The influence of rare earth metals and heat treatment on the microstructure and performance of M42 steel has been investigated by means of an optical microscope OM scanning electron microscope SEM energy dispersive sp...The influence of rare earth metals and heat treatment on the microstructure and performance of M42 steel has been investigated by means of an optical microscope OM scanning electron microscope SEM energy dispersive spectroscopy EDS transmission electron microscope TEM electron back-scatter diffraction EBSD and X-ray diffraction XRD . The results show that M2 C is the prevailing type of eutectic carbides in M42 steel. After modification with rare earth metals M2 C eutectic carbides change from the ordered lamellar structure into a circular structure.Despite different morphologies the two carbides present the same characteristics of microstructure and growth orientation.Compared with lamellar carbides M2 C carbides with the circular structure are much easier to decompose and spheroidize after heating which remarkably refines the carbide dimensions.The refined carbides improve the supersaturation of alloying elements in martensite and increase the hardness of M42 steel by 1.5 HRC.展开更多
A high speed steel (HSS) was studied for rollers in this work. The steel was quenched at 1150℃ and tempered at 520℃. The phase structures of the steel were determined by X-ray diffraction (XRD), and the hardness...A high speed steel (HSS) was studied for rollers in this work. The steel was quenched at 1150℃ and tempered at 520℃. The phase structures of the steel were determined by X-ray diffraction (XRD), and the hardness of specimens was measured. The volume fraction of carbides was counted by Image-Pro Plus software. The typical microstructures were observed by field emission scanning electron microscope (FESEM). Stable and meta-stable carbides were deduced by removing the existing phases one by one in the Fe-C equilibrium calculation. It is found that the precipitated carbides are bulk-like MC, long stripe-like M2C, fishbone-like M6C, and daisy-like M7C3 during the tempering process. The stable carbides are MC and M6C, but the meta-stable ones are M2C, M7C3, and M3C.展开更多
Adhesion of cutting tool and chip often occurs when machining stainless steels with cemented carbide tools. Wear mechanism of cemented carbide tool in high speed milling of stainless steel 0Cr13Ni4 Mo was studied in t...Adhesion of cutting tool and chip often occurs when machining stainless steels with cemented carbide tools. Wear mechanism of cemented carbide tool in high speed milling of stainless steel 0Cr13Ni4 Mo was studied in this work. Machining tests on high speed milling of 0Cr13Ni4 Mo with a cemented carbide tool are conducted. The cutting force and cutting temperature are measured. The wear pattern is recorded and analyzed by high?speed camera, scanning electron microscope(SEM) and energy dispersive X?ray spectroscopy(EDS). It is found that adhesive wear was the dominant wear pattern causing tool failure. The process and microcosmic mechanism of the tool’s adhesive wear are analyzed and discussed based on the experimental results. It is shown that adhesive wear of the tool occurs due to the wear of coating, the a nity of elements Fe and Co, and the grinding of workpiece materials to the tool material. The process of adhesive wear includes both microcosmic elements di usion and macroscopic cyclic process of adhe?sion, tearing and fracture.展开更多
The M2 high-speed steel strip was produced by using the laboratory scale twin roll strip caster. The microstructure and eutectic carbide morphology of thus produced products were observed and analyzed, and the compari...The M2 high-speed steel strip was produced by using the laboratory scale twin roll strip caster. The microstructure and eutectic carbide morphology of thus produced products were observed and analyzed, and the comparison of those with conventional products was carried out. The effects of the processing parameters such as the melting temperature, the pouring temperature, rolling speed and separating force on the microstructure and eutectic carbide morphology and their distribution were analyzed. The spheroidizing process of the strips in the annealing process was investigated. The relations between the growth and spheroidizing of the eutectic carbide and the annealing technology were obtained, and the mechanism of the twin roll strip casting process improving the eutectic carbide spheroidizing was discussed. The theoretical instruction for determining the subsequent treatment process was provided.展开更多
The influence of Ce on the solidification microstructures of M2 high speed steel was studied. The results show that Ce has the effect of alleviating the segregation of alloying elements such as W and Mo in high speed ...The influence of Ce on the solidification microstructures of M2 high speed steel was studied. The results show that Ce has the effect of alleviating the segregation of alloying elements such as W and Mo in high speed steel. With the addition of Ce, the amount of eutectic carbides is decreased and the flakes of the carbides are refined. Ce mainly segregates onto the interface between the eutectic carbide and austenite, and a Dart of Ce enters M2C carbide. Ce can also enhance the breaking and spheroidizing of the network eutectic carbides during high temperature heat treatment.展开更多
