The complex of [La 2(P MBA) 6(PHEN) 2]2H 2O (P MBA: p methylbenzoate and PHEN: 1,10 phenanthroline) was prepared and characterized by elemental analysis and IR spectroscopy. The thermal behavior of [La 2(P M...The complex of [La 2(P MBA) 6(PHEN) 2]2H 2O (P MBA: p methylbenzoate and PHEN: 1,10 phenanthroline) was prepared and characterized by elemental analysis and IR spectroscopy. The thermal behavior of [La 2(P MBA) 6(PHEN) 2]2H 2O in dynamic nitrogen atmosphere was investigated by TG DTG techniques. The results show that the thermal decomposition process of the [La 2(P MBA) 6(PHEN) 2]2H 2O occurs in five steps. The empirical kinetic model for the first step thermal decomposition obtained by Malek method is SB(m,n). The activation energy E and the pre exponential factor lnA for this step reaction are 76.4 kJ·mol -1 and 24.92, respectively.展开更多
The thermal decomposition processes of ephedrini hydrochloridum and its kinetics are studied by TG-DTG techniques. A combined method, which includes Achar method, Coats-Redfera method, and Ozawa method, is put forward...The thermal decomposition processes of ephedrini hydrochloridum and its kinetics are studied by TG-DTG techniques. A combined method, which includes Achar method, Coats-Redfera method, and Ozawa method, is put forward for determining kinetic model under non-isothermal conditions. By applying the combined method, it is determined that the thermal decomposition of ephedrini hydrochloridum is subjected to cylindrical symmetric diffusion. And the reaction function isƒ(α)=2(1-α)?, apparent activation energy (115.26±3.55) kJ·mol−1, pre-exponential factor 4.62×108 s−1. Results show that the combined method is feasible and simple.展开更多
The thermal decomposition of the strontium chloride hexahydrate and its kinetics were studied under non isothermal condition in nitrogen by thermogravimetric and derivative thermogravimetric techniques. The intermedi...The thermal decomposition of the strontium chloride hexahydrate and its kinetics were studied under non isothermal condition in nitrogen by thermogravimetric and derivative thermogravimetric techniques. The intermediate and residue for each decomposition were identified from TG curve. The non isothermal kinetic data were analyzed by the Achar method and the Coats Redfern method. The possible reaction mechanisms were suggested by comparing the kinetic parameters. The kinetic equation for the first stage can be expressed as d α /d t = A exp(- E/RT)(1-α ), the second stage, d α /d t = A exp(- E/RT)3(1-α ) 2/3 , and the third stage, d α /d t = A exp(- E/RT)3/2(1-α ) 2/3 [1-(1- α ) 1/3 ] -1 . Mathematic expressions of the kinetic compensation effects of each stage of the thermal decomposition reaction were also obtained.展开更多
The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes...The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes (SARA) fractionation method, the combustion process of SBS asphalt can be divided by Gaussian peak fitting into three main stages: oil content release, resin pyrolysis, and asphaltene and char combustion. When the heating rate increases, the mass losses of the oil content and resin pyrolysis increase, and less asphaltenes are formed at a higher temperature. The activation energy values are calculated by the Coats-Redfern method to be in the range 61.6 kJ/mol-142.9 kJ/mol. The Popescu method is used for the kinetic analysis, and the result shows that the three stages of asphalt combustion can be explained by the sphere phase boundary reaction model, the second order chemical reaction model, nucleation, and its subsequent growth model, respectively.展开更多
The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calori...The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry (DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible --P--O-- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Malek. It was found that the two-parameter autocatalytic model(Sestak-Berggren equation) is the most adequate one to describe the cure kinetics of the studied System at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.展开更多
The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement...The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement with the theoretical value. XRD profile demonstrates that the product of the thermal decomposition at 500℃ is LiCI. For the decomposition kinetics study, the activation energies calculated with the Friedman method were considered as the initial values for non-linear regression and were used for verifying the correctness of the fired models. The decomposition process was fitted by a two-step consecutive reaction: extended Prout-Tompkins equation[Bna, f(α) is (1-α)^nα^α] followed by a lth order reaction(F1). The activation energies were (215.6±0.2) and (251.6±3.6) kJ/mol, respectively. The exponentials n and a for Bna reaction were (0.25±0.05) and (0.795±0.005), respectively. The reaction types and activation energies were in agreement with those obtained from the isothermal method, but the exponentials were optimized for better firing and prediction.展开更多
