To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separatio...To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.展开更多
This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. First...This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.展开更多
We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was ...We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was pumped by a CW single-frequency Nd:YVO4 laser at 1.06μm. The 1.02 W of CW single-frequency signal laser at 1.5 μm was obtained at pump power of 6 W. At the output power of around 0.75 W, the power stability was better than ±l.5% and no mode-hopping was observed in 30 min and frequency stability was better than 8.5 MHz in 1 min. The signal wavelength could be tuned from 1.57 to 1.59 μm by varying the PPLN temperature. The 1.5-μm laser exhibits low noise characteristics, the intensity noise of the laser reaches the shot noise limit (SNL) at an analysis frequency of 4 MHz and the phase noise is less than 1 dB above the SNL at analysis frequencies above 10 MHz.展开更多
This paper derives a mathematical description of the complex stretch processor’s response to bandlimited Gaussian noise having arbitrary center frequency and bandwidth. The description of the complex stretch processo...This paper derives a mathematical description of the complex stretch processor’s response to bandlimited Gaussian noise having arbitrary center frequency and bandwidth. The description of the complex stretch processor’s random output comprises highly accurate closed-form approximations for the probability density function and the autocorrelation function. The solution supports the complex stretch processor’s usage of any conventional range-sidelobe-reduction window. The paper then identifies two practical applications of the derived description. Digital-simulation results for the two identified applications, assuming the complex stretch processor uses the rectangular, Hamming, Blackman, or Kaiser window, verify the derivation’s correctness through favorable comparison to the theoretically predicted behavior.展开更多
A rare Type I-like noise storm was observed with the solar radio spectrometers (1.0-2.0 GHz and 2.60-3.8 GHz) at National Astronomical Observatories of China (NAOC) on September 23, 1998. We concentrate on checking th...A rare Type I-like noise storm was observed with the solar radio spectrometers (1.0-2.0 GHz and 2.60-3.8 GHz) at National Astronomical Observatories of China (NAOC) on September 23, 1998. We concentrate on checking the Type I-like noise storm occurred in the decay phase of a Type Ⅳ radio burst. This noise storm consists of many Type I bursts and isolated Type Ⅲ or Type Ⅲ pair bursts. It has a bandwidth of ≤0.5 GHz. The duration of each Type I burst is of the order of 100-300 ms. The total duration is greater than 11 minutes. The circular polarization degree of the components of Type Ⅰ and associated Type Ⅲ bursts are about 40%-100% and almost 100%, respectively, which is greater than that of the background continuum (nearly the precision of our instrument). This short decimetric Type Ⅰ-like storm may be another kind or the extension of the kind of metric Type Ⅰ storm, and may possess the duality of metric and decimetric radio emission. It may be in favor of an earlier emission mechanism of the fundamental plasma radiation due to the coalescence of Langmuir waves with low-frequency waves.展开更多
This paper derives new and exact closed-form expressions for the average symbol error rate(SER) of square M-ary quadrature amplitude modulation(M-QAM) in wireless communication systems over theα-μfading channels sub...This paper derives new and exact closed-form expressions for the average symbol error rate(SER) of square M-ary quadrature amplitude modulation(M-QAM) in wireless communication systems over theα-μfading channels subject to an additive non-Gaussian noise. The obtained expressions take into account static and mobile wireless receivers. In addition, a closed-form expression for the outage probability in mobile networks is obtained. Please note that all derived expressions in this paper a valid for integer and non-integer values of the fading parameters. Analytical results are presented to study the impact of noise shaping parameter, severity of fading, and mobility on the average SER. Monte-Carlo simulations results are also provided to validate the accuracy of the analytical results.展开更多
It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventual...It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.展开更多