The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that t...The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that the as-cast structure of the steel was composed of the iron matrix and the M2C eutectic carbide networks, which were greatly refined in the ingot made by continuous casting process, compared with that by the iron mould casting process. M2C eutectic carbides presented variation in their morphologies and growth characteristics in the ingots by both casting methods. In the ingot by iron mould casting, they have a plate-like morphology and grow anisotropically. However, in the ingot made by continuous casting, the carbides evolved into the fiber-like shape that exhibited little characteristics of anisotropic growth. It was noticed that the fiber-like M2C was much easier to decompose and spheroidize after heated, as a result, the carbides refined remarkably, compared with the case of plate-like carbides in the iron mould casting ingot.展开更多
High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost ...High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost alloyed cast iron rolls is poor and the cost of high-quality PM hard alloy rolls is very high. By means of centrifugal casting, HSS rolls having excellent wear resistance have been manufactured. The hardness of the HSS roll is 6.5~67 HRC, the range of variation is smaller than 2 HRC and its impact toughness is 15 J/cm^2. The wear rate of HSS rolls used in the pre-finishing stands of high-speed hot wire-rod rolling mill reaches 2.5×10^(-4)mm per ton steel. Furthermore, the manufacturing cost of HSS rolls is significantly lower than that of PM hard alloy rolls; it is only 30 percent of that of PM hard alloy rolls.展开更多
The electrode configuration determines the thermophysical field during the electroslag remelting(ESR) process and affects the final microstructure of the ingot. In this work, ingot with a diameter of 400 mm was prepar...The electrode configuration determines the thermophysical field during the electroslag remelting(ESR) process and affects the final microstructure of the ingot. In this work, ingot with a diameter of 400 mm was prepared with two electrode configuration modes of single power ESR process, namely one electrode(OE) and two series-connected electrodes(TSCE). Finite element simulation was employed to calculate the electromagnetic field, flow field and temperature field of the ESR system. The results show that the temperature of the slag pool and the metal pool of the TSCE process is lower and more uniform than that of the OE process.The calculated temperature distribution of the ingot could be indirectly verified from the shape of the metal pool by the experiment. The experimental results show that the depth of the metal pool in the OE ingot is about 160 mm, while the depth of the TSCE ingot is nearly 40 mm shallower than that of the OE ingot. Microstructural comparisons indicate that coarse eutectic carbides are formed in the center of the OE ingot, whereas more even eutectic carbides appear in the center of the TSCE ingot. In general, compared with the OE process, the TSCE process is preferred to remelt high speed steel ingots.展开更多
The effect of ferrovanadium inoculation on the microstructure and properties of high speed steel (HSS) used for rolls was studied. The results showed that the as-cast eutectic carbide network tends to be broken after ...The effect of ferrovanadium inoculation on the microstructure and properties of high speed steel (HSS) used for rolls was studied. The results showed that the as-cast eutectic carbide network tends to be broken after ferrovanadium inoculation, and the carbides are changed to rod-like or nodular shape. After heat treatment, the carbides in the inoculated HSS are spheroidized and distributed more uniformly in the matrix. The impact toughness of high speed steel with ferrovanadium inoculation is obviously improved. The action mechanism of ferrovanadium inoculation on the microstructure of the alloy is also discussed.展开更多
A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, ...A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, and good in macro quality of junction surface using a vertical continuous casting machine. The interface zone microstructure of bimetallic in billet of high speed steel composite roll was analyzed by metallurgical microscope(OM), X-ray diffractmeter(XRD), scanning electron microscopy(SEM) and energy-dispersive X-ray analysis(EDS). The results indicate that the microstructure of roll billet is composed of chilled solidified layer, dendrite zone, interfacial zone of bimetal and core material zone. The microstructure of outer shell material is composed of martensite + bainite + residual austenite + some small labyrinth-shape, small-short lath-shape, or dollop-shape eutectic carbides. The microstructure of core material is slice-shape pearlite and a little ferrite along boundary of cells. The interface region microstructure of bimetallic composite roll consists of diffusion region, chilled solidified layer and columnar grain region.展开更多