The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition pro...The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition process of the complex was determined and its kinetics was investigated. Kinetic parameters were obtained from the analysis of TG-DTG curves by means of the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method. The most probable mechanism functions of the thermal decomposition reaction for the first stage are: f(alpha) =(1-alpha)(2), g(alpha) = (1-alpha)(-1)-1. The activation energy for the first stage is 255.18 kJ/mol, the entropy of activation DeltaS is 227.32 J/mol and the Gibbs free energy of activation DeltaG is 128.04 W/mol.展开更多
The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture s...The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture solutions before and after leaching were measured.The research of non-isothermal kinetics was evaluated by the leaching rate of Fe and the total apparent velocity equation of the non-isothermal kinetics of leaching for primary titanium-rich material by microwave heating was obtained.It is shown from the temperature-pressure curves that the high temperature and high pressure of closed leaching system are favorable to the enhancement of the leaching rate of Fe.Microwave absorption characteristics of mixture solutions before and after leaching show that there are abrupt changes of microwave absorption characteristics for 15%HCl solution and the mixture solution after leaching by 20%HCl.展开更多
The non-isothermal crystallization kinetics of polyamide 6/diamine-modified multi-walled carbon nanotube (PA6/D-MWNT) nanocomposite was investigated by differential scanning calorimetry (DSC). The modified Avrami ...The non-isothermal crystallization kinetics of polyamide 6/diamine-modified multi-walled carbon nanotube (PA6/D-MWNT) nanocomposite was investigated by differential scanning calorimetry (DSC). The modified Avrami equation, the Ozawa equation and the combined Avrami/Ozawa equation were employed to analyze the non-isothermal crystallization data. The crystallization activation energies were also evaluated by the Kissinger method. It was found that the combined Avrami/Ozawa equation could successfully describe the non-isothermal crystallization process. The results showed that D-MWNTs not only acted as effective heterogeneous nucleating agents for PA6 and noticeably increased the crystallization temperature of PA6, but also influenced the mechanism of nucleation and crystal growth of PA6 and then reduced the overall crystallization rate of the neat PA6 matrix. The crystallization activation energy for the nanocomposite sample was greater than that of the neat PA6, which indicated that the addition of D-MWNTs hindered the mobility of PA6 chain segments.展开更多
The thermal decomposition of Tb_2(O-MBA)_6(PHEN)_2 (O-MBA: o-methylbenzoate;PHEN: 1,10-phenanthroline) and its kinetics were studied under the non-isothermal condition bythermogravimetry-derivative thermogravimetry (T...The thermal decomposition of Tb_2(O-MBA)_6(PHEN)_2 (O-MBA: o-methylbenzoate;PHEN: 1,10-phenanthroline) and its kinetics were studied under the non-isothermal condition bythermogravimetry-derivative thermogravimetry (TG-DTG) techniques. Kinetic parameters were obtainedfrom analysis of TG-DTG curves by the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method.The most probable mechanism function was suggested by comparing the kinetic parameters. The kineticequation for the first stage can be expressed as dα/dt = Aexp(-E/RT)·3(1 - α)^(2/3). Thelifetime equation at mass loss of 10% was deduced as lnτ= -28.7429 + 19797.795/T by isothermalthermogravimetric analysis.展开更多
The non-isothermal crystallization kinetics of polypropylene (PP), PP/anhydrite composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by J...The non-isothermal crystallization kinetics of polypropylene (PP), PP/anhydrite composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples. The difference in the exponent n between PP and PP/anhydrite composites indicated that non-isothermal kinetic crystallization corresponded to tri-dimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PP and PP/anhydrite composites, but the crystallization rate of PP/anhydrite composites was faster than that of PP at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PP very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The result showed that the activation energy of PP/anhydrite was greatly larger than that of PP.展开更多
The polyoxometalate (CPFX-HCl)3H3PW12O40·.8H2O was prepared and characterized by elemental analysis, IR spectra and TG-DTA-DTG. The thermal decomposition mechanism and non-isothermal kinetic parameters of the p...The polyoxometalate (CPFX-HCl)3H3PW12O40·.8H2O was prepared and characterized by elemental analysis, IR spectra and TG-DTA-DTG. The thermal decomposition mechanism and non-isothermal kinetic parameters of the polyoxometalate were obtained from the analysis of TG-DTG data using the Achar equation, Coats-Redfern equation (CR), Madhusudanan-Krishnan-Ninan equation (MKN) and Horowitz-Metzger equation (HM). And their mathematical expressions of the kinetic compensation effect were also calculated.展开更多