The secrecy rates of the existing practical secrecy coding methods are relative low to satisfy the security requirement of 5 G communications.We propose an artificial noise(AN) aided polar coding algorithm to improve ...The secrecy rates of the existing practical secrecy coding methods are relative low to satisfy the security requirement of 5 G communications.We propose an artificial noise(AN) aided polar coding algorithm to improve the secrecy rate.Firstly,a secrecy coding model based on AN is presented,where the confidential bits of last transmission code block are adopted as AN to inject into the current codeword.In this way,the AN can only be eliminated from the jammed codeword by the legitimate users.Since the AN is shorter than the codeword,we then develop a suboptimal jamming positions selecting algorithm with the goal of maximizing the bit error rate of the eavesdropper.Theoretical and simulation results demonstrate that the proposed algorithm outperforms the random selection method and the method without AN.展开更多
We continuously monitor the long-term seismic velocity variation of one of the major ruptured faults of the devastating 2008 Mw7.9 Wenchuan earthquake in China from July 2009 to January 2012,jointly using accurately c...We continuously monitor the long-term seismic velocity variation of one of the major ruptured faults of the devastating 2008 Mw7.9 Wenchuan earthquake in China from July 2009 to January 2012,jointly using accurately controlled routinely operated signal system active source and seismic noise-based monitoring technique.Our measurements show that the temporal velocity change is not homogeneous and highly localized in the damaged fault zone and the adjacent areas.Velocity variations from the active and passive methods are quite consistent,which both are characterized by ±0.2 % seasonal variation,with peak and trough at winter and summer,respectively.The periodic velocity variation within fault zone exhibits remarkably positive correlation with barometric pressure with stress sensitivity in the order of 10-6Pa-1,suggesting that the plausible mechanism might be the crack density variation of the shallow subsurface medium of the damaged fault zone in response to the cyclic barometric pressure loading.展开更多
Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral s...Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral space by many researchers. In this paper we point out that white noise on an oscillation system can also lead to a similar inverse power law in the corresponding displacement spectrum, implying that the – 4 power law for the equilibrium range of wind wave spectra may probably only reflect the randomicity of the wind waves rather than any other dynamical processes in physical space. This explanation may shed light on the mechanism of other physical processes with spectra also showing an inverse power law, such as isotropic turbulence, internal waves, etc.展开更多
An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local stati...An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local statistics from an observed degraded image,and the parameters are used to define the constraints on the noise detection process.In addition,an adaptive low-pass filter having a variable filter window defined by the constraints on noise detection is used to control the degree of smoothness of the reconstructed image.Experimental results demonstrate the capability of the proposed algorithm.展开更多
基于数字射频存储器(digital radio frequency memory,DRFM)产生的噪声卷积灵巧干扰兼具压制式和欺骗式干扰的效果,严重降低了雷达系统的探测性能。为解决此问题,本文提出了一种采用频率分集阵(frequency diversity array,FDA)-多输入...基于数字射频存储器(digital radio frequency memory,DRFM)产生的噪声卷积灵巧干扰兼具压制式和欺骗式干扰的效果,严重降低了雷达系统的探测性能。为解决此问题,本文提出了一种采用频率分集阵(frequency diversity array,FDA)-多输入多输出(multiple-input-multiple-output,MIMO)雷达的噪声卷积灵巧干扰对抗方法。经由雷达发射信号和噪声信号卷积调制所得的干扰信号在距离-多普勒维与目标回波呈现不同的分布特性。据此,首先利用干扰信号在多普勒域的白噪声特性获取多普勒清晰区的干扰样本,然后在此基础上逐距离门挑选样本以获得干扰协方差矩阵,最后通过距离-角度二维匹配滤波器抑制距离不匹配的主瓣干扰信号。仿真试验验证了本文所提抗干扰方法的有效性。展开更多
The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse s...The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse signal is derived.Then the asymptotic performance of the derived BER is analyzed as the signal-to-noise ratio(SNR)grows to infinity.In order to maximize the BER of the QPSK system,the optimal parameters of periodic pulse jamming signal,including the duty cycle and signal-tojamming power ratio(SJR),are found out.Numerical results are presented to verify our analytical results and the optimality of our design.展开更多
