A comprehensive behavioral investigation of gain and noise figure (NF) at different erbium doped fiber amplifier (EDFA) configurations is proposed. Configurations such as single pass (SP), single pass with filt...A comprehensive behavioral investigation of gain and noise figure (NF) at different erbium doped fiber amplifier (EDFA) configurations is proposed. Configurations such as single pass (SP), single pass with filter (SPF), double pass (DP) and double pass with filter (DPF) are designed, investigated and compared. A continuous increasing of gain value is recorded by changing the configuration from SP to SPF to DP then to DPF. The NF value shows different behaviors at different configurations.展开更多
Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship ha...Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship has universal validity for determining the equivalent input noise current spectral density for optical receiver designs, as verified by measuring a 155Mb/s high-impedance optical receiver front.end. Good agreement between calculated and simulated results has been achieved.展开更多
In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method...In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method is proposed.After eliminating the impacts of impulsive noise by the weighted out-lier filter,the direction of arrivals(DOAs)of FFSs can be estimated by multiple signal classification(MUSIC)spectral peaks search.Based on the DOAs information of FFSs,the separation of mixed sources can be performed.Finally,the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors.The Cramer-Rao bounds(CRB)for the unbiased estimations of DOA and range under impulsive noise have been drawn.Simulation experiments verify that the proposed method has advantages in probability of successful estimation(PSE)and root mean square error(RMSE)compared with existing localization methods.It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio(GSNR),few snapshots,and strong impulse.展开更多
This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhan...This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhance gain, minimize noise levels, and uphold low power consumption. The progression includes a shift to a cascode structure to further refine LNA parameters. Ultimately, with a 1.8 V bias, the achieved performance showcases a gain-to-noise figure ratio of 16 dB/0.5 dB, an IIP3 linearity at 5.1 dBm, and a power consumption of 3 mW. This architecture is adept at operating across a wide frequency band spanning from 0.5 GHz to 6 GHz, rendering it applicable in diverse RF scenarios.展开更多
A low power 433 MHz CMOS (complementary metal- oxide-semiconductor transistor) low noise amplifier(LNA), used for an ISM ( industrial-scientific-medical ) receiver, is implemented in a 0. 18 μm SMIC mixed-signa...A low power 433 MHz CMOS (complementary metal- oxide-semiconductor transistor) low noise amplifier(LNA), used for an ISM ( industrial-scientific-medical ) receiver, is implemented in a 0. 18 μm SMIC mixed-signal and RF ( radio frequency) CMOS process. The optimal noise performance of the CMOS LNA is achieved by adjusting the source degeneration inductance and by inserting an appropriate capacitance in parallel with the input transistor of the LNA. The measured results show that at 431 MHz the LNA has a noise figure of 2.4 dB. The S21 is equal to 16 dB, S11 = -11 dB, S22 = -9 dB, and the inverse isolation is 35 dB. The measured input 1-dB compression point (PtdB) and input third-order intermodulation product (IIP3)are - 13 dBm and -3 dBm, respectively. The chip area is 0. 55 mm × 1.2 mm and the DC power consumption is only 4 mW under a 1.8 V voltage supply.展开更多
The rate equation model is setup for the signal gain, pump absorption and output noise spectrum of bidirectional EDFA (Bi EDFA) including numbers of signals, pumps of arbitrary direction, amplified spontaneous emissi...The rate equation model is setup for the signal gain, pump absorption and output noise spectrum of bidirectional EDFA (Bi EDFA) including numbers of signals, pumps of arbitrary direction, amplified spontaneous emission (ASE) and inherent loss. The influence of erbium doped fiber length, input signal power, pump style and pump power on the gain characteristics of Bi EDFA is analyzed. Forward and backward noise figure for different pump style versus bidirectional input signal power is investigated.展开更多
A RF low noise amplifier,integrated in a single bluetooth transceiver chip and fabricated in 0.35μm digital CMOS technology,is presented.Under the consideration of ESD protection and package,design methodology is dis...A RF low noise amplifier,integrated in a single bluetooth transceiver chip and fabricated in 0.35μm digital CMOS technology,is presented.Under the consideration of ESD protection and package,design methodology is discussed from the aspects of noise optimization,impedance match,and forward gain.At 2.05GHz,the measured S 11 is -6.4dB, S 21 is 11dB with 3dB-BW of 300MHz,and NF is about 5.3dB.It indicates that comprehensive consideration of parasitics,package model,and reasonable process is necessary for RF circuit design.展开更多