The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its therm...The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its thermal decomposition was a four-step process consisting of the simultaneous collapse of Keggin anion. The intermediate and residue of the decomposition were identified by mean of TG-DTG, IR, and XRD technique. The non-isothermal kinetic data were analyzed by the Achar method and Coats-Redfern method. The apparent activation energy (E) and the pre-exponential factor (In A) of each decomposition were obtained. The most probable thermal decomposition reaction mechanisms were proposed by comparison of the kinetic parameters. The kinetic equation for both the second stage and the third stage can be expressed as d alpha/dt = Ae(-E/RT) -(1 - alpha)(2), and the fourth stage d alpha/dt = Ae(-E/RT) -(1 - alpha). And their mathematic expressions of the kinetic compensation effects of thermal decomposition reaction were also determined.展开更多
A kinetic equation of non-isothermal crystamzation was derived by extending Avrami's equation to the non-isothermal situation. More crystallization information can be obtained from this kinetic equation. The curve...A kinetic equation of non-isothermal crystamzation was derived by extending Avrami's equation to the non-isothermal situation. More crystallization information can be obtained from this kinetic equation. The curves of non-isothermal and isothermal crystallizations were analysed and compared for poly (ethylene terephthalate) (PET), and the results were discussed.展开更多
Kinetic studies of the electric arc furnace (EAF) dust reduction process have been carried out under non isothermal temperature condition. EAF dust pellets were made with carbon as the reducing agent and dolomite as t...Kinetic studies of the electric arc furnace (EAF) dust reduction process have been carried out under non isothermal temperature condition. EAF dust pellets were made with carbon as the reducing agent and dolomite as the binder. A Thermo Gravimetric Analyzer (TGA) was used to determine the mass loss of pellets, which were heated at an average rate of 40 K/min up to 1 500 ℃. The reduction degree was calculated by consideration of the pellet mass loss, evaporation of moisture, dust, zinc and lead at high temperature. The reduction process of EAF dust was divided into three steps related to the change in temperature and time. The non isothermal reduction kinetics equations were set up to describe every step. The kinetics parameters such as apparent activation energies and frequency factors were established at the same time. It was found that the first step is chemically controlled, the second step is diffusion controlled and the third step is strongly dependent on the initial content of carbon in the pellet. CrO can be reduced only in the last step by high temperature and high initial carbon content.展开更多
Fiber-class modified kaolin and PET have been blended in the twin-screw and granulated to chips containing 4 wt% of kaolin.Non-isothermal crystallization process of kaolin modified polyester was investigated using a d...Fiber-class modified kaolin and PET have been blended in the twin-screw and granulated to chips containing 4 wt% of kaolin.Non-isothermal crystallization process of kaolin modified polyester was investigated using a differential scanning calorimetry (DSC),and the addition of kaolin enhances either the melting temperature (Tm) or the crystallization temperature (Tc).The morphology of kaolin modified polyester,the melt of which is cooled at different cooling rate,was observed by scanning electron microscope (SEM).The relationship between Tc and cooling rate F was studied.Semi-crystalline phase t1/2 makes an exponential decline with increasing F,and the higher the cooling rate,the shorter the time of crystallization completion.Non-isothermal crystallization kinetics parameters and the activation energy were calculated,indicating that the higher rate of cooling needs the higher relative crystallinity in the unit crystallization time,the crystallization rate increased while speeding up the temperature reduction,and the activation energy ΔE was calculated to be-204.1566 kJ/mol for the non-isothermal crystallization processes by the Kissinger's methods.展开更多
An equation of non-isothermal crystallization kinetics was derived according to a new model and the crystallizations of both the PET samples under solid state polycon-densation and the pre-orientation yarn of high spe...An equation of non-isothermal crystallization kinetics was derived according to a new model and the crystallizations of both the PET samples under solid state polycon-densation and the pre-orientation yarn of high speeding spinning PET were studied with this equation. The results show that there is a good linear relationship between In {-In[1-X(T)]} and lnΦ. The index m in the equation approximately equals to 3 for PET chips and 1. 3 for pre-orientated yarn. At the same temperature, Q(T) decreases with the increase of PET M. W. and the kinetics parameters obtained by Jeziorny' s method indicate that G also decreases with the increase of PET M. W.. Q(T) and Gc show the same varying tendency in the non-isothermal crystallization process.展开更多
