Listening has been playing an essential role in daily communication.However,listening is the most difficult part and has been an obstacle in the process of learning English for most of learners for a variety of reason...Listening has been playing an essential role in daily communication.However,listening is the most difficult part and has been an obstacle in the process of learning English for most of learners for a variety of reasons.The paper mainly discusses the linguistic and non—linguistic obstacles in the process of listening and aims to help English learners find out their own shortcomings and put forward some corresponding solutions to improve learners' listening ability.展开更多
The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for...The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system.展开更多
In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data s...In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data satisfies a natural compatibility condition. For the results, the initial density does not need to be bounded below away from zero.展开更多
In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution n...In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).展开更多
In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Land...In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Landau approximation. Local in space energy inequalities are employed to recover the estimates on the second order spatial derivatives of the director fields locally in time, which cannot be derived from the basic energy balance. It is shown that these weak solutions satisfy the temperature equation, and also the total energy equation but away from at most finite many "singular" times, at which the energy concentration occurs and the director field losses its second order derivatives.展开更多
This work consider boundary integrability of the weak solutions of a non-Newtonian compressible fluids in a bounded domain in dimension three, which has the constitutive equartions as ■The existence result of weak so...This work consider boundary integrability of the weak solutions of a non-Newtonian compressible fluids in a bounded domain in dimension three, which has the constitutive equartions as ■The existence result of weak solutions can be get based on Galerkin approximation. With the linear operator B constructed by BOGOVSKII, we show that the density ■is square integrable up to the boundary.展开更多
This paper presents two exact explicit solutions for the three dimensional dual-phase lag (DLP) heat conduction equation, during the derivation of which the method of trial and error and the authors' previous exper...This paper presents two exact explicit solutions for the three dimensional dual-phase lag (DLP) heat conduction equation, during the derivation of which the method of trial and error and the authors' previous experiences are utilized. To the authors' knowledge, most solutions of 2D or 3D DPL models available in the literature are obtained by numerical methods, and there are few exact solutions up to now. The exact solutions in this paper can be used as benchmarks to validate numerical solutions and to develop numerical schemes, grid generation methods and so forth. In addition, they are of theoretical significance since they correspond to physically possible situations. The main goal of this paper is to obtain some possible exact explicit solutions of the dual-phase lag heat conduction equation as the benchmark solutions for computational heat transfer, rather than specific solutions for some given initial and boundary conditions. Therefore, the initial and boundary conditions are indeterminate before derivation and can be deduced from the solutions afterwards. Actually, all solutions given in this paper can be easily proven by substituting them into the governing equation.展开更多
In order to process different kinds of observing data with different precisions, a new solution model of nonlinear dynamic integral least squares adjustment was put forward, which is not dependent on their derivatives...In order to process different kinds of observing data with different precisions, a new solution model of nonlinear dynamic integral least squares adjustment was put forward, which is not dependent on their derivatives. The partial derivative of each component in the target function is not computed while iteratively solving the problem. Especially when the nonlinear target function is more complex and very difficult to solve the problem, the method can greatly reduce the computing load.展开更多
The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
In this paper, we obtain an explicit formula of general solution for a class of the non-homogeneous recurrence of variable coefficients with two indices.