An efficient way to design a down-converter assembly for the Ka-band millimeter system is presented, in which dielectric resonators (DR's) are adopted in the Schottky barrier diode image recovery mixer and the loca...An efficient way to design a down-converter assembly for the Ka-band millimeter system is presented, in which dielectric resonators (DR's) are adopted in the Schottky barrier diode image recovery mixer and the local oscillator (LO). DR structures guarantee high frequency stability with an acceptable volume. The configurations of low noise amplifier, mixer and oscillator in the assembly are described and fabricated to estimate the chain performance. According to the verification results, the assembly exhibits the noise figure of less than 5 dB over 1 GHz frequency range, and the single-sideband phase noise (200 kHz offset from carrier frequency) of - 70 dBc/Hz. Utilizing the DR structure, the frequency stability of the local oscillator is less than 60 × 10^-6/℃.展开更多
Focusing on the linearity shortcoming on a bipolar low noise amplifier(LNA),a new 6 ~14GHz four stage SiGe HBT LNA is proposed.This amplifier adopts a method of gain allocation on multiple stages to avoid the limitati...Focusing on the linearity shortcoming on a bipolar low noise amplifier(LNA),a new 6 ~14GHz four stage SiGe HBT LNA is proposed.This amplifier adopts a method of gain allocation on multiple stages to avoid the limitation on linearity especially with the addition of negative gain on the third stage.To realize gain flatness,extra zero is introduced to compensate the gain roll-off formed by pole,and local shunt-shunt negative feedback is used to widen the bandwidth as well as optimize circuit' s noise.Simulated results have shown that in 6 ~14GHz,this circuit achieves noise figure(NF) less than 3dB,gain of 17.8dB(+0.2dB),input and output reflection parameters of less than- 10 dB,and the K factor is above 1.15.展开更多
We present the design of a wide-band low-noise amplifier (LNA) implemented in 0.35μm SiGe BiCMOS technology for cable and terrestrial tuner applications. The LNA utilizes current injection to achieve high linearity...We present the design of a wide-band low-noise amplifier (LNA) implemented in 0.35μm SiGe BiCMOS technology for cable and terrestrial tuner applications. The LNA utilizes current injection to achieve high linearity. Without using inductors, the LNA achieves 0.1 ~ 1GHz wide bandwidth and 18. 8dB gain with less than 1.4dB of gain variation. The noise figure of the wideband LNA is 5dB, and its 1dB compression point is - 2dBm and IIP3 is 8dBm. The LNA dissipates 120mW of power with a 5V supply.展开更多
The Simultaneous Noise and Input Voltage Standing Wave Ratio (VSWR) Matching (SNIM) condition for Low Noise Amplifier (LNA), in principle, can only be satisfied at a single fre-quency. In this paper, by analyzing the ...The Simultaneous Noise and Input Voltage Standing Wave Ratio (VSWR) Matching (SNIM) condition for Low Noise Amplifier (LNA), in principle, can only be satisfied at a single fre-quency. In this paper, by analyzing the fundamental limitations of the narrowband SNIM technique for the broadband application, the authors present a broadband SNIM LNA systematic design technique. The designed LNA guided by the proposed methodology achieves 10 dB power gain with a low Noise Figure of 0.53 dB. Meanwhile, it provides wonderful input matching of 27 dB across the fre-quency range of 3~5 GHz. Therefore, broadband SNIM is realized.展开更多
A fully integrated low noise amplifier( LNA) for WLAN 802. 11 ac is presented in this article.A cascode topology combining BJT and MOS transistor is used for better performance. An inductive source degeneration is cho...A fully integrated low noise amplifier( LNA) for WLAN 802. 11 ac is presented in this article.A cascode topology combining BJT and MOS transistor is used for better performance. An inductive source degeneration is chosen to get 50 Ohm impedance matching at the input. The noise contribution of common gate transistor is analyzed for the first time. The designed LNA is verified with IBM silicon-germanium(SiGe ) 0. 13μm BiCMOS process. The measured results show that the designed LNA has the gain of 13 dB and NF of 2. 8 dB at the center frequency of 5. 5 GHz. The input reflection S11 and output reflection S22 are equal to-19 dB and-11 dB respectively. The P-1 dB and IIP3 are-8. 9 dBm and 6. 6 dBm for the linearity performance respectively. The power consumption is only 1. 3 mW under the 1. 2 V supply. LNA achieves high gain,low noise,and high linearity performance,allowing it to be used for the WLAN 802. 11 ac applications.展开更多
