The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in...The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in aqueous phase, contact time of the two phases, the air blowing time for feed liquor in the open beaker on percentage extraction of cobalt and nickel and percentage reextraction of nickel from the loaded organic phase with dilute H 2SO 4. etc were studied. The results showed that: Co(Ⅱ) can be oxidized to Co(Ⅲ) ammino complex by adding (NH 4) 2S 2O 8 or blowing air to the aqueous phase, and Co(Ⅲ) ammino complex is a kind of kinetically inert complex. Its extractive speed is very slow, while the nickel′s is much faster than that of cobalt. By controlling the contact time of the two phases, nickel can be separated from cobalt by non equilibrium solvent extraction. Then nickel was reextracted from the loaded organic phase with dilute H 2SO 4.展开更多
Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel an...Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel and copper by non equilibrium solvent extraction. Under the conditions of temperature 25?℃, contact time of two phases 10?min, phase ratio 1∶1, aqueous pH 10.10 and concentration of P204 20%, [Co(NH 3) 6] 3+ is hardly extracted by P204, while the percentage extractions of nickel and copper are 79.3% and 93.9% respectively. Nickel and copper are separated by equilibrium solvent extraction with P204. Under the conditions of temperature 25?℃, contact time of two phases 1?min, phase ratio 1∶1, equilibrium pH 4.01 and concentration of P204 20%, the separation factor of copper and nickel is 216.展开更多
Standard free energies (ΔG0t(i) ) and entropies (ΔS0t(i)) of transfer of some homologous α-amino acids viz. glycine (gly), dl-alanine (ala), dl-α-amino butyric acid (aba) and dl-nor-valine (nor-val) from protic et...Standard free energies (ΔG0t(i) ) and entropies (ΔS0t(i)) of transfer of some homologous α-amino acids viz. glycine (gly), dl-alanine (ala), dl-α-amino butyric acid (aba) and dl-nor-valine (nor-val) from protic ethylene glycol (EG) to dipolar aprotic N,N-dimethyl formamide (DMF) have been evaluated from solubility measure-ments at five equidistant temperatures i.e from 15 to 350C. The observed ΔG0t(i) and TΔS0t(i) Vs composition profiles are complicated because of the various interaction effects. The chemical effects of the transfer Gibbs energies (ΔG0t.ch(i)) and entropies of transfer (ΔS0t.ch(i)) have been obtained after elimination of cavity effect, estimated by the scaled particle theory and dipole-dipole interaction effects, estimated by the use of Keesom-orientation expression. The chemical contributions of transfer energetics of homologous α-amino acids are guided by the composite effects of increased dispersion interaction, basicity and decreased acidity, hydrogen bonding effects and solvophobic solvation of ethylene glycol and N, N-dimethyl formamide mixed solvent as compared to that of reference solvent (ethylene glycol).展开更多
文摘The separation of cobalt and nickel in the ammoniacal sulfate solution by non equilibrium solvent extraction with a phosphate (P303) as extractant was studied. In the experiment, the effects of equilibrium pH value in aqueous phase, contact time of the two phases, the air blowing time for feed liquor in the open beaker on percentage extraction of cobalt and nickel and percentage reextraction of nickel from the loaded organic phase with dilute H 2SO 4. etc were studied. The results showed that: Co(Ⅱ) can be oxidized to Co(Ⅲ) ammino complex by adding (NH 4) 2S 2O 8 or blowing air to the aqueous phase, and Co(Ⅲ) ammino complex is a kind of kinetically inert complex. Its extractive speed is very slow, while the nickel′s is much faster than that of cobalt. By controlling the contact time of the two phases, nickel can be separated from cobalt by non equilibrium solvent extraction. Then nickel was reextracted from the loaded organic phase with dilute H 2SO 4.
文摘Nickel, cobalt and copper were separated by solvent extraction with P204. The experimental results show that [Co(NH 3) 6] 3+ is an inert complex in extraction kinetics, therefore cobalt can be separated from nickel and copper by non equilibrium solvent extraction. Under the conditions of temperature 25?℃, contact time of two phases 10?min, phase ratio 1∶1, aqueous pH 10.10 and concentration of P204 20%, [Co(NH 3) 6] 3+ is hardly extracted by P204, while the percentage extractions of nickel and copper are 79.3% and 93.9% respectively. Nickel and copper are separated by equilibrium solvent extraction with P204. Under the conditions of temperature 25?℃, contact time of two phases 1?min, phase ratio 1∶1, equilibrium pH 4.01 and concentration of P204 20%, the separation factor of copper and nickel is 216.
文摘Standard free energies (ΔG0t(i) ) and entropies (ΔS0t(i)) of transfer of some homologous α-amino acids viz. glycine (gly), dl-alanine (ala), dl-α-amino butyric acid (aba) and dl-nor-valine (nor-val) from protic ethylene glycol (EG) to dipolar aprotic N,N-dimethyl formamide (DMF) have been evaluated from solubility measure-ments at five equidistant temperatures i.e from 15 to 350C. The observed ΔG0t(i) and TΔS0t(i) Vs composition profiles are complicated because of the various interaction effects. The chemical effects of the transfer Gibbs energies (ΔG0t.ch(i)) and entropies of transfer (ΔS0t.ch(i)) have been obtained after elimination of cavity effect, estimated by the scaled particle theory and dipole-dipole interaction effects, estimated by the use of Keesom-orientation expression. The chemical contributions of transfer energetics of homologous α-amino acids are guided by the composite effects of increased dispersion interaction, basicity and decreased acidity, hydrogen bonding effects and solvophobic solvation of ethylene glycol and N, N-dimethyl formamide mixed solvent as compared to that of reference solvent (ethylene glycol).