This paper studies the nonstationary filtering problem of Markov jump system under <span style="white-space:nowrap;"><i>l</i><sub>2</sub> - <i>l</i><sub>...This paper studies the nonstationary filtering problem of Markov jump system under <span style="white-space:nowrap;"><i>l</i><sub>2</sub> - <i>l</i><sub>∞</sub> </span>performance. Due to the difference in propagation channels, signal strength and phase will inevitably change randomly and cause the waste of signals resources. In response to this problem, a channel fading model with multiplicative noise is introduced. And then a nonstationary filter, which receives signals more efficiently is designed. Meanwhile Lyapunov function is constructed for error analysis. Finally, the gain matrix for filtering is obtained by solving the matrix inequality, and the results showed that the nonstationary filter converges to the stable point more quickly than the traditional asynchronous filter, the stability of the designed filter is verified.展开更多
Diversity combining technologies are analyzed for fast frequency-hopping spread spectrum systems during partial-band noise jamming to develop a novel combining receiver called an Adaptive Threshold Clipper Combining R...Diversity combining technologies are analyzed for fast frequency-hopping spread spectrum systems during partial-band noise jamming to develop a novel combining receiver called an Adaptive Threshold Clipper Combining Receiver (ATCCR). The optimal clipping level for an ATCCR is analyzed, computed, and compared with several other diversity combining technologies. Since the ATCCR can estimate the power of the jamming and the number of jammed frequency cells to adaptively adjust the clipper's threshold, the system performance using the adaptive threshold clipper combining technique can be greatly improved.展开更多
文摘To suppress noise amplitude modulation jamming in a single-antenna radar system, a new method based on weighted-matching pursuit (WMP) algorithm is proposed, which can achieve underdetermined blind sources separation of the jamming and the target echo from the jammed mixture in the single channel of the receiver. Firstly, the presented method utilizes a prior information about the differences between the jamming component and the radar transmitted signal to construct two signal-adapted sub-dictionaries and to determine the weights. Then the WMP algorithm is applied to remove the jamming component from the mixture. Experimental results verify the validity of the presented method. By comparison of the pulse compression performance, the simulation results shows that the presented method is superior to the method of frequency domain cancellation (FDC) when the jamming-to-signal ratio (JSR) is lower than 15 dB.
基金supported by the Program of the Aeronautical Science Foundation of China(2013ZC15003)
文摘This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.
基金supported by the National Natural Science Foundation of China(Grant No.60878003)the Science Fund for Excellent Research Team of the National Natural Science Foundation of China(Grant No.60821004)the National Basic Research Program of China(Grant No.2010CB923101)
文摘We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was pumped by a CW single-frequency Nd:YVO4 laser at 1.06μm. The 1.02 W of CW single-frequency signal laser at 1.5 μm was obtained at pump power of 6 W. At the output power of around 0.75 W, the power stability was better than ±l.5% and no mode-hopping was observed in 30 min and frequency stability was better than 8.5 MHz in 1 min. The signal wavelength could be tuned from 1.57 to 1.59 μm by varying the PPLN temperature. The 1.5-μm laser exhibits low noise characteristics, the intensity noise of the laser reaches the shot noise limit (SNL) at an analysis frequency of 4 MHz and the phase noise is less than 1 dB above the SNL at analysis frequencies above 10 MHz.
文摘This paper derives a mathematical description of the complex stretch processor’s response to bandlimited Gaussian noise having arbitrary center frequency and bandwidth. The description of the complex stretch processor’s random output comprises highly accurate closed-form approximations for the probability density function and the autocorrelation function. The solution supports the complex stretch processor’s usage of any conventional range-sidelobe-reduction window. The paper then identifies two practical applications of the derived description. Digital-simulation results for the two identified applications, assuming the complex stretch processor uses the rectangular, Hamming, Blackman, or Kaiser window, verify the derivation’s correctness through favorable comparison to the theoretically predicted behavior.
