A new numerical differentiation method with local opti- mum by data segmentation is proposed. The segmentation of data is based on the second derivatives computed by a Fourier devel- opment method. A filtering process...A new numerical differentiation method with local opti- mum by data segmentation is proposed. The segmentation of data is based on the second derivatives computed by a Fourier devel- opment method. A filtering process is used to achieve acceptable segmentation. Numerical results are presented by using the data segmentation method, compared with the regularization method. For further investigation, the proposed algorithm is applied to the resistance capacitance (RC) networks identification problem, and improvements of the result are obtained by using this algorithm.展开更多
Cross-lingual summarization(CLS)is the task of generating a summary in a target language from a document in a source language.Recently,end-to-end CLS models have achieved impressive results using large-scale,high-qual...Cross-lingual summarization(CLS)is the task of generating a summary in a target language from a document in a source language.Recently,end-to-end CLS models have achieved impressive results using large-scale,high-quality datasets typically constructed by translating monolingual summary corpora into CLS corpora.However,due to the limited performance of low-resource language translation models,translation noise can seriously degrade the performance of these models.In this paper,we propose a fine-grained reinforcement learning approach to address low-resource CLS based on noisy data.We introduce the source language summary as a gold signal to alleviate the impact of the translated noisy target summary.Specifically,we design a reinforcement reward by calculating the word correlation and word missing degree between the source language summary and the generated target language summary,and combine it with cross-entropy loss to optimize the CLS model.To validate the performance of our proposed model,we construct Chinese-Vietnamese and Vietnamese-Chinese CLS datasets.Experimental results show that our proposed model outperforms the baselines in terms of both the ROUGE score and BERTScore.展开更多
In this article,we consider the primal-dual path-following method and the trust-region updating strategy for the standard linear programming problem.For the rank-deficient problem with the small noisy data,we also giv...In this article,we consider the primal-dual path-following method and the trust-region updating strategy for the standard linear programming problem.For the rank-deficient problem with the small noisy data,we also give the preprocessing method based on the QR decomposition with column pivoting.Then,we prove the global convergence of the new method when the initial point is strictly primal-dual feasible.Finally,for some rankdeficient problems with or without the small noisy data from the NETLIB collection,we compare it with other two popular interior-point methods,i.e.the subroutine pathfollow.m and the built-in subroutine linprog.m of the MATLAB environment.Numerical results show that the new method is more robust than the other two methods for the rank-deficient problem with the small noise data.展开更多
Accurate detection and picking of the P-phase onset time in noisy microseismic data from underground mines remains a big challenge. Reliable P-phase onset time picking is necessary for accurate source location needed ...Accurate detection and picking of the P-phase onset time in noisy microseismic data from underground mines remains a big challenge. Reliable P-phase onset time picking is necessary for accurate source location needed for planning and rescue operations in the event of failures. In this paper, a new technique based on the discrete stationary wavelet transform (DSWT)and higher order statist!cs, is proposed for processing noisy data from underground mines. The objectives of this method are to (1) Improve manual detection and tPicking of P-phase onset; and (ii) provide an automatic means of detecting and picking P-phase onset me accurately. The DSWT is first used to filter the signal over several scales. The manual P-phase onset detection and picking are then obtained by computing the signal energy across selected scales with frequency bands that capture the signal of interest. The automatic P-phase onset, on the other hand, is achieved by using skewness- and kurtosis-based criterion applied to selected scales in a time-frequency domain. The method was tested using synthetic and field data from an underground limestone mine. Results were compared with results obtained by using the short-term to long-term average (STA/LTA) ratio and that by Reference Ge et al. (2009). The results show that the me!hod provides a more reliable estimate of the P-phase onset arrival than the STA]LTA method when the signal to noise ratio is very low. Also, the results obtained from the field data matched accurately with the results from Reference Ge et al. (2009).展开更多