An ultra-wide band (UWB) receiver front-end that operates at the UWB frequency range, starting from 9 GHz - 10.6 GHz is proposed in this paper. The proposed system consists of an off-chip microstrip antenna and CMOS d...An ultra-wide band (UWB) receiver front-end that operates at the UWB frequency range, starting from 9 GHz - 10.6 GHz is proposed in this paper. The proposed system consists of an off-chip microstrip antenna and CMOS differential low noise amplifier with a differential noise canceling (DNC) technique. The proposed antenna is trapezoidal dipole shaped with balun and printed on a low-cost FR4 substrate with dimensions 10 × 10 × 0.8 mm3. The balun circuit integrated with the ground antenna to improve the antenna impedance matching. Noise canceling is obtained by using a differential block with each stage having 2 amplifiers that generate differential signals, subtracted to improve total noise performance. The proposed DNC block improves NF by 50% while increasing total power consumption with only 0.1 Mw. The differential CMOS cascode LNA with DNC block is implemented using UMC 0.13 μm CMOS process, exhibits a flat gain of 19 dB, maximum noise figure of 2.75 dB, 1 dB compression point −16 dBm and 3rd order intercept point (IIP3) −10 dBm. The proposed system has total DC power consumption of 2.8 mW at 1.2 V power supply.展开更多
Noise and linearity performances are critical characteristics for radio frequency integrated circuits (RFICs), especially for low noise amplifiers (LNAs). In this paper, a detailed analysis of noise and linearity for ...Noise and linearity performances are critical characteristics for radio frequency integrated circuits (RFICs), especially for low noise amplifiers (LNAs). In this paper, a detailed analysis of noise and linearity for the cascode architecture, a widely used circuit structure in LNA designs, is presented. The noise and the linearity improvement techniques for cascode structures are also developed and have been proven by computer simulating experiments. Theoretical analysis and simulation results showed that, for cascode structure LNAs, the first metallic oxide semiconductor field effect transistor (MOSFET) dominates the noise performance of the LNA, while the second MOSFET contributes more to the linearity. A conclusion is thus obtained that the first and second MOSFET of the LNA can be designed to optimize the noise performance and the linearity performance separately, without trade offs. The 1.9GHz Complementary Metal Oxide Semiconductor (CMOS) LNA simulation results are also given as an application of the developed theory.展开更多
An optimum design of a low noise amplifier (LNA) in S-band working at 2-4 GHz is described. Choosing FHC40LG high electronic mobility transistor (HEMT), the noise figure of the designed amplifier simulated by Micr...An optimum design of a low noise amplifier (LNA) in S-band working at 2-4 GHz is described. Choosing FHC40LG high electronic mobility transistor (HEMT), the noise figure of the designed amplifier simulated by Microwave Office is no more than 1.5 dB, meanwhile the gain is no less than 20 dB in the given bandwidth. The simulated results agree with the performance of the transistor itself well in consideration of its own minimum noise figure (0.3 dB) and associated gain (15.5 dB). Simultaneously, the stability factor of the designed amplifier is no less than 1 in the given bandwidth.展开更多
基金MMU and KFUPM/HBCC for their support in providing the various facilities utilized in the presentation of this paper
文摘A comprehensive behavioral investigation of gain and noise figure (NF) at different erbium doped fiber amplifier (EDFA) configurations is proposed. Configurations such as single pass (SP), single pass with filter (SPF), double pass (DP) and double pass with filter (DPF) are designed, investigated and compared. A continuous increasing of gain value is recorded by changing the configuration from SP to SPF to DP then to DPF. The NF value shows different behaviors at different configurations.
文摘Based on the equivalent circuit model of a two-port optical receiver front-end,the relationship between the equivalent input noise current spectral density and the noise figure is analyzed. The derived relationship has universal validity for determining the equivalent input noise current spectral density for optical receiver designs, as verified by measuring a 155Mb/s high-impedance optical receiver front.end. Good agreement between calculated and simulated results has been achieved.
基金supported by the National Natural Science Foundation of China(62073093)the initiation fund for postdoctoral research in Heilongjiang Province(LBH-Q19098)the Natural Science Foundation of Heilongjiang Province(LH2020F017).
文摘In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method is proposed.After eliminating the impacts of impulsive noise by the weighted out-lier filter,the direction of arrivals(DOAs)of FFSs can be estimated by multiple signal classification(MUSIC)spectral peaks search.Based on the DOAs information of FFSs,the separation of mixed sources can be performed.Finally,the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors.The Cramer-Rao bounds(CRB)for the unbiased estimations of DOA and range under impulsive noise have been drawn.Simulation experiments verify that the proposed method has advantages in probability of successful estimation(PSE)and root mean square error(RMSE)compared with existing localization methods.It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio(GSNR),few snapshots,and strong impulse.
