To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, a...To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.展开更多
The natural flow cooling strategy is commonly employed in modern high-speed vessels and nuclear-powered submarines. These vessels rely on the energy generated by their own speed to drive the cooling system and supply ...The natural flow cooling strategy is commonly employed in modern high-speed vessels and nuclear-powered submarines. These vessels rely on the energy generated by their own speed to drive the cooling system and supply cooling water to the condenser. The circulating pump, which operates without a motor drive under natural flow conditions, is a large resistance component in the cooling system. However, it is also the primary noise source, significantly impacting the vessel’s safe operation and acoustic stealth performance. This study investigates the induced noise characteristics of a multi-stage pump under natural flow conditions by experiment, computational fluid dynamics (CFD), and acoustic finite element method. The analysis encompasses the distribution of the flow field, variations in acoustic power, spectral features of flow-induced noise, and directivity of external field radiation noise under different natural flow conditions. The results show that the acoustic power distribution is correlated with the flow field. When the impeller is stuck, the noise sources primarily concentrate in the flow separation area at the blade’s leading edge, the interface area between the impeller and the guide vane, and the flow shock area inside the guide vane. Conversely, when the impeller rotates passively, the blade wake area has a higher acoustic power. The flow noise spectrum under natural flow conditions mainly exhibits broadband and discrete characteristics. Additionally, the pump structure influences the external field radiation noise, and its directivity varies with different flow rates and characteristic frequencies. This study provides valuable insights into optimal design to reduce the noise of the circulating pump in the vessel’s natural flow cooling system. It is essential for ensuring the safe operation and acoustic stealth performance of high-speed vessels and nuclear-powered submarines.展开更多
Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were mad...Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.展开更多
A theoretical model of ambient sea noise including surface noise sources and stratified medium ocean is discussed. The noise sources are assumed to be statistically independent directional point sources distributed ov...A theoretical model of ambient sea noise including surface noise sources and stratified medium ocean is discussed. The noise sources are assumed to be statistically independent directional point sources distributed over the ocean surface, and the effects of ocean environment on ambient noise are studied. The normal-mode theory of surface-generated noise is developed, and the normal-mode formula of the directional density function suitable for small grazing angles is analytically continued for being suitable for great grazing angles and consistent with the ray formula. The unified formulae for calculating the intensities, spatial correlation and vertical directivity of ambient sea noise are presented.展开更多
This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises...This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises, respectively. The two QSDC protocols are constructed from four-qubit DF states which consist of two logical qubits. The receiver simply performs two Bell state measurements (rather than four-qubit joint measurements) to obtain the secret message. The protocols have qubit efficiency twice that of the other corresponding fault tolerant QSDC protocols. Furthermore, the proposed protocols are free from Trojan horse attacks.展开更多
An adaptive filter for cancelling noise contained in the direct absorption spectra is reported. This technique takes advantage of the periodical nature of the repetitively scanned spectral signal, and requires no prio...An adaptive filter for cancelling noise contained in the direct absorption spectra is reported. This technique takes advantage of the periodical nature of the repetitively scanned spectral signal, and requires no prior knowledge of the detailed properties of noises. An experimental system devised for measuring CH4 is used to test the performance of the filter. The measurement results show that the signal-to-noise (S/N) value is improved by a factor of 2. A higher enhancement factor of the S/N value of 5.4 is obtained through open-air measurement owing to higher distortions of the raw data. In addition, the response time of this filter, which characterizes the real-time detection ability of the system, is nine times shorter than that of a conventional signal averaging solution, under the condition that the filter order is 100.展开更多
The research on finding the arrival directions of speech signals by microphone arrny is proposed. We first analyze the uniform microphone array and give the design for microphone array applied in the hand-free speech ...The research on finding the arrival directions of speech signals by microphone arrny is proposed. We first analyze the uniform microphone array and give the design for microphone array applied in the hand-free speech recognition. Combining the traditional direction finding technique of MUltiple SIgnal Classification (MUSIC) with the focusing matrix method, we improve the resolving power of the microphone array for multiple speech sources.As one application of finding Direction of Arrival (DOA), a new microphone-array system for noise reduction is proposed. The new system is based on maximum likelihood estimate technique which reconstruct superimposed signals from different directions by using DOA information. The DOA information is got in terms of focusing MUSIC method which has been proven to have high performance than conventional MUSIC method on speaker localization[1].展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61472048,61402058,61272511,61472046,61202082 and 61370194the Beijing Natural Science Foundation under Grant No 4152038the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561826
文摘To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein-Podolsky Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003)042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Qo(M : (Q0, 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ~ is, the larger the error rate Q is. When the noise level ~ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q 〈 0.153. Similarly, if error rate Q〉 0.153 = Q0, eavesdropping information I 〉 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52279087,51879122).