The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different...The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different RE additions were prepared on a horizontal centrifugal casting machine. The solidification process, eutectic structure transformation, carbide morphology, and the elements present, were all investigated by means of differential scanning calorimetry (DSC) and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). The energy produced by crack initiation and crack extension was analyzed using a digital impact test machine. It was found that rare earth elements increased the tensile strength of the steel by inducing crystallization of earlier eutectic γ-Fe during the solidification process, which in turn increased the solidification temperature and thinned the dendritic grains. Rare earth elements with large atomic radius changed the lattice parameters of the MC carbide by forming rare earth carbides. This had the effect of dispersing longpole M C carbides to provide carbide grains, thereby, reducing the formation of the gross carbide and making more V available, to increase the secondary hardening process and improve the hardness level. The presence of rare earth elements in the steel raised the impact toughness by changing the mechanism of MC carbide formation, thereby increasing the crack initiation energy.展开更多
The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under watercooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples...The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under watercooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples were observed by scanning electron microscope. The phase structure was detected by XRD. The morphology of situ oxide scale was observed by optical microscope, and the expansion coefficient was measured by TGA. The experiment results indicate that the cracks come into being at the carbide-matrix interface, but there are no cracks in the matrix after many times of laser impacting treatment, for the situ sample taken from the fractured roll surface, big carbides are more sensitive to the fatigue, and peel off prior to small ones. The relevant fatigue mechanisms are also discussed.展开更多
The influence of the metal pool depth and the local solidification time on the structure of high speed steel ingot produced by electroslag remelting (ESR) process has been studied by measuring the dendritic arm spacin...The influence of the metal pool depth and the local solidification time on the structure of high speed steel ingot produced by electroslag remelting (ESR) process has been studied by measuring the dendritic arm spacing and the size of the carbides. It is shown that the metal pool depth is a factor that influences the uniformity of the ESR ingot structure and not only the dendritic arm spacing, but also the size of the carbides can be influenced by the local solidification time in the solidification process of the ingot. The relationship between the melting rate during ESR process and the local solidification time has been studied. It is shown that there is an optimum melting rate at which the local solidification time is minimum as a result of the combination of the influence of the melt rate on the width of the local mushy zone and on the local solidification rate. The influence of the inoculants on the solidification structure of high speed steel produced by ESR has been studied and it is shown that the size of the grain can be significantly reduced by inoculation process.展开更多
The scratch behaviors of two high speed steels (HSS) for hot rolls were studied by a Micro-combi Tester, and the emphasis was placed on researching the relations between the microstructure and the scratch resistance...The scratch behaviors of two high speed steels (HSS) for hot rolls were studied by a Micro-combi Tester, and the emphasis was placed on researching the relations between the microstructure and the scratch resistance property of different HSS. The experimental results indicate that during the scratch process, the carbides are embedded into the matrix, the penetration depth of different HSS is closely related with the matrix hardness, i.e., the higher the matrix hardness, the better the scratch resistance property; and in the matrix, the fine, dispersive carbides are beneficial to form steady friction between the indenter and the scratched materials, but the coarser carbides are easier to fall into pieces.展开更多
The oxidation behavior of high speed steel (HSS) was researched by high temperature thermo balance at 500 to 800 °C in water vapor. The morphology was observed by scanning electron microscope, the microstructure ...The oxidation behavior of high speed steel (HSS) was researched by high temperature thermo balance at 500 to 800 °C in water vapor. The morphology was observed by scanning electron microscope, the microstructure of oxide scale was analyzed by energy dispersive spectrometer and X-ray diffraction spectrum. The results indicate that the mass gain of HSS increases with oxidation temperature rising, the effect of oxidation temperature on the morphology is obvious, water vapor temperature only affects mass gain and affects hardly morphology of oxide scale at the same oxidation temperature. The relevant oxidation mechanisms are also discussed.展开更多