The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-nois...The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-noise ratio(SNR)situations.To address this issue,we propose a regression approach to pick FBs based on bidirectional long short-term memory(Bi LSTM)neural network by learning the implicit Eikonal equation of 3D inhomogeneous media with rugged topography in the target region.We employ a regressive model that represents the relationships among the elevation of shots,offset and the elevation of receivers with their seismic traveltime to predict the unknown FBs,from common-shot gathers with sparsely distributed traces.Different from image segmentation methods which automatically extract image features and classify FBs from seismic data,the proposed method can learn the inner relationship between field geometry and FBs.In addition,the predicted results by the regressive model are continuous values of FBs rather than the discrete ones of the binary distribution.The picking results of synthetic data shows that the proposed method has low dependence on label data,and can obtain reliable and similar predicted results using two types of label data with large differences.The picking results of9380 shots for 3D seismic data generated by vibroseis indicate that the proposed method can still accurately predict FBs in low SNR data.The subsequent stacked profiles further illustrate the reliability and effectiveness of the proposed method.The results of model data and field seismic data demonstrate that the proposed regression method is a robust first-break picker with high potential for field application.展开更多
Optical full-field measurement methods are now widely applied in various domains. In general,the displacement fields can be directly obtained from the measurement,however in mechanical analysis strain fields are prefe...Optical full-field measurement methods are now widely applied in various domains. In general,the displacement fields can be directly obtained from the measurement,however in mechanical analysis strain fields are preferred.To extract strain fields from noisy displacement fields is always a challenging topic.In this study,a finite element method for smoothing displacement fields and calculating strain fields is proposed.An experimental test case on a holed aluminum specimen under tension is applied to validate this method.The heterogeneous displacement fields are measured by digital image correlation(DIC).By this proposed method,the result shows that the measuring noise on experimental displacement fields can be successfully removed,and strain fields can be reconstructed in the arbitrary area.展开更多
The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,whi...The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,which is capable of estimating the future changing states of a nonlinear system.Since the BMS usually works under complicated operating conditions,i.e the real measurement data used for model training may be corrupted by non-Gaussian noise,and thus the performance of the original LSTM with the mean square error(MSE)loss may deteriorate.Therefore,a novel LSTM with mixture kernel mean p-power error(MKMPE)loss,called MKMPE-LSTM,is developed by using the MKMPE loss to replace the MSE as the learning criterion in LSTM framework,which can achieve robust SOC estimation under the measurement data contaminated with non-Gaussian noises(or outliers)because of the MKMPE containing the p-order moments of the error distribution.In addition,a meta-heuristic algorithm,called heap-based-optimizer(HBO),is employed to optimize the hyper-parameters(mainly including learning rate,number of hidden layer neuron and value of p in MKMPE)of the proposed MKMPE-LSTM model to further improve its flexibility and generalization performance,and a novel hybrid model(HBO-MKMPE-LSTM)is established for SOC estimation under non-Gaussian noise cases.Finally,several tests are performed under various cases through a benchmark to evaluate the performance of the proposed HBO-MKMPE-LSTM model,and the results demonstrate that the proposed hybrid method can provide a good robustness and accuracy under different non-Gaussian measurement noises,and the SOC estimation results in terms of mean square error(MSE),root MSE(RMSE),mean absolute relative error(MARE),and determination coefficient R2are less than 0.05%,3%,3%,and above 99.8%at 25℃,respectively.展开更多
In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris r...In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris recognition,and so on.However,the precise identification of human features is still physically chal-lenging in humans during their lifetime resulting in a variance in their appearance or features.In response to these challenges,a novel Multimodal Biometric Feature Extraction(MBFE)model is proposed to extract the features from the noisy sen-sor data using a modified Ranking-based Deep Convolution Neural Network(RDCNN).The proposed MBFE model enables the feature extraction from differ-ent biometric images that includes iris,palm print,and lip,where the images are preprocessed initially for further processing.The extracted features are validated after optimal extraction by the RDCNN by splitting the datasets to train the fea-ture extraction model and then testing the model with different sets of input images.The simulation is performed in matlab to test the efficacy of the modal over multi-modal datasets and the simulation result shows that the proposed meth-od achieves increased accuracy,precision,recall,and F1 score than the existing deep learning feature extraction methods.The performance improvement of the MBFE Algorithm technique in terms of accuracy,precision,recall,and F1 score is attained by 0.126%,0.152%,0.184%,and 0.38%with existing Back Propaga-tion Neural Network(BPNN),Human Identification Using Wavelet Transform(HIUWT),Segmentation Methodology for Non-cooperative Recognition(SMNR),Daugman Iris Localization Algorithm(DILA)feature extraction techni-ques respectively.展开更多