In this paper, we are concerned with the uniqueness and the non-degeneracy of positive radial solutions for a class of semilinear elliptic equations. Using detailed ODE anal- ysis, we extend previous results to cases ...In this paper, we are concerned with the uniqueness and the non-degeneracy of positive radial solutions for a class of semilinear elliptic equations. Using detailed ODE anal- ysis, we extend previous results to cases where nonlinear terms may have sublinear growth. As an application, we obtain the uniqueness and the non-degeneracy of ground states for modified SchrSdinger equations.展开更多
In this article, we prove the existence and obtain the expression of its solution formula of global smooth solution for non-homogeneous multi-dimensional(m-D) conservation law with unbounded initial value; our metho...In this article, we prove the existence and obtain the expression of its solution formula of global smooth solution for non-homogeneous multi-dimensional(m-D) conservation law with unbounded initial value; our methods are new and essentially different with the situation of bounded initial value.展开更多
We present a non-Markovian master equation for a qubit interacting with a general reservoir, which is derived according to the Nakajima-Zwanzig and the time convolutionless projection operator technique. The non-Marko...We present a non-Markovian master equation for a qubit interacting with a general reservoir, which is derived according to the Nakajima-Zwanzig and the time convolutionless projection operator technique. The non-Markovian solutions and Markovian solution of dynamical decay of a qubit are compared. The results indicate the validity of non-Markovian approach in different coupling regimes and also show that the Markovian master equation may not precisely describe the dynamics of an open quantum system in some situation. The non-Markovian solutions may be effective for many qubits independently interacting with the heated reservoirs.展开更多
In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the cor...In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1].展开更多
The pressureless Navier-Stokes equations for non-Newtonian fluid are studied. The analytical solutions with arbitrary time blowup, in radial symmetry, are constructed in this paper. With the previous results for the a...The pressureless Navier-Stokes equations for non-Newtonian fluid are studied. The analytical solutions with arbitrary time blowup, in radial symmetry, are constructed in this paper. With the previous results for the analytical blowup solutions of the N-dimensional (N ≥ 2) Navier-Stokes equations, we extend the similar structure to construct an analytical family of solutions for the pressureless Navier-Stokes equations with a normal viscosity term (μ(ρ)| u|^α u).展开更多
In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pr...In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the validity and the advantages of the method, (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, ...A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, enzyme-substrate complex and product concentrations are presented by solving system of non-linear differential equation. We employ He’s Homotopy perturbation method to solve the coupled non-linear differential equations containing a non-linear term related to basic enzymatic reaction. The time dependent simple analytical expressions for substrate, enzyme-substrate and free enzyme concentrations have been derived in terms of dimensionless reaction diffusion parameters ε, λ1, λ2 and λ3 using perturbation method. The numerical solution of the problem is also reported using SCILAB software program. The analytical results are compared with our numerical results. An excellent agreement with simulation data is noted. The obtained results are valid for the whole solution domain.展开更多
This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domai...This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domain is bounded. Moreover, the ratio of the enstrophy over the energy has a limit as time tends to infinity, which is an eigenvaiue of the Stokes operator.展开更多
Arrhenius formula was applied to calculate the apparent activation energy of zincate reaction. The standard electrode potential of all the metal coordinating ions and the order of galvanic couple of different metals i...Arrhenius formula was applied to calculate the apparent activation energy of zincate reaction. The standard electrode potential of all the metal coordinating ions and the order of galvanic couple of different metals in zincate solution were also calculated. Electrochemical behavior of zincate process was studied by Tafel polarization curves, E—t curves, and electrochemical impedance spectroscopy(EIS). The results show that the apparent activation energy of zincate reaction in non-cyanide multi-metal zincate solution is smaller than that in simple zincate solution, and precipitation sequence of all the metals in zincate solution is Cu, Ni, Fe and Zn. Relationship between the potential at 30 s before zincate and coverage was attained according to the change of potential of zincate. EIS shows that inductive reactance is produced during zincate.展开更多
In this article, we consider the non-linear difference equation(f(z + 1)f(z)-1)(f(z)f(z-1)-1) =P(z, f(z))/Q(z, f(z)),where P(z, f(z)) and Q(z, f(z)) are relatively prime polynomials in f(z) with rational coefficients....In this article, we consider the non-linear difference equation(f(z + 1)f(z)-1)(f(z)f(z-1)-1) =P(z, f(z))/Q(z, f(z)),where P(z, f(z)) and Q(z, f(z)) are relatively prime polynomials in f(z) with rational coefficients. For the above equation, the order of growth, the exponents of convergence of zeros and poles of its transcendental meromorphic solution f(z), and the exponents of convergence of poles of difference △f(z) and divided difference △f(z)/f(z)are estimated. Furthermore, we study the forms of rational solutions of the above equation.展开更多
文摘Listening has been playing an essential role in daily communication.However,listening is the most difficult part and has been an obstacle in the process of learning English for most of learners for a variety of reasons.The paper mainly discusses the linguistic and non—linguistic obstacles in the process of listening and aims to help English learners find out their own shortcomings and put forward some corresponding solutions to improve learners' listening ability.
