fruitflies,and stem borers.Because of the massive volumes of large-scale high-dimensional big data collected,it is necessary to reduce the dimensionality of the input for classify-ing images.The community-based cumulative algorithm was used to classify the pests in the existing system.The proposed method uses the Entropy-ELM method with Whale Optimization to improve the classification in detecting pests in agricul-ture.The Entropy-ELM method with the Whale Optimization Algorithm(WOA)is used for feature selection,enhancing mango pests’classification accuracy.Support Vector Machines(SVMs)are especially effective for classifying while users get var-ious classes in which they are interested.They are created as suitable classifiers to categorize any dataset in Big Data effectively.The proposed Entropy-ELM-WOA is more capable compared to the existing systems.
文摘A new Faustmann optimal rotation harvesting stands’ problem under Brown geometric price and Logistic and Gompertz wood stock, diffusions is presented. The optimal cut policies for the stochastic Faustmann model and the single harvest rotation or Vicksell model are evaluated in the case of a Chilean Radiata pine forest company. The company cut policy validates the Vicksell model, its optimal cut policies overestimate the company policy cut in 1.2%, in the Gompertz case, and underestimate it in 2.3%, in the Logistic case. The Faustmann optimal cut policies present a larger underestimation of the company cut policy in 10.1%, in the Gompertz case, and in 21.5%, in the Logistic case. The preference for shorter evaluation period that the company shows is due to the organizational risk that the forest economic sectors has in Chile.
文摘The use of prediction error to optimize the number of splitting rules in a tree model does not control the probability of the emergence of splitting rules with a predictor that has no functional relationship with the target variable. To solve this problem, a new optimization method is proposed. Using this method, the probability that the predictors used in splitting rules in the optimized tree model have no functional relationships with the target variable is confined to less than 0.05. It is fairly convincing that the tree model given by the new method represents knowledge contained in the data.
基金Supported by the National Science and Technology Support Program of China(No.2013BAK03B01)
文摘Due to the interrelationship between the base placement of the manipulator and its operation object,it is significant to analyze the accessibility and workspace of manipulators for the optimization of their base location.A new method is presented to optimize the base placement of manipulators through motion planning optimization and location optimization in the feasible area for manipulators.Firstly,research problems and contents are outlined.And then the feasible area for the manipulator base installation is discussed.Next,index depended on the joint movements and used to evaluate the kinematic performance of manipulators is defined.Although the mentioned indices in last section are regarded as the cost function of the latter,rapidly-exploring random tree(RRT) and rapidly-exploring random tree*(RRT*) algorithms are analyzed.And then,the proposed optimization method of manipulator base placement is studied by means of simulation research based on kinematic performance criteria.Finally,the conclusions could be proved effective from the simulation results.
文摘Optimizing deployment of sensors with self-healing ability is an efficient way to solve the problems of cov-erage, connectivity and the dead nodes in WSNs. This work discusses the particular relationship between the monitoring range and the communication range, and proposes an optimal deployment with self-healing movement algorithm for closed or semi-closed area with irregular shape, which can not only satisfy both coverage and connectivity by using as few nodes as possible, but also compensate the failure of nodes by mobility in WSNs. We compute the maximum efficient range of several neighbor sensors based on the dif-ferent relationships between monitoring range and communication range with consideration of the complex boundary or obstacles in the region, and combine it with the Euclidean Minimum Spanning Tree (EMST) algorithm to ensure the coverage and communication of Region of Interest (ROI). Besides, we calculate the location of dead nodes by Geometry Algorithm, and move the higher priority nodes to replace them by an-other Improved Virtual Force Algorithm (IVFA). Eventually, simulation results based-on MATLAB are presented, which do show that this optimal deployment with self-healing movement algorithm can ensure the coverage and communication of an entire region by requiring the least number of nodes and effectively compensate the loss of the networks.
文摘A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking into account the order of transactions.This work will present the implementation of sequence pattern mining for recommender systems within the domain of e-com-merce.This work will execute the Systolic tree algorithm for mining the frequent patterns to yield feasible rules for the recommender system.The feature selec-tion's objective is to pick a feature subset having the least feature similarity as well as highest relevancy with the target class.This will mitigate the feature vector's dimensionality by eliminating redundant,irrelevant,or noisy data.This work pre-sents a new hybrid recommender system based on optimized feature selection and systolic tree.The features were extracted using Term Frequency-Inverse Docu-ment Frequency(TF-IDF),feature selection with the utilization of River Forma-tion Dynamics(RFD),and the Particle Swarm Optimization(PSO)algorithm.The systolic tree is used for pattern mining,and based on this,the recommendations are given.The proposed methods were evaluated using the MovieLens dataset,and the experimental outcomes confirmed the efficiency of the techniques.It was observed that the RFD feature selection with systolic tree frequent pattern mining with collaborativefiltering,the precision of 0.89 was achieved.