文摘The natural flow cooling strategy is commonly employed in modern high-speed vessels and nuclear-powered submarines. These vessels rely on the energy generated by their own speed to drive the cooling system and supply cooling water to the condenser. The circulating pump, which operates without a motor drive under natural flow conditions, is a large resistance component in the cooling system. However, it is also the primary noise source, significantly impacting the vessel’s safe operation and acoustic stealth performance. This study investigates the induced noise characteristics of a multi-stage pump under natural flow conditions by experiment, computational fluid dynamics (CFD), and acoustic finite element method. The analysis encompasses the distribution of the flow field, variations in acoustic power, spectral features of flow-induced noise, and directivity of external field radiation noise under different natural flow conditions. The results show that the acoustic power distribution is correlated with the flow field. When the impeller is stuck, the noise sources primarily concentrate in the flow separation area at the blade’s leading edge, the interface area between the impeller and the guide vane, and the flow shock area inside the guide vane. Conversely, when the impeller rotates passively, the blade wake area has a higher acoustic power. The flow noise spectrum under natural flow conditions mainly exhibits broadband and discrete characteristics. Additionally, the pump structure influences the external field radiation noise, and its directivity varies with different flow rates and characteristic frequencies. This study provides valuable insights into optimal design to reduce the noise of the circulating pump in the vessel’s natural flow cooling system. It is essential for ensuring the safe operation and acoustic stealth performance of high-speed vessels and nuclear-powered submarines.
文摘Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.
基金The project supported by National Natural Science Foundation of China
文摘A theoretical model of ambient sea noise including surface noise sources and stratified medium ocean is discussed. The noise sources are assumed to be statistically independent directional point sources distributed over the ocean surface, and the effects of ocean environment on ambient noise are studied. The normal-mode theory of surface-generated noise is developed, and the normal-mode formula of the directional density function suitable for small grazing angles is analytically continued for being suitable for great grazing angles and consistent with the ray formula. The unified formulae for calculating the intensities, spatial correlation and vertical directivity of ambient sea noise are presented.
基金supported by the National Science Council, Taiwan, China (Grant No. NSC98-2221-E-006-097-MY3)
文摘This work proposes two fault tolerant quantum secure direct communication (QSDC) protocols which are robust against two kinds of collective noises: the collective-dephasing noises and the collective-rotation noises, respectively. The two QSDC protocols are constructed from four-qubit DF states which consist of two logical qubits. The receiver simply performs two Bell state measurements (rather than four-qubit joint measurements) to obtain the secret message. The protocols have qubit efficiency twice that of the other corresponding fault tolerant QSDC protocols. Furthermore, the proposed protocols are free from Trojan horse attacks.
基金supported by the National Key Scientific Instrument and Equipment Development Project under Grant No.2012YQ22011902
文摘An adaptive filter for cancelling noise contained in the direct absorption spectra is reported. This technique takes advantage of the periodical nature of the repetitively scanned spectral signal, and requires no prior knowledge of the detailed properties of noises. An experimental system devised for measuring CH4 is used to test the performance of the filter. The measurement results show that the signal-to-noise (S/N) value is improved by a factor of 2. A higher enhancement factor of the S/N value of 5.4 is obtained through open-air measurement owing to higher distortions of the raw data. In addition, the response time of this filter, which characterizes the real-time detection ability of the system, is nine times shorter than that of a conventional signal averaging solution, under the condition that the filter order is 100.
文摘The research on finding the arrival directions of speech signals by microphone arrny is proposed. We first analyze the uniform microphone array and give the design for microphone array applied in the hand-free speech recognition. Combining the traditional direction finding technique of MUltiple SIgnal Classification (MUSIC) with the focusing matrix method, we improve the resolving power of the microphone array for multiple speech sources.As one application of finding Direction of Arrival (DOA), a new microphone-array system for noise reduction is proposed. The new system is based on maximum likelihood estimate technique which reconstruct superimposed signals from different directions by using DOA information. The DOA information is got in terms of focusing MUSIC method which has been proven to have high performance than conventional MUSIC method on speaker localization[1].