A new differential equation was derived from the modified first-order kinetic model to describe the polymer crystallization processes. The crystallization experiments were carried out by means of DSC. Poly (ethylene t...A new differential equation was derived from the modified first-order kinetic model to describe the polymer crystallization processes. The crystallization experiments were carried out by means of DSC. Poly (ethylene terephthalate) resins were selected as the samples containing different catalysts. The relationships between the parameters obtained from the known Avrami equation and from one in the present paper were discussed. A method for applying the equation to determine the kinetic parameters from a constant heating and a constant cooling curve was proposed.展开更多
In recent years, there has been considerable inte- rest in complexes formed by lanthanide cations and va-rious benzoate derivatives^[1-4], due to their potential application in areas, such as extraction, separation, g...In recent years, there has been considerable inte- rest in complexes formed by lanthanide cations and va-rious benzoate derivatives^[1-4], due to their potential application in areas, such as extraction, separation, germicide preparation, catalysis, luminescence, and functional material preparation^[5]. As a continuation of the study on lanthanide carboxylate^[6-13], samarium complexes with m-methylbenzoic acid or o-methoxy- benzoic acid and 1,10-phenanthroline were synthesized and characterized by elemental analysis and IR spec- trometry. The thermal decomposition mechanisms of the two complexes were derived and the corresponding non- isothermal kinetics was studied using the Achar diffe- rential method^[14], the MKN integral method^[15], the non-linear isoconversional integral ( NL-INT), and dif-ferential(NL-DIF) method^[16,17]. The information of the thermodynamic properties of the complex is impor- tant to characterize and understand the properties of the coordination compound, which could eventually be use-ful in determining their potential application.展开更多
文摘The complex of [La 2(P MBA) 6(PHEN) 2]2H 2O (P MBA: p methylbenzoate and PHEN: 1,10 phenanthroline) was prepared and characterized by elemental analysis and IR spectroscopy. The thermal behavior of [La 2(P MBA) 6(PHEN) 2]2H 2O in dynamic nitrogen atmosphere was investigated by TG DTG techniques. The results show that the thermal decomposition process of the [La 2(P MBA) 6(PHEN) 2]2H 2O occurs in five steps. The empirical kinetic model for the first step thermal decomposition obtained by Malek method is SB(m,n). The activation energy E and the pre exponential factor lnA for this step reaction are 76.4 kJ·mol -1 and 24.92, respectively.
基金the Foundation of the Science and Technology Committee of Hubei Province(2001ABA009)
文摘The thermal decomposition processes of ephedrini hydrochloridum and its kinetics are studied by TG-DTG techniques. A combined method, which includes Achar method, Coats-Redfera method, and Ozawa method, is put forward for determining kinetic model under non-isothermal conditions. By applying the combined method, it is determined that the thermal decomposition of ephedrini hydrochloridum is subjected to cylindrical symmetric diffusion. And the reaction function isƒ(α)=2(1-α)?, apparent activation energy (115.26±3.55) kJ·mol−1, pre-exponential factor 4.62×108 s−1. Results show that the combined method is feasible and simple.
文摘The thermal decomposition of the strontium chloride hexahydrate and its kinetics were studied under non isothermal condition in nitrogen by thermogravimetric and derivative thermogravimetric techniques. The intermediate and residue for each decomposition were identified from TG curve. The non isothermal kinetic data were analyzed by the Achar method and the Coats Redfern method. The possible reaction mechanisms were suggested by comparing the kinetic parameters. The kinetic equation for the first stage can be expressed as d α /d t = A exp(- E/RT)(1-α ), the second stage, d α /d t = A exp(- E/RT)3(1-α ) 2/3 , and the third stage, d α /d t = A exp(- E/RT)3/2(1-α ) 2/3 [1-(1- α ) 1/3 ] -1 . Mathematic expressions of the kinetic compensation effects of each stage of the thermal decomposition reaction were also obtained.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61154002 and 51078331)the China Postdoctoral Science Foundation(Grant No. 20090451471)the Natural Science Foundation of Zhejiang Province,China (Grant No. Z1110222)
文摘The combustion characteristics of styrene-butadiene-styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes (SARA) fractionation method, the combustion process of SBS asphalt can be divided by Gaussian peak fitting into three main stages: oil content release, resin pyrolysis, and asphaltene and char combustion. When the heating rate increases, the mass losses of the oil content and resin pyrolysis increase, and less asphaltenes are formed at a higher temperature. The activation energy values are calculated by the Coats-Redfern method to be in the range 61.6 kJ/mol-142.9 kJ/mol. The Popescu method is used for the kinetic analysis, and the result shows that the three stages of asphalt combustion can be explained by the sphere phase boundary reaction model, the second order chemical reaction model, nucleation, and its subsequent growth model, respectively.