文摘This work details the development of a broad-spectrum LNA (Low Noise Amplifier) circuit using a 65 nm CMOS technology. The design incorporates an inductive degeneracy circuit, employing a theoretical approach to enhance gain, minimize noise levels, and uphold low power consumption. The progression includes a shift to a cascode structure to further refine LNA parameters. Ultimately, with a 1.8 V bias, the achieved performance showcases a gain-to-noise figure ratio of 16 dB/0.5 dB, an IIP3 linearity at 5.1 dBm, and a power consumption of 3 mW. This architecture is adept at operating across a wide frequency band spanning from 0.5 GHz to 6 GHz, rendering it applicable in diverse RF scenarios.
基金The National Natural Science Foundation of China (No.60772008)the Key Science and Technology Program of Zhejiang Province(No.G2006C13024)
文摘A low power 433 MHz CMOS (complementary metal- oxide-semiconductor transistor) low noise amplifier(LNA), used for an ISM ( industrial-scientific-medical ) receiver, is implemented in a 0. 18 μm SMIC mixed-signal and RF ( radio frequency) CMOS process. The optimal noise performance of the CMOS LNA is achieved by adjusting the source degeneration inductance and by inserting an appropriate capacitance in parallel with the input transistor of the LNA. The measured results show that at 431 MHz the LNA has a noise figure of 2.4 dB. The S21 is equal to 16 dB, S11 = -11 dB, S22 = -9 dB, and the inverse isolation is 35 dB. The measured input 1-dB compression point (PtdB) and input third-order intermodulation product (IIP3)are - 13 dBm and -3 dBm, respectively. The chip area is 0. 55 mm × 1.2 mm and the DC power consumption is only 4 mW under a 1.8 V voltage supply.
文摘The rate equation model is setup for the signal gain, pump absorption and output noise spectrum of bidirectional EDFA (Bi EDFA) including numbers of signals, pumps of arbitrary direction, amplified spontaneous emission (ASE) and inherent loss. The influence of erbium doped fiber length, input signal power, pump style and pump power on the gain characteristics of Bi EDFA is analyzed. Forward and backward noise figure for different pump style versus bidirectional input signal power is investigated.
文摘A RF low noise amplifier,integrated in a single bluetooth transceiver chip and fabricated in 0.35μm digital CMOS technology,is presented.Under the consideration of ESD protection and package,design methodology is discussed from the aspects of noise optimization,impedance match,and forward gain.At 2.05GHz,the measured S 11 is -6.4dB, S 21 is 11dB with 3dB-BW of 300MHz,and NF is about 5.3dB.It indicates that comprehensive consideration of parasitics,package model,and reasonable process is necessary for RF circuit design.
文摘An efficient way to design a down-converter assembly for the Ka-band millimeter system is presented, in which dielectric resonators (DR's) are adopted in the Schottky barrier diode image recovery mixer and the local oscillator (LO). DR structures guarantee high frequency stability with an acceptable volume. The configurations of low noise amplifier, mixer and oscillator in the assembly are described and fabricated to estimate the chain performance. According to the verification results, the assembly exhibits the noise figure of less than 5 dB over 1 GHz frequency range, and the single-sideband phase noise (200 kHz offset from carrier frequency) of - 70 dBc/Hz. Utilizing the DR structure, the frequency stability of the local oscillator is less than 60 × 10^-6/℃.
基金Supported by the National Natural Science Foundation of China(No.61076101,61204092,61306033)
文摘Focusing on the linearity shortcoming on a bipolar low noise amplifier(LNA),a new 6 ~14GHz four stage SiGe HBT LNA is proposed.This amplifier adopts a method of gain allocation on multiple stages to avoid the limitation on linearity especially with the addition of negative gain on the third stage.To realize gain flatness,extra zero is introduced to compensate the gain roll-off formed by pole,and local shunt-shunt negative feedback is used to widen the bandwidth as well as optimize circuit' s noise.Simulated results have shown that in 6 ~14GHz,this circuit achieves noise figure(NF) less than 3dB,gain of 17.8dB(+0.2dB),input and output reflection parameters of less than- 10 dB,and the K factor is above 1.15.