The paper introduces a novel approach for detecting structural damage in full-scale structures using surrogate models generated from incomplete modal data and deep neural networks(DNNs).A significant challenge in this...The paper introduces a novel approach for detecting structural damage in full-scale structures using surrogate models generated from incomplete modal data and deep neural networks(DNNs).A significant challenge in this field is the limited availability of measurement data for full-scale structures,which is addressed in this paper by generating data sets using a reduced finite element(FE)model constructed by SAP2000 software and the MATLAB programming loop.The surrogate models are trained using response data obtained from the monitored structure through a limited number of measurement devices.The proposed approach involves training a single surrogate model that can quickly predict the location and severity of damage for all potential scenarios.To achieve the most generalized surrogate model,the study explores different types of layers and hyperparameters of the training algorithm and employs state-of-the-art techniques to avoid overfitting and to accelerate the training process.The approach’s effectiveness,efficiency,and applicability are demonstrated by two numerical examples.The study also verifies the robustness of the proposed approach on data sets with sparse and noisy measured data.Overall,the proposed approach is a promising alternative to traditional approaches that rely on FE model updating and optimization algorithms,which can be computationally intensive.This approach also shows potential for broader applications in structural damage detection.展开更多
Identifying the potential drug-target interactions(DTI)is critical in drug discovery.The drug-target interaction prediction methods based on collaborative filtering have demonstrated attractive prediction performance....Identifying the potential drug-target interactions(DTI)is critical in drug discovery.The drug-target interaction prediction methods based on collaborative filtering have demonstrated attractive prediction performance.However,many corresponding models cannot accurately express the relationship between similarity features and DTI features.In order to rationally represent the correlation,we propose a novel matrix factorization method,so-called collaborative matrix factorization with soft regularization(SRCMF).SRCMF improves the prediction performance by combining the drug and the target similarity information with matrix factorization.In contrast to general collaborative matrix factorization,the fundamental idea of SRCMF is to make the similarity features and the potential features of DTI approximate,not identical.Specifically,SRCMF obtains low-rank feature representations of drug similarity and target similarity,and then uses a soft regularization term to constrain the approximation between drug(target)similarity features and drug(target)potential features of DTI.To comprehensively evaluate the prediction performance of SRCMF,we conduct cross-validation experiments under three different settings.In terms of the area under the precision-recall curve(AUPR),SRCMF achieves better prediction results than six state-of-the-art methods.Besides,under different noise levels of similarity data,the prediction performance of SRCMF is much better than that of collaborative matrix factorization.In conclusion,SRCMF is robust leading to performance improvement in drug-target interaction prediction.展开更多
In general,data contain noises which come from faulty instruments,flawed measurements or faulty communication.Learning with data in the context of classification or regression is inevitably affected by noises in the d...In general,data contain noises which come from faulty instruments,flawed measurements or faulty communication.Learning with data in the context of classification or regression is inevitably affected by noises in the data.In order to remove or greatly reduce the impact of noises,we introduce the ideas of fuzzy membership functions and the Laplacian twin support vector machine(Lap-TSVM).A formulation of the linear intuitionistic fuzzy Laplacian twin support vector machine(IFLap-TSVM)is presented.Moreover,we extend the linear IFLap-TSVM to the nonlinear case by kernel function.The proposed IFLap-TSVM resolves the negative impact of noises and outliers by using fuzzy membership functions and is a more accurate reasonable classi-fier by using the geometric distribution information of labeled data and unlabeled data based on manifold regularization.Experiments with constructed artificial datasets,several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has better classification accuracy than other state-of-the-art twin support vector machine(TSVM),intuitionistic fuzzy twin support vector machine(IFTSVM)and Lap-TSVM.展开更多