文摘The cure kinetics of diglycidyl ether of bisphenol A (DGEBA) with hyperbranched poly (3-hydroxyphenyl) phosphate(HHPP) as the curing agent was investigated by means of non-isothermal differential scanning calorimetry (DSC) at various heating rates. The results were compared with the corresponding results by using 1,3-dihydroxybenzene(DHB) as a model compound. The results show that HHPP can enhance the cure reaction of DGEBA, resulting in the decrease of the peak temperature of the curing curve as well as the decrease of the activation energy because of the flexible --P--O-- groups in the backbone of HHPP. However, both the activation energy of the cured polymer and the peak temperature of the curing curve are increased with DHB as a curing agent. The cure kinetics of the DGEBA/HHPP system was calculated by using the isoconversional method given by Malek. It was found that the two-parameter autocatalytic model(Sestak-Berggren equation) is the most adequate one to describe the cure kinetics of the studied System at various heating rates. The obtained non-isothermal DSC curves from the experimental data show the results being accordant with those theoretically calculated.
基金Supported by the National Natural Science Foundation of China(No.20071026)
文摘The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement with the theoretical value. XRD profile demonstrates that the product of the thermal decomposition at 500℃ is LiCI. For the decomposition kinetics study, the activation energies calculated with the Friedman method were considered as the initial values for non-linear regression and were used for verifying the correctness of the fired models. The decomposition process was fitted by a two-step consecutive reaction: extended Prout-Tompkins equation[Bna, f(α) is (1-α)^nα^α] followed by a lth order reaction(F1). The activation energies were (215.6±0.2) and (251.6±3.6) kJ/mol, respectively. The exponentials n and a for Bna reaction were (0.25±0.05) and (0.795±0.005), respectively. The reaction types and activation energies were in agreement with those obtained from the isothermal method, but the exponentials were optimized for better firing and prediction.
基金This project was financially supported by the Education Department of Hebei Province.]
文摘The thermal decomposition reaction of Eu-2(p-MBA)(6)(PHEN)(2) (p-MBA=CH3C6H4COO, methylbenzoate; PHEN=C12H8N2, 1,10-phenanthroline) was studied in a static atmosphere using TG-DTG method. The thermal decomposition process of the complex was determined and its kinetics was investigated. Kinetic parameters were obtained from the analysis of TG-DTG curves by means of the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method. The most probable mechanism functions of the thermal decomposition reaction for the first stage are: f(alpha) =(1-alpha)(2), g(alpha) = (1-alpha)(-1)-1. The activation energy for the first stage is 255.18 kJ/mol, the entropy of activation DeltaS is 227.32 J/mol and the Gibbs free energy of activation DeltaG is 128.04 W/mol.
基金Project(2007CB613606)supported by the National Basic Research Program of China
文摘The non-isothermal leaching kinetics of primary titanium-rich material by microwave heating was investigated,and the temperature-pressure curves of leaching system and microwave absorption characteristics of mixture solutions before and after leaching were measured.The research of non-isothermal kinetics was evaluated by the leaching rate of Fe and the total apparent velocity equation of the non-isothermal kinetics of leaching for primary titanium-rich material by microwave heating was obtained.It is shown from the temperature-pressure curves that the high temperature and high pressure of closed leaching system are favorable to the enhancement of the leaching rate of Fe.Microwave absorption characteristics of mixture solutions before and after leaching show that there are abrupt changes of microwave absorption characteristics for 15%HCl solution and the mixture solution after leaching by 20%HCl.