文摘We present the design of a wide-band low-noise amplifier (LNA) implemented in 0.35μm SiGe BiCMOS technology for cable and terrestrial tuner applications. The LNA utilizes current injection to achieve high linearity. Without using inductors, the LNA achieves 0.1 ~ 1GHz wide bandwidth and 18. 8dB gain with less than 1.4dB of gain variation. The noise figure of the wideband LNA is 5dB, and its 1dB compression point is - 2dBm and IIP3 is 8dBm. The LNA dissipates 120mW of power with a 5V supply.
文摘The Simultaneous Noise and Input Voltage Standing Wave Ratio (VSWR) Matching (SNIM) condition for Low Noise Amplifier (LNA), in principle, can only be satisfied at a single fre-quency. In this paper, by analyzing the fundamental limitations of the narrowband SNIM technique for the broadband application, the authors present a broadband SNIM LNA systematic design technique. The designed LNA guided by the proposed methodology achieves 10 dB power gain with a low Noise Figure of 0.53 dB. Meanwhile, it provides wonderful input matching of 27 dB across the fre-quency range of 3~5 GHz. Therefore, broadband SNIM is realized.
基金Supported by the National Natural Science Foundation of China(No.61534003)
文摘A fully integrated low noise amplifier( LNA) for WLAN 802. 11 ac is presented in this article.A cascode topology combining BJT and MOS transistor is used for better performance. An inductive source degeneration is chosen to get 50 Ohm impedance matching at the input. The noise contribution of common gate transistor is analyzed for the first time. The designed LNA is verified with IBM silicon-germanium(SiGe ) 0. 13μm BiCMOS process. The measured results show that the designed LNA has the gain of 13 dB and NF of 2. 8 dB at the center frequency of 5. 5 GHz. The input reflection S11 and output reflection S22 are equal to-19 dB and-11 dB respectively. The P-1 dB and IIP3 are-8. 9 dBm and 6. 6 dBm for the linearity performance respectively. The power consumption is only 1. 3 mW under the 1. 2 V supply. LNA achieves high gain,low noise,and high linearity performance,allowing it to be used for the WLAN 802. 11 ac applications.
文摘An ultra-wide band (UWB) receiver front-end that operates at the UWB frequency range, starting from 9 GHz - 10.6 GHz is proposed in this paper. The proposed system consists of an off-chip microstrip antenna and CMOS differential low noise amplifier with a differential noise canceling (DNC) technique. The proposed antenna is trapezoidal dipole shaped with balun and printed on a low-cost FR4 substrate with dimensions 10 × 10 × 0.8 mm3. The balun circuit integrated with the ground antenna to improve the antenna impedance matching. Noise canceling is obtained by using a differential block with each stage having 2 amplifiers that generate differential signals, subtracted to improve total noise performance. The proposed DNC block improves NF by 50% while increasing total power consumption with only 0.1 Mw. The differential CMOS cascode LNA with DNC block is implemented using UMC 0.13 μm CMOS process, exhibits a flat gain of 19 dB, maximum noise figure of 2.75 dB, 1 dB compression point −16 dBm and 3rd order intercept point (IIP3) −10 dBm. The proposed system has total DC power consumption of 2.8 mW at 1.2 V power supply.
文摘Noise and linearity performances are critical characteristics for radio frequency integrated circuits (RFICs), especially for low noise amplifiers (LNAs). In this paper, a detailed analysis of noise and linearity for the cascode architecture, a widely used circuit structure in LNA designs, is presented. The noise and the linearity improvement techniques for cascode structures are also developed and have been proven by computer simulating experiments. Theoretical analysis and simulation results showed that, for cascode structure LNAs, the first metallic oxide semiconductor field effect transistor (MOSFET) dominates the noise performance of the LNA, while the second MOSFET contributes more to the linearity. A conclusion is thus obtained that the first and second MOSFET of the LNA can be designed to optimize the noise performance and the linearity performance separately, without trade offs. The 1.9GHz Complementary Metal Oxide Semiconductor (CMOS) LNA simulation results are also given as an application of the developed theory.
基金This work was supported by the National Natural Science Foundation of China under Grant No.60401006the Vacuum Electronics National Laboratory under Grant No. NKLC001-053.
文摘An optimum design of a low noise amplifier (LNA) in S-band working at 2-4 GHz is described. Choosing FHC40LG high electronic mobility transistor (HEMT), the noise figure of the designed amplifier simulated by Microwave Office is no more than 1.5 dB, meanwhile the gain is no less than 20 dB in the given bandwidth. The simulated results agree with the performance of the transistor itself well in consideration of its own minimum noise figure (0.3 dB) and associated gain (15.5 dB). Simultaneously, the stability factor of the designed amplifier is no less than 1 in the given bandwidth.