The oxidation characteristics of high speed steel (HSS) were studied at 500 to 800°C. The non-isothermal oxidation and isothermal oxidation (500, 575, 650, 725, 800°C) of HSS were investigated by thermo-gra...The oxidation characteristics of high speed steel (HSS) were studied at 500 to 800°C. The non-isothermal oxidation and isothermal oxidation (500, 575, 650, 725, 800°C) of HSS were investigated by thermo-gravimetric analysis (TGA). The microstruc- ture, morphology and oxide scale thickness of the isothermal oxidation samples were analyzed by optical microscope (OM), electron probe micro analyzer (EPMA), X-ray diffraction spectrum (XRD) and scanning electron microscope (SEM). The results indicate that the oxidation rate of HSS is very slow at 500 to 650°C, increasing gradually at 650 to 750°C, and drastically at 750 to 800°C, be- cause the phase transformation happens at about 750°C.展开更多
The morphology and structure of δ-eutectoid and the transformation of δ-eutectoidic austenite in high speed steel have been studied under SEM and TEM.The δ-eutectoid in as-cast high speed steel is rod-shaped eutect...The morphology and structure of δ-eutectoid and the transformation of δ-eutectoidic austenite in high speed steel have been studied under SEM and TEM.The δ-eutectoid in as-cast high speed steel is rod-shaped eutectoidic units with different orientations and is markedly surrounded by carbide shell.The eutectoidic carbide is rod-shaped M_6C of square eross section.The eutectoidic austenite may transform into pearlite structure during cooling.展开更多
The present study aims at developing the high speed steel (HSS) as rollmaterials to replace the traditional roll materials such as the alloy cast iron and powdermetallurgical (PM) hard alloy. The HSS roll billet was f...The present study aims at developing the high speed steel (HSS) as rollmaterials to replace the traditional roll materials such as the alloy cast iron and powdermetallurgical (PM) hard alloy. The HSS roll billet was formed by centrifugal casting, and the billetwas rough machined alter soften annealing heat treatment, then it was quenched and tempered to getsuitable hardness and toughness. After that the HSS roll was finish machined to the final dimensionof phi 285 mm in the outer diameter, phi 160 mm in the inner diameter and 120 mm in width and itssurface hardness was tested. Finally the HSS roll was used in high speed wire rod mill. The testresults show that a high and homogeneous hardness can obtain on the work surface of HSS rolls, thesurface hardness is 63-65HRC and its variation is smaller than 2HRC. The impact toughness of thiskind of HSS is about 16 J/cm^2. The results of on-line service investigation in high speed wire rodmill indicate that the HSS rolls have excellent wear resistance, the steel rolling quantity per mmof HSS rolls is 3120 t, the service life-span of HSS rolls is 4 times longer than that of highchromium cast iron rolls and it is close to that of the PM hard alloy rolls. The manufacturingburden of HSS rolls is obviously lower than that of the PM hard alloy rolls, it is only 25 percentof that of the PM hard alloy rolls.展开更多
The present study aims at developing high speed steel (HSS) as roll materialsto replace traditional roll materials such as the alloy cast iron and powder metallurgical (PM)hard alloy, because low-cost alloy cast iron ...The present study aims at developing high speed steel (HSS) as roll materialsto replace traditional roll materials such as the alloy cast iron and powder metallurgical (PM)hard alloy, because low-cost alloy cast iron rolls have poor wear resistance and the cost ofhigh-quality PM hard alloy rolls is too high to be accepted by some users. By means of a centrifugalcasting method, HSS rolls with excellent wear resistance have been developed. Its hardness is 65-67 HRC, and its variation is smaller than 2HRC; its impact toughness excels 15J/cm^2. Usingpre-finishing stands of a high-speed hot wire-rod rolling mill, the wear rate of HSS rolls per onethousand ton of steel is 0. 25mm. However, the manufacturing burden of HSS rolls is obviously lowerthan that of PM hard alloy rolls; it is only 30% of that of PM hard alloy rolls.展开更多