The multi-armed bandit(MAB)problem studies the sequential decision making in the presence of uncertainty and partial feedback on rewards.Its name comes from imagining a gambler at a row of slot machines who needs to d...The multi-armed bandit(MAB)problem studies the sequential decision making in the presence of uncertainty and partial feedback on rewards.Its name comes from imagining a gambler at a row of slot machines who needs to decide the best strategy on the number of times as well as the orders to play each machine.It is a classic reinforcement learning problem which is fundamental to many online learning problems.In many practical applications of the MAB,the reward distributions may change at unknown time steps and the outliers(extreme rewards)often exist.Current sequential design strategies may struggle in such cases,as they tend to infer additional change points to fit the outliers.In this paper,we propose a robust change-detection upper confidence bound(RCD-UCB)algorithm which can distinguish the real change points from the outliers in piecewise-stationary MAB settings.We show that the proposed RCD-UCB algorithm can achieve a nearly optimal regret bound on the order of O(√SKT log T),where T is the number of time steps,K is the number of arms and S is the number of stationary segments.We demonstrate its superior performance compared to some state-of-the-art algorithms in both simulation experiments and real data analysis.(See https://github.com/woaishufenke/MAB_STRF.git for the codes used in this paper.)展开更多
We considered the point source identification problems for heat equations from noisy observation data taken at the minimum number of spatially fixed measurement points.We aim to identify the unknown number of sources ...We considered the point source identification problems for heat equations from noisy observation data taken at the minimum number of spatially fixed measurement points.We aim to identify the unknown number of sources and their locations along with their strengths.In our previous work,we proved that minimum measurement points needed under the noise-free setting.In this paper,we extend the proof to cover the noisy cases over a border class of source functions.We show that if the regularization parameter is chosen properly,the problem can be transformed into a poles identification problem.A reconstruction scheme is proposed on the basis of the developed theoretical results.Numerical demonstrations in 2D and 3D conclude the paper.展开更多
基金supported by the National Basic Research Program of China(2011CB013103)
文摘A new numerical differentiation method with local opti- mum by data segmentation is proposed. The segmentation of data is based on the second derivatives computed by a Fourier devel- opment method. A filtering process is used to achieve acceptable segmentation. Numerical results are presented by using the data segmentation method, compared with the regularization method. For further investigation, the proposed algorithm is applied to the resistance capacitance (RC) networks identification problem, and improvements of the result are obtained by using this algorithm.
基金Project supported by the National Natural Science Foundation of China(Nos.U21B2027,62266027,61972186,62241604)the Yunnan Provincial Major Science and Technology Special Plan Projects,China(Nos.202302AD080003,202103AA080015,and 202202AD080003)+1 种基金the General Projects of Basic Research in Yunnan Province,China(Nos.202301AT070471 and 202301AT070393)the Kunming University of Science and Technology“Double First-Class”Joint Project,China(No.202201BE070001-021)。
文摘Cross-lingual summarization(CLS)is the task of generating a summary in a target language from a document in a source language.Recently,end-to-end CLS models have achieved impressive results using large-scale,high-quality datasets typically constructed by translating monolingual summary corpora into CLS corpora.However,due to the limited performance of low-resource language translation models,translation noise can seriously degrade the performance of these models.In this paper,we propose a fine-grained reinforcement learning approach to address low-resource CLS based on noisy data.We introduce the source language summary as a gold signal to alleviate the impact of the translated noisy target summary.Specifically,we design a reinforcement reward by calculating the word correlation and word missing degree between the source language summary and the generated target language summary,and combine it with cross-entropy loss to optimize the CLS model.To validate the performance of our proposed model,we construct Chinese-Vietnamese and Vietnamese-Chinese CLS datasets.Experimental results show that our proposed model outperforms the baselines in terms of both the ROUGE score and BERTScore.
基金This work was supported in part by Grant 61876199 from National Natural Science Foundation of China,Grant YBWL2011085 from Huawei Technologies Co.,Ltd.,and Grant YJCB2011003HIInnovation Research Program of Huawei Technologies Co.,Ltd..The first author is grateful to professor Li-Zhi Liao for introducing him the interiorpoint methods when he visited Hong Kong Baptist University in July,2012.
文摘In this article,we consider the primal-dual path-following method and the trust-region updating strategy for the standard linear programming problem.For the rank-deficient problem with the small noisy data,we also give the preprocessing method based on the QR decomposition with column pivoting.Then,we prove the global convergence of the new method when the initial point is strictly primal-dual feasible.Finally,for some rankdeficient problems with or without the small noisy data from the NETLIB collection,we compare it with other two popular interior-point methods,i.e.the subroutine pathfollow.m and the built-in subroutine linprog.m of the MATLAB environment.Numerical results show that the new method is more robust than the other two methods for the rank-deficient problem with the small noise data.