文摘A rare Type I-like noise storm was observed with the solar radio spectrometers (1.0-2.0 GHz and 2.60-3.8 GHz) at National Astronomical Observatories of China (NAOC) on September 23, 1998. We concentrate on checking the Type I-like noise storm occurred in the decay phase of a Type Ⅳ radio burst. This noise storm consists of many Type I bursts and isolated Type Ⅲ or Type Ⅲ pair bursts. It has a bandwidth of ≤0.5 GHz. The duration of each Type I burst is of the order of 100-300 ms. The total duration is greater than 11 minutes. The circular polarization degree of the components of Type Ⅰ and associated Type Ⅲ bursts are about 40%-100% and almost 100%, respectively, which is greater than that of the background continuum (nearly the precision of our instrument). This short decimetric Type Ⅰ-like storm may be another kind or the extension of the kind of metric Type Ⅰ storm, and may possess the duality of metric and decimetric radio emission. It may be in favor of an earlier emission mechanism of the fundamental plasma radiation due to the coalescence of Langmuir waves with low-frequency waves.
基金the support of SNCS Research Center and the Deanship of Scientific Research at the University of Tabukfinancial and inkind support for the project no. S-1438-0161
文摘This paper derives new and exact closed-form expressions for the average symbol error rate(SER) of square M-ary quadrature amplitude modulation(M-QAM) in wireless communication systems over theα-μfading channels subject to an additive non-Gaussian noise. The obtained expressions take into account static and mobile wireless receivers. In addition, a closed-form expression for the outage probability in mobile networks is obtained. Please note that all derived expressions in this paper a valid for integer and non-integer values of the fading parameters. Analytical results are presented to study the impact of noise shaping parameter, severity of fading, and mobility on the average SER. Monte-Carlo simulations results are also provided to validate the accuracy of the analytical results.
文摘It is generally known that the solutions of deterministic and stochastic differential equations (SDEs) usually grow linearly at such a rate that they may become unbounded after a small lapse of time and may eventually blow up or explode in finite time. If the drift and diffusion functions are globally Lipschitz, linear growth may still be experienced, as well as a possible blow-up of solutions in finite time. In this paper, a nonlinear scalar delay differential equation with a constant time lag is perturbed by a multiplicative Ito-type time - space white noise to form a stochastic Fokker-Planck delay differential equation. It is established that no explosion is possible in the presence of any intrinsically slow time - space white noise of Ito - type as manifested in the resulting stochastic Fokker- Planck delay differential equation. Time - space white noise has a role to play since the solution of the classical nonlinear equation without it still exhibits explosion.
基金supported in part by China’s High-Tech Research and Development Program(863 Program) under Grant No.2015AA01A708National Science Foundation for Young Scientists of China under Grant No.61501516
文摘The secrecy rates of the existing practical secrecy coding methods are relative low to satisfy the security requirement of 5 G communications.We propose an artificial noise(AN) aided polar coding algorithm to improve the secrecy rate.Firstly,a secrecy coding model based on AN is presented,where the confidential bits of last transmission code block are adopted as AN to inject into the current codeword.In this way,the AN can only be eliminated from the jammed codeword by the legitimate users.Since the AN is shorter than the codeword,we then develop a suboptimal jamming positions selecting algorithm with the goal of maximizing the bit error rate of the eavesdropper.Theoretical and simulation results demonstrate that the proposed algorithm outperforms the random selection method and the method without AN.
基金supported by the National Natural Science Foundation of China with Grant No.41174040the Wenchuan earthquake Fault Scientific Drilling project
文摘We continuously monitor the long-term seismic velocity variation of one of the major ruptured faults of the devastating 2008 Mw7.9 Wenchuan earthquake in China from July 2009 to January 2012,jointly using accurately controlled routinely operated signal system active source and seismic noise-based monitoring technique.Our measurements show that the temporal velocity change is not homogeneous and highly localized in the damaged fault zone and the adjacent areas.Velocity variations from the active and passive methods are quite consistent,which both are characterized by ±0.2 % seasonal variation,with peak and trough at winter and summer,respectively.The periodic velocity variation within fault zone exhibits remarkably positive correlation with barometric pressure with stress sensitivity in the order of 10-6Pa-1,suggesting that the plausible mechanism might be the crack density variation of the shallow subsurface medium of the damaged fault zone in response to the cyclic barometric pressure loading.