基金supported by NSFC (10631030, 11071094)the fund of CCNU for Ph.D students (2009021)
文摘The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system.
基金Supported by NSFC(11201371,1331005)Natural Science Foundation of Shaanxi Province(2012JQ020)
文摘In this paper, the aim is to establish the local existence of classical solutions for a class of compressible non-Newtonian fluids with vacuum in one-dimensional bounded intervals, under the assumption that the data satisfies a natural compatibility condition. For the results, the initial density does not need to be bounded below away from zero.
文摘In this paper the authors study a class of non-linear singular partial differential equation in complex domain C-t x C-x(n). Under certain assumptions, they prove the existence and uniqueness of holomorphic solution near origin of C-t x C-x(n).
基金Hong Kong RGC Earmarked Research Grants 14305315,CUHK4041/11P and CUHK4048/13PThe Chinese University of Hong Kong,a Croucher Foundation-CAS Joint Grant,and a NSFC/RGC Joint Research Scheme(N-CUHK443/14)
文摘In this article, we prove the global existence of weak solutions to the non- isothermal nematic liquid crystal system on T2, on the basis of a new approximate system which is different from the classical Ginzburg-Landau approximation. Local in space energy inequalities are employed to recover the estimates on the second order spatial derivatives of the director fields locally in time, which cannot be derived from the basic energy balance. It is shown that these weak solutions satisfy the temperature equation, and also the total energy equation but away from at most finite many "singular" times, at which the energy concentration occurs and the director field losses its second order derivatives.
基金supported by the National Natural Science Foundation of China(11271305,11531010)
文摘This work consider boundary integrability of the weak solutions of a non-Newtonian compressible fluids in a bounded domain in dimension three, which has the constitutive equartions as ■The existence result of weak solutions can be get based on Galerkin approximation. With the linear operator B constructed by BOGOVSKII, we show that the density ■is square integrable up to the boundary.
基金supported by the National Natural Science Foundation of China (50576097) the National Defense Basic Research Program of China (DEDP 1003)
文摘This paper presents two exact explicit solutions for the three dimensional dual-phase lag (DLP) heat conduction equation, during the derivation of which the method of trial and error and the authors' previous experiences are utilized. To the authors' knowledge, most solutions of 2D or 3D DPL models available in the literature are obtained by numerical methods, and there are few exact solutions up to now. The exact solutions in this paper can be used as benchmarks to validate numerical solutions and to develop numerical schemes, grid generation methods and so forth. In addition, they are of theoretical significance since they correspond to physically possible situations. The main goal of this paper is to obtain some possible exact explicit solutions of the dual-phase lag heat conduction equation as the benchmark solutions for computational heat transfer, rather than specific solutions for some given initial and boundary conditions. Therefore, the initial and boundary conditions are indeterminate before derivation and can be deduced from the solutions afterwards. Actually, all solutions given in this paper can be easily proven by substituting them into the governing equation.
文摘In order to process different kinds of observing data with different precisions, a new solution model of nonlinear dynamic integral least squares adjustment was put forward, which is not dependent on their derivatives. The partial derivative of each component in the target function is not computed while iteratively solving the problem. Especially when the nonlinear target function is more complex and very difficult to solve the problem, the method can greatly reduce the computing load.
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
基金Supported by the National Natural Science Foundation of China(19771063)
文摘In this paper, we obtain an explicit formula of general solution for a class of the non-homogeneous recurrence of variable coefficients with two indices.
基金supported by JSPS Grant-in-Aid for Scientific Research(C)(15K04970)
文摘In this paper, we are concerned with the uniqueness and the non-degeneracy of positive radial solutions for a class of semilinear elliptic equations. Using detailed ODE anal- ysis, we extend previous results to cases where nonlinear terms may have sublinear growth. As an application, we obtain the uniqueness and the non-degeneracy of ground states for modified SchrSdinger equations.
基金partly supported by Natural Science Foundation of China(11471332 and 11071246)
文摘In this article, we prove the existence and obtain the expression of its solution formula of global smooth solution for non-homogeneous multi-dimensional(m-D) conservation law with unbounded initial value; our methods are new and essentially different with the situation of bounded initial value.