文摘Accurate detection and picking of the P-phase onset time in noisy microseismic data from underground mines remains a big challenge. Reliable P-phase onset time picking is necessary for accurate source location needed for planning and rescue operations in the event of failures. In this paper, a new technique based on the discrete stationary wavelet transform (DSWT)and higher order statist!cs, is proposed for processing noisy data from underground mines. The objectives of this method are to (1) Improve manual detection and tPicking of P-phase onset; and (ii) provide an automatic means of detecting and picking P-phase onset me accurately. The DSWT is first used to filter the signal over several scales. The manual P-phase onset detection and picking are then obtained by computing the signal energy across selected scales with frequency bands that capture the signal of interest. The automatic P-phase onset, on the other hand, is achieved by using skewness- and kurtosis-based criterion applied to selected scales in a time-frequency domain. The method was tested using synthetic and field data from an underground limestone mine. Results were compared with results obtained by using the short-term to long-term average (STA/LTA) ratio and that by Reference Ge et al. (2009). The results show that the me!hod provides a more reliable estimate of the P-phase onset arrival than the STA]LTA method when the signal to noise ratio is very low. Also, the results obtained from the field data matched accurately with the results from Reference Ge et al. (2009).
基金financially supported by the National Key R&D Program of China(2018YFA0702504)the National Natural Science Foundation of China(42174152)+1 种基金the Strategic Cooperation Technology Projects of China National Petroleum Corporation(CNPC)and China University of Petroleum-Beijing(CUPB)(ZLZX2020-03)the R&D Department of China National Petroleum Corporation(2022DQ0604-01)。
文摘The picking efficiency of seismic first breaks(FBs)has been greatly accelerated by deep learning(DL)technology.However,the picking accuracy and efficiency of DL methods still face huge challenges in low signal-to-noise ratio(SNR)situations.To address this issue,we propose a regression approach to pick FBs based on bidirectional long short-term memory(Bi LSTM)neural network by learning the implicit Eikonal equation of 3D inhomogeneous media with rugged topography in the target region.We employ a regressive model that represents the relationships among the elevation of shots,offset and the elevation of receivers with their seismic traveltime to predict the unknown FBs,from common-shot gathers with sparsely distributed traces.Different from image segmentation methods which automatically extract image features and classify FBs from seismic data,the proposed method can learn the inner relationship between field geometry and FBs.In addition,the predicted results by the regressive model are continuous values of FBs rather than the discrete ones of the binary distribution.The picking results of synthetic data shows that the proposed method has low dependence on label data,and can obtain reliable and similar predicted results using two types of label data with large differences.The picking results of9380 shots for 3D seismic data generated by vibroseis indicate that the proposed method can still accurately predict FBs in low SNR data.The subsequent stacked profiles further illustrate the reliability and effectiveness of the proposed method.The results of model data and field seismic data demonstrate that the proposed regression method is a robust first-break picker with high potential for field application.
基金supported by the National Basic Research Program of China("973"Project, Grant No.2010CB631005,2011CB606105)the National Natural Science Foundation of China(Grant No.10625209, 10732080,90916010)+2 种基金China Postdoctoral Science Foundation (Grant No.20090460335)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20090002110048)the opening funds from the State Key Laboratory of Explosion Science and Technology (KFJJ10-18Y)
文摘Optical full-field measurement methods are now widely applied in various domains. In general,the displacement fields can be directly obtained from the measurement,however in mechanical analysis strain fields are preferred.To extract strain fields from noisy displacement fields is always a challenging topic.In this study,a finite element method for smoothing displacement fields and calculating strain fields is proposed.An experimental test case on a holed aluminum specimen under tension is applied to validate this method.The heterogeneous displacement fields are measured by digital image correlation(DIC).By this proposed method,the result shows that the measuring noise on experimental displacement fields can be successfully removed,and strain fields can be reconstructed in the arbitrary area.