基金This study was financially supported by the National Natural Science Foundation of China (Grant No. 40406008)the Foundation for 0pen Projects of the Key Lab of Physical 0ceanography, the Ministry of Education, China (Grant No. 200309).
文摘Laboratory experiments and field observations show that the equilibrium range of wind wave spectra presents a – 4 power law when it is scaled properly. This feature has been attributed to energy balance in spectral space by many researchers. In this paper we point out that white noise on an oscillation system can also lead to a similar inverse power law in the corresponding displacement spectrum, implying that the – 4 power law for the equilibrium range of wind wave spectra may probably only reflect the randomicity of the wind waves rather than any other dynamical processes in physical space. This explanation may shed light on the mechanism of other physical processes with spectra also showing an inverse power law, such as isotropic turbulence, internal waves, etc.
基金National Research Foundation of Korea(No.2012M3C4A7032182)
文摘An spatially adaptive noise detection and removal algorithm is proposed.Under the assumption that an observed image and its additive noise have Gaussian distribution,the noise parameters are estimated with local statistics from an observed degraded image,and the parameters are used to define the constraints on the noise detection process.In addition,an adaptive low-pass filter having a variable filter window defined by the constraints on noise detection is used to control the degree of smoothness of the reconstructed image.Experimental results demonstrate the capability of the proposed algorithm.
文摘基于数字射频存储器(digital radio frequency memory,DRFM)产生的噪声卷积灵巧干扰兼具压制式和欺骗式干扰的效果,严重降低了雷达系统的探测性能。为解决此问题,本文提出了一种采用频率分集阵(frequency diversity array,FDA)-多输入多输出(multiple-input-multiple-output,MIMO)雷达的噪声卷积灵巧干扰对抗方法。经由雷达发射信号和噪声信号卷积调制所得的干扰信号在距离-多普勒维与目标回波呈现不同的分布特性。据此,首先利用干扰信号在多普勒域的白噪声特性获取多普勒清晰区的干扰样本,然后在此基础上逐距离门挑选样本以获得干扰协方差矩阵,最后通过距离-角度二维匹配滤波器抑制距离不匹配的主瓣干扰信号。仿真试验验证了本文所提抗干扰方法的有效性。
基金Supported by the National Natural Science Foundation of China(61271258)
文摘The problem of optimal periodic pulse jamming design for a quadrature phase shift keying(QPSK)communication system is investigated.First a closed-form bit-error-rate(BER)of QPSK system under the jamming of pulse signal is derived.Then the asymptotic performance of the derived BER is analyzed as the signal-to-noise ratio(SNR)grows to infinity.In order to maximize the BER of the QPSK system,the optimal parameters of periodic pulse jamming signal,including the duty cycle and signal-tojamming power ratio(SJR),are found out.Numerical results are presented to verify our analytical results and the optimality of our design.
文摘This paper studies the nonstationary filtering problem of Markov jump system under <span style="white-space:nowrap;"><i>l</i><sub>2</sub> - <i>l</i><sub>∞</sub> </span>performance. Due to the difference in propagation channels, signal strength and phase will inevitably change randomly and cause the waste of signals resources. In response to this problem, a channel fading model with multiplicative noise is introduced. And then a nonstationary filter, which receives signals more efficiently is designed. Meanwhile Lyapunov function is constructed for error analysis. Finally, the gain matrix for filtering is obtained by solving the matrix inequality, and the results showed that the nonstationary filter converges to the stable point more quickly than the traditional asynchronous filter, the stability of the designed filter is verified.
文摘Diversity combining technologies are analyzed for fast frequency-hopping spread spectrum systems during partial-band noise jamming to develop a novel combining receiver called an Adaptive Threshold Clipper Combining Receiver (ATCCR). The optimal clipping level for an ATCCR is analyzed, computed, and compared with several other diversity combining technologies. Since the ATCCR can estimate the power of the jamming and the number of jammed frequency cells to adaptively adjust the clipper's threshold, the system performance using the adaptive threshold clipper combining technique can be greatly improved.