The effects of RE and Ti microalloying during electroslag remelting(ESR)process on the microsegregation and morphology of eutectic M2C carbides in M2 high speed steel were investigated.The results show that the additi...The effects of RE and Ti microalloying during electroslag remelting(ESR)process on the microsegregation and morphology of eutectic M2C carbides in M2 high speed steel were investigated.The results show that the addition of 0.2 wt%RE can alleviate the segregation of C,W,Mo,V and Cr,while the morphology of eutectic M2C carbides hardly changes.The microalloying with the addition of 0.5 wt%Ti has the lowest degree of microsegregation due to the improvement of primary dendrites by the effective heterogeneous nucleating agent of(Ti,V)(C,N)particles.The addition of Ti makes the mo rphology of M2C carbides change from rod-like or maze-like shape into a coarse feathery shape,exhibiting anisotropic facet growth characteristics.For the microalloying of 0.2 wt%RE and 0.5 wt%Ti,the segregation of the main metal alloying elements is slightly more severe than that of the addition of only RE or Ti.Under the combined action of RE and Ti,the feathery eutectic M2C becomes thinner and shorter and tends to be isolated or distributed in a discontinuous network.展开更多
基金The National Natural Science Foundation of China(No.51301038,51201031,51371050)the Industry-AcademiaResearch Cooperative Innovation Fund of Jiangsu Province(No.BY2014127-03)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20141306)the Scientific and Technological Innovation Fund of Danyang(No.SY201305)
文摘The influence of rare earth metals and heat treatment on the microstructure and performance of M42 steel has been investigated by means of an optical microscope OM scanning electron microscope SEM energy dispersive spectroscopy EDS transmission electron microscope TEM electron back-scatter diffraction EBSD and X-ray diffraction XRD . The results show that M2 C is the prevailing type of eutectic carbides in M42 steel. After modification with rare earth metals M2 C eutectic carbides change from the ordered lamellar structure into a circular structure.Despite different morphologies the two carbides present the same characteristics of microstructure and growth orientation.Compared with lamellar carbides M2 C carbides with the circular structure are much easier to decompose and spheroidize after heating which remarkably refines the carbide dimensions.The refined carbides improve the supersaturation of alloying elements in martensite and increase the hardness of M42 steel by 1.5 HRC.
基金supported by the National Natural Science Foundation of China (No. 51271163)
文摘A high speed steel (HSS) was studied for rollers in this work. The steel was quenched at 1150℃ and tempered at 520℃. The phase structures of the steel were determined by X-ray diffraction (XRD), and the hardness of specimens was measured. The volume fraction of carbides was counted by Image-Pro Plus software. The typical microstructures were observed by field emission scanning electron microscope (FESEM). Stable and meta-stable carbides were deduced by removing the existing phases one by one in the Fe-C equilibrium calculation. It is found that the precipitated carbides are bulk-like MC, long stripe-like M2C, fishbone-like M6C, and daisy-like M7C3 during the tempering process. The stable carbides are MC and M6C, but the meta-stable ones are M2C, M7C3, and M3C.
基金Supported by National Natural Science Foundation of China(Grant No.51375099)Shanghai Municipal Natural Science Foundation of China(Grant No.18ZR1441000)Fundamental Research Funds for the Central Universities
文摘Adhesion of cutting tool and chip often occurs when machining stainless steels with cemented carbide tools. Wear mechanism of cemented carbide tool in high speed milling of stainless steel 0Cr13Ni4 Mo was studied in this work. Machining tests on high speed milling of 0Cr13Ni4 Mo with a cemented carbide tool are conducted. The cutting force and cutting temperature are measured. The wear pattern is recorded and analyzed by high?speed camera, scanning electron microscope(SEM) and energy dispersive X?ray spectroscopy(EDS). It is found that adhesive wear was the dominant wear pattern causing tool failure. The process and microcosmic mechanism of the tool’s adhesive wear are analyzed and discussed based on the experimental results. It is shown that adhesive wear of the tool occurs due to the wear of coating, the a nity of elements Fe and Co, and the grinding of workpiece materials to the tool material. The process of adhesive wear includes both microcosmic elements di usion and macroscopic cyclic process of adhe?sion, tearing and fracture.
基金supported by both the National Natural Science Foundation of China under the contract No.59995440the Natural Science Foundation of Liaoning Province under the contract No.2001101021
文摘The M2 high-speed steel strip was produced by using the laboratory scale twin roll strip caster. The microstructure and eutectic carbide morphology of thus produced products were observed and analyzed, and the comparison of those with conventional products was carried out. The effects of the processing parameters such as the melting temperature, the pouring temperature, rolling speed and separating force on the microstructure and eutectic carbide morphology and their distribution were analyzed. The spheroidizing process of the strips in the annealing process was investigated. The relations between the growth and spheroidizing of the eutectic carbide and the annealing technology were obtained, and the mechanism of the twin roll strip casting process improving the eutectic carbide spheroidizing was discussed. The theoretical instruction for determining the subsequent treatment process was provided.