基金Guoxin Sui would like to acknowledge the financial supports of the Hundreds’ Talents Program of Chinese Academy of Sciences.
文摘The non-isothermal crystallization kinetics of polyamide 6/diamine-modified multi-walled carbon nanotube (PA6/D-MWNT) nanocomposite was investigated by differential scanning calorimetry (DSC). The modified Avrami equation, the Ozawa equation and the combined Avrami/Ozawa equation were employed to analyze the non-isothermal crystallization data. The crystallization activation energies were also evaluated by the Kissinger method. It was found that the combined Avrami/Ozawa equation could successfully describe the non-isothermal crystallization process. The results showed that D-MWNTs not only acted as effective heterogeneous nucleating agents for PA6 and noticeably increased the crystallization temperature of PA6, but also influenced the mechanism of nucleation and crystal growth of PA6 and then reduced the overall crystallization rate of the neat PA6 matrix. The crystallization activation energy for the nanocomposite sample was greater than that of the neat PA6, which indicated that the addition of D-MWNTs hindered the mobility of PA6 chain segments.
基金This project was financially supported by the Natural Science Foundation of Hebei Province (Nos. 202140 and 203148) Hebei Education Department (No. 2001121)
文摘The thermal decomposition of Tb_2(O-MBA)_6(PHEN)_2 (O-MBA: o-methylbenzoate;PHEN: 1,10-phenanthroline) and its kinetics were studied under the non-isothermal condition bythermogravimetry-derivative thermogravimetry (TG-DTG) techniques. Kinetic parameters were obtainedfrom analysis of TG-DTG curves by the Achar method and the Madhusudanan-Krishnan-Ninan (MKN) method.The most probable mechanism function was suggested by comparing the kinetic parameters. The kineticequation for the first stage can be expressed as dα/dt = Aexp(-E/RT)·3(1 - α)^(2/3). Thelifetime equation at mass loss of 10% was deduced as lnτ= -28.7429 + 19797.795/T by isothermalthermogravimetric analysis.
文摘The non-isothermal crystallization kinetics of polypropylene (PP), PP/anhydrite composites were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by Jeziorny and a method developed by Mo were employed to describe the non-isothermal crystallization process of these samples. The difference in the exponent n between PP and PP/anhydrite composites indicated that non-isothermal kinetic crystallization corresponded to tri-dimensional growth with heterogeneous nucleation. The values of half-time, Zc and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PP and PP/anhydrite composites, but the crystallization rate of PP/anhydrite composites was faster than that of PP at a given cooling rate. The method developed by Ozawa did not describe the non-isothermal crystallization process of PP very well. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The result showed that the activation energy of PP/anhydrite was greatly larger than that of PP.
基金the Natural Science Foundation of the Educational Commission of Hubei Province(No.J200522002 and Z200622001)
文摘The polyoxometalate (CPFX-HCl)3H3PW12O40·.8H2O was prepared and characterized by elemental analysis, IR spectra and TG-DTA-DTG. The thermal decomposition mechanism and non-isothermal kinetic parameters of the polyoxometalate were obtained from the analysis of TG-DTG data using the Achar equation, Coats-Redfern equation (CR), Madhusudanan-Krishnan-Ninan equation (MKN) and Horowitz-Metzger equation (HM). And their mathematical expressions of the kinetic compensation effect were also calculated.
文摘The polyoxometalate complex (CPFX-HCl)(4)H5BW12O40-12H(2)O was prepared in aqueous solution for the first time, and characterized by elemental analysis, IR spectrum, and TG-DTG. The TG-DTG curves showed that its thermal decomposition was a four-step process consisting of the simultaneous collapse of Keggin anion. The intermediate and residue of the decomposition were identified by mean of TG-DTG, IR, and XRD technique. The non-isothermal kinetic data were analyzed by the Achar method and Coats-Redfern method. The apparent activation energy (E) and the pre-exponential factor (In A) of each decomposition were obtained. The most probable thermal decomposition reaction mechanisms were proposed by comparison of the kinetic parameters. The kinetic equation for both the second stage and the third stage can be expressed as d alpha/dt = Ae(-E/RT) -(1 - alpha)(2), and the fourth stage d alpha/dt = Ae(-E/RT) -(1 - alpha). And their mathematic expressions of the kinetic compensation effects of thermal decomposition reaction were also determined.