基金Project supported by the Natural Science Foundation of Hunan Province of China (Grant No. 09JJ6011)the Natural Science Foundation of the Education Department of Hunan Province of China (Grant Nos. 06C652 and 07C528)
文摘We present a non-Markovian master equation for a qubit interacting with a general reservoir, which is derived according to the Nakajima-Zwanzig and the time convolutionless projection operator technique. The non-Markovian solutions and Markovian solution of dynamical decay of a qubit are compared. The results indicate the validity of non-Markovian approach in different coupling regimes and also show that the Markovian master equation may not precisely describe the dynamics of an open quantum system in some situation. The non-Markovian solutions may be effective for many qubits independently interacting with the heated reservoirs.
文摘In this paper, we prove an important existence and uniqueness theorem for a fractional order Fredholm – Volterra integro-differential equation with non-local and global boundary conditions by converting it to the corresponding well known Fredholm integral equation of second kind. The considered in this paper has been solved already numerically in [1].
基金Supported by the NSFC of China (1087117510931007+1 种基金10901137)supported by the Scientific Research Fund of Education Department of Zhejiang Province (Y200803203)
文摘The pressureless Navier-Stokes equations for non-Newtonian fluid are studied. The analytical solutions with arbitrary time blowup, in radial symmetry, are constructed in this paper. With the previous results for the analytical blowup solutions of the N-dimensional (N ≥ 2) Navier-Stokes equations, we extend the similar structure to construct an analytical family of solutions for the pressureless Navier-Stokes equations with a normal viscosity term (μ(ρ)| u|^α u).
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB318000)
文摘In this paper, a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the validity and the advantages of the method, (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
文摘A closed form of an analytical expression of concentration in the single-enzyme, single-substrate system for the full range of enzyme activities has been derived. The time dependent analytical solution for substrate, enzyme-substrate complex and product concentrations are presented by solving system of non-linear differential equation. We employ He’s Homotopy perturbation method to solve the coupled non-linear differential equations containing a non-linear term related to basic enzymatic reaction. The time dependent simple analytical expressions for substrate, enzyme-substrate and free enzyme concentrations have been derived in terms of dimensionless reaction diffusion parameters ε, λ1, λ2 and λ3 using perturbation method. The numerical solution of the problem is also reported using SCILAB software program. The analytical results are compared with our numerical results. An excellent agreement with simulation data is noted. The obtained results are valid for the whole solution domain.
文摘This paper concerns large time behavior of a regular weak solution for non-Newtonian flow equations. It is shown that the decay of the solution is of exponential type when the force term is equal to zero and the domain is bounded. Moreover, the ratio of the enstrophy over the energy has a limit as time tends to infinity, which is an eigenvaiue of the Stokes operator.
文摘Arrhenius formula was applied to calculate the apparent activation energy of zincate reaction. The standard electrode potential of all the metal coordinating ions and the order of galvanic couple of different metals in zincate solution were also calculated. Electrochemical behavior of zincate process was studied by Tafel polarization curves, E—t curves, and electrochemical impedance spectroscopy(EIS). The results show that the apparent activation energy of zincate reaction in non-cyanide multi-metal zincate solution is smaller than that in simple zincate solution, and precipitation sequence of all the metals in zincate solution is Cu, Ni, Fe and Zn. Relationship between the potential at 30 s before zincate and coverage was attained according to the change of potential of zincate. EIS shows that inductive reactance is produced during zincate.
基金supported by the National Natural Science Foundation of China(11371225)National Natural Science Foundation of Guangdong Province(2016A030313686)
文摘In this article, we consider the non-linear difference equation(f(z + 1)f(z)-1)(f(z)f(z-1)-1) =P(z, f(z))/Q(z, f(z)),where P(z, f(z)) and Q(z, f(z)) are relatively prime polynomials in f(z) with rational coefficients. For the above equation, the order of growth, the exponents of convergence of zeros and poles of its transcendental meromorphic solution f(z), and the exponents of convergence of poles of difference △f(z) and divided difference △f(z)/f(z)are estimated. Furthermore, we study the forms of rational solutions of the above equation.