文摘The influence of Ce on the solidification microstructures of M2 high speed steel was studied. The results show that Ce has the effect of alleviating the segregation of alloying elements such as W and Mo in high speed steel. With the addition of Ce, the amount of eutectic carbides is decreased and the flakes of the carbides are refined. Ce mainly segregates onto the interface between the eutectic carbide and austenite, and a Dart of Ce enters M2C carbide. Ce can also enhance the breaking and spheroidizing of the network eutectic carbides during high temperature heat treatment.
基金supported by the Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province,China(No.BA2010139)
文摘The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that the as-cast structure of the steel was composed of the iron matrix and the M2C eutectic carbide networks, which were greatly refined in the ingot made by continuous casting process, compared with that by the iron mould casting process. M2C eutectic carbides presented variation in their morphologies and growth characteristics in the ingots by both casting methods. In the ingot by iron mould casting, they have a plate-like morphology and grow anisotropically. However, in the ingot made by continuous casting, the carbides evolved into the fiber-like shape that exhibited little characteristics of anisotropic growth. It was noticed that the fiber-like M2C was much easier to decompose and spheroidize after heated, as a result, the carbides refined remarkably, compared with the case of plate-like carbides in the iron mould casting ingot.
文摘High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost alloyed cast iron rolls is poor and the cost of high-quality PM hard alloy rolls is very high. By means of centrifugal casting, HSS rolls having excellent wear resistance have been manufactured. The hardness of the HSS roll is 6.5~67 HRC, the range of variation is smaller than 2 HRC and its impact toughness is 15 J/cm^2. The wear rate of HSS rolls used in the pre-finishing stands of high-speed hot wire-rod rolling mill reaches 2.5×10^(-4)mm per ton steel. Furthermore, the manufacturing cost of HSS rolls is significantly lower than that of PM hard alloy rolls; it is only 30 percent of that of PM hard alloy rolls.
基金financially surpported by the Foundation of Hebei Provincial Department of Education,China(Grant No.QN2018034 and QN2017051)
文摘The electrode configuration determines the thermophysical field during the electroslag remelting(ESR) process and affects the final microstructure of the ingot. In this work, ingot with a diameter of 400 mm was prepared with two electrode configuration modes of single power ESR process, namely one electrode(OE) and two series-connected electrodes(TSCE). Finite element simulation was employed to calculate the electromagnetic field, flow field and temperature field of the ESR system. The results show that the temperature of the slag pool and the metal pool of the TSCE process is lower and more uniform than that of the OE process.The calculated temperature distribution of the ingot could be indirectly verified from the shape of the metal pool by the experiment. The experimental results show that the depth of the metal pool in the OE ingot is about 160 mm, while the depth of the TSCE ingot is nearly 40 mm shallower than that of the OE ingot. Microstructural comparisons indicate that coarse eutectic carbides are formed in the center of the OE ingot, whereas more even eutectic carbides appear in the center of the TSCE ingot. In general, compared with the OE process, the TSCE process is preferred to remelt high speed steel ingots.
文摘The effect of ferrovanadium inoculation on the microstructure and properties of high speed steel (HSS) used for rolls was studied. The results showed that the as-cast eutectic carbide network tends to be broken after ferrovanadium inoculation, and the carbides are changed to rod-like or nodular shape. After heat treatment, the carbides in the inoculated HSS are spheroidized and distributed more uniformly in the matrix. The impact toughness of high speed steel with ferrovanadium inoculation is obviously improved. The action mechanism of ferrovanadium inoculation on the microstructure of the alloy is also discussed.
基金Project(200809123) supported by the National Natural Science Foundation of China
文摘A high speed steel composite roll billet was fabricated, which is regular in shape, smooth in surface, slight in trace, compact in internal structure, free of slag inclusion, shrinkage cavity, cracks and other flaws, and good in macro quality of junction surface using a vertical continuous casting machine. The interface zone microstructure of bimetallic in billet of high speed steel composite roll was analyzed by metallurgical microscope(OM), X-ray diffractmeter(XRD), scanning electron microscopy(SEM) and energy-dispersive X-ray analysis(EDS). The results indicate that the microstructure of roll billet is composed of chilled solidified layer, dendrite zone, interfacial zone of bimetal and core material zone. The microstructure of outer shell material is composed of martensite + bainite + residual austenite + some small labyrinth-shape, small-short lath-shape, or dollop-shape eutectic carbides. The microstructure of core material is slice-shape pearlite and a little ferrite along boundary of cells. The interface region microstructure of bimetallic