文摘A kinetic equation of non-isothermal crystamzation was derived by extending Avrami's equation to the non-isothermal situation. More crystallization information can be obtained from this kinetic equation. The curves of non-isothermal and isothermal crystallizations were analysed and compared for poly (ethylene terephthalate) (PET), and the results were discussed.
文摘Kinetic studies of the electric arc furnace (EAF) dust reduction process have been carried out under non isothermal temperature condition. EAF dust pellets were made with carbon as the reducing agent and dolomite as the binder. A Thermo Gravimetric Analyzer (TGA) was used to determine the mass loss of pellets, which were heated at an average rate of 40 K/min up to 1 500 ℃. The reduction degree was calculated by consideration of the pellet mass loss, evaporation of moisture, dust, zinc and lead at high temperature. The reduction process of EAF dust was divided into three steps related to the change in temperature and time. The non isothermal reduction kinetics equations were set up to describe every step. The kinetics parameters such as apparent activation energies and frequency factors were established at the same time. It was found that the first step is chemically controlled, the second step is diffusion controlled and the third step is strongly dependent on the initial content of carbon in the pellet. CrO can be reduced only in the last step by high temperature and high initial carbon content.
文摘Fiber-class modified kaolin and PET have been blended in the twin-screw and granulated to chips containing 4 wt% of kaolin.Non-isothermal crystallization process of kaolin modified polyester was investigated using a differential scanning calorimetry (DSC),and the addition of kaolin enhances either the melting temperature (Tm) or the crystallization temperature (Tc).The morphology of kaolin modified polyester,the melt of which is cooled at different cooling rate,was observed by scanning electron microscope (SEM).The relationship between Tc and cooling rate F was studied.Semi-crystalline phase t1/2 makes an exponential decline with increasing F,and the higher the cooling rate,the shorter the time of crystallization completion.Non-isothermal crystallization kinetics parameters and the activation energy were calculated,indicating that the higher rate of cooling needs the higher relative crystallinity in the unit crystallization time,the crystallization rate increased while speeding up the temperature reduction,and the activation energy ΔE was calculated to be-204.1566 kJ/mol for the non-isothermal crystallization processes by the Kissinger's methods.
文摘An equation of non-isothermal crystallization kinetics was derived according to a new model and the crystallizations of both the PET samples under solid state polycon-densation and the pre-orientation yarn of high speeding spinning PET were studied with this equation. The results show that there is a good linear relationship between In {-In[1-X(T)]} and lnΦ. The index m in the equation approximately equals to 3 for PET chips and 1. 3 for pre-orientated yarn. At the same temperature, Q(T) decreases with the increase of PET M. W. and the kinetics parameters obtained by Jeziorny' s method indicate that G also decreases with the increase of PET M. W.. Q(T) and Gc show the same varying tendency in the non-isothermal crystallization process.
文摘A new differential equation was derived from the modified first-order kinetic model to describe the polymer crystallization processes. The crystallization experiments were carried out by means of DSC. Poly (ethylene terephthalate) resins were selected as the samples containing different catalysts. The relationships between the parameters obtained from the known Avrami equation and from one in the present paper were discussed. A method for applying the equation to determine the kinetic parameters from a constant heating and a constant cooling curve was proposed.
基金Supported by the Natural Science Foundation of Hebei Province,China(No.B2007000237)Department of Education of He-bei Pro-vince,China(No.2004325)Hebei Normal University,China(Nos.L2006Z06and L2005Y12).
文摘In recent years, there has been considerable inte- rest in complexes formed by lanthanide cations and va-rious benzoate derivatives^[1-4], due to their potential application in areas, such as extraction, separation, germicide preparation, catalysis, luminescence, and functional material preparation^[5]. As a continuation of the study on lanthanide carboxylate^[6-13], samarium complexes with m-methylbenzoic acid or o-methoxy- benzoic acid and 1,10-phenanthroline were synthesized and characterized by elemental analysis and IR spec- trometry. The thermal decomposition mechanisms of the two complexes were derived and the corresponding non- isothermal kinetics was studied using the Achar diffe- rential method^[14], the MKN integral method^[15], the non-linear isoconversional integral ( NL-INT), and dif-ferential(NL-DIF) method^[16,17]. The information of the thermodynamic properties of the complex is impor- tant to characterize and understand the properties of the coordination compound, which could eventually be use-ful in determining their potential application.