基金supported by the National Key R.D Program of China(2021YFB2401904)the Joint Fund project of the National Natural Science Foundation of China(U21A20485)+1 种基金the National Natural Science Foundation of China(61976175)the Key Laboratory Project of Shaanxi Provincial Education Department Scientific Research Projects(20JS109)。
文摘The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,which is capable of estimating the future changing states of a nonlinear system.Since the BMS usually works under complicated operating conditions,i.e the real measurement data used for model training may be corrupted by non-Gaussian noise,and thus the performance of the original LSTM with the mean square error(MSE)loss may deteriorate.Therefore,a novel LSTM with mixture kernel mean p-power error(MKMPE)loss,called MKMPE-LSTM,is developed by using the MKMPE loss to replace the MSE as the learning criterion in LSTM framework,which can achieve robust SOC estimation under the measurement data contaminated with non-Gaussian noises(or outliers)because of the MKMPE containing the p-order moments of the error distribution.In addition,a meta-heuristic algorithm,called heap-based-optimizer(HBO),is employed to optimize the hyper-parameters(mainly including learning rate,number of hidden layer neuron and value of p in MKMPE)of the proposed MKMPE-LSTM model to further improve its flexibility and generalization performance,and a novel hybrid model(HBO-MKMPE-LSTM)is established for SOC estimation under non-Gaussian noise cases.Finally,several tests are performed under various cases through a benchmark to evaluate the performance of the proposed HBO-MKMPE-LSTM model,and the results demonstrate that the proposed hybrid method can provide a good robustness and accuracy under different non-Gaussian measurement noises,and the SOC estimation results in terms of mean square error(MSE),root MSE(RMSE),mean absolute relative error(MARE),and determination coefficient R2are less than 0.05%,3%,3%,and above 99.8%at 25℃,respectively.
文摘In recent years,biometric sensors are applicable for identifying impor-tant individual information and accessing the control using various identifiers by including the characteristics like afingerprint,palm print,iris recognition,and so on.However,the precise identification of human features is still physically chal-lenging in humans during their lifetime resulting in a variance in their appearance or features.In response to these challenges,a novel Multimodal Biometric Feature Extraction(MBFE)model is proposed to extract the features from the noisy sen-sor data using a modified Ranking-based Deep Convolution Neural Network(RDCNN).The proposed MBFE model enables the feature extraction from differ-ent biometric images that includes iris,palm print,and lip,where the images are preprocessed initially for further processing.The extracted features are validated after optimal extraction by the RDCNN by splitting the datasets to train the fea-ture extraction model and then testing the model with different sets of input images.The simulation is performed in matlab to test the efficacy of the modal over multi-modal datasets and the simulation result shows that the proposed meth-od achieves increased accuracy,precision,recall,and F1 score than the existing deep learning feature extraction methods.The performance improvement of the MBFE Algorithm technique in terms of accuracy,precision,recall,and F1 score is attained by 0.126%,0.152%,0.184%,and 0.38%with existing Back Propaga-tion Neural Network(BPNN),Human Identification Using Wavelet Transform(HIUWT),Segmentation Methodology for Non-cooperative Recognition(SMNR),Daugman Iris Localization Algorithm(DILA)feature extraction techni-ques respectively.
基金This study was supported by Bualuang ASEAN Chair Professor Fund.
文摘The paper introduces a novel approach for detecting structural damage in full-scale structures using surrogate models generated from incomplete modal data and deep neural networks(DNNs).A significant challenge in this field is the limited availability of measurement data for full-scale structures,which is addressed in this paper by generating data sets using a reduced finite element(FE)model constructed by SAP2000 software and the MATLAB programming loop.The surrogate models are trained using response data obtained from the monitored structure through a limited number of measurement devices.The proposed approach involves training a single surrogate model that can quickly predict the location and severity of damage for all potential scenarios.To achieve the most generalized surrogate model,the study explores different types of layers and hyperparameters of the training algorithm and employs state-of-the-art techniques to avoid overfitting and to accelerate the training process.The approach’s effectiveness,efficiency,and applicability are demonstrated by two numerical examples.The study also verifies the robustness of the proposed approach on data sets with sparse and noisy measured data.Overall,the proposed approach is a promising alternative to traditional approaches that rely on FE model updating and optimization algorithms,which can be computationally intensive.This approach also shows potential for broader applications in structural damage detection.
基金This work was supported by the National Natural Science Foundation of China under Grant No.61972423Hunan Provincial Science and Technology Program under Grant No.2018wk4001.
文摘Identifying the potential drug-target interactions(DTI)is critical in drug discovery.The drug-target interaction prediction methods based on collaborative filtering have demonstrated attractive prediction performance.However,many corresponding models cannot accurately express the relationship between similarity features and DTI features.In order to rationally represent the correlation,we propose a novel matrix factorization method,so-called collaborative matrix factorization with soft regularization(SRCMF).SRCMF improves the prediction performance by combining the drug and the target similarity information with matrix factorization.In contrast to general collaborative matrix factorization,the fundamental idea of SRCMF is to make the similarity features and the potential features of DTI approximate,not identical.Specifically,SRCMF obtains low-rank feature representations of drug similarity and target similarity,and then uses a soft regularization term to constrain the approximation between drug(target)similarity features and drug(target)potential features of DTI.To comprehensively evaluate the prediction performance of SRCMF,we conduct cross-validation experiments under three different settings.In terms of the area under the precision-recall curve(AUPR),SRCMF achieves better prediction results than six state-of-the-art methods.Besides,under different noise levels of similarity data,the prediction performance of SRCMF is much better than that of collaborative matrix factorization.In conclusion,SRCMF is robust leading to performance improvement in drug-target interaction prediction.
基金This work was supported by the National Natural Science Foundation of China(No.11771275)The second author thanks the partially support of Dutch Research Council(No.040.11.724).
文摘In general,data contain noises which come from faulty instruments,flawed measurements or faulty communication.Learning with data in the context of classification or regression is inevitably affected by noises in the data.In order to remove or greatly reduce the impact of noises,we introduce the ideas of fuzzy membership functions and the Laplacian twin support vector machine(Lap-TSVM).A formulation of the linear intuitionistic fuzzy Laplacian twin support vector machine(IFLap-TSVM)is presented.Moreover,we extend the linear IFLap-TSVM to the nonlinear case by kernel function.The proposed IFLap-TSVM resolves the negative impact of noises and outliers by using fuzzy membership functions and is a more accurate reasonable classi-fier by using the geometric distribution information of labeled data and unlabeled data based on manifold regularization.Experiments with constructed artificial datasets,several UCI benchmark datasets and MNIST dataset show that the IFLap-TSVM has better classification accuracy than other state-of-the-art twin support vector machine(TSVM),intuitionistic fuzzy twin support vector machine(IFTSVM)and Lap-TSVM.
基金supported by National Natural Science Foundation of China[11901199,71931004,11831008,11971171]Shanghai Sailing Program[19YF1412800]+1 种基金National Social Science Foundation Key Program[17ZDA091]the 111 Project of China[B14019].
文摘The multi-armed bandit(MAB)problem studies the sequential decision making in the presence of uncertainty and partial feedback on rewards.Its name comes from imagining a gambler at a row of slot machines who needs to decide the best strategy on the number of times as well as the orders to play each machine.It is a classic reinforcement learning problem which is fundamental to many online learning problems.In many practical applications of the MAB,the reward distributions may change at unknown time steps and the outliers(extreme rewards)often exist.Current sequential design strategies may struggle in such cases,as they tend to infer additional change points to fit the outliers.In this paper,we propose a robust change-detection upper confidence bound(RCD-UCB)algorithm which can distinguish the real change points from the outliers in piecewise-stationary MAB settings.We show that the proposed RCD-UCB algorithm can achieve a nearly optimal regret bound on the order of O(√SKT log T),where T is the number of time steps,K is the number of arms and S is the number of stationary segments.We demonstrate its superior performance compared to some state-of-the-art algorithms in both simulation experiments and real data analysis.(See https://github.com/woaishufenke/MAB_STRF.git for the codes used in this paper.)
文摘We considered the point source identification problems for heat equations from noisy observation data taken at the minimum number of spatially fixed measurement points.We aim to identify the unknown number of sources and their locations along with their strengths.In our previous work,we proved that minimum measurement points needed under the noise-free setting.In this paper,we extend the proof to cover the noisy cases over a border class of source functions.We show that if the regularization parameter is chosen properly,the problem can be transformed into a poles identification problem.A reconstruction scheme is proposed on the basis of the developed theoretical results.Numerical demonstrations in 2D and 3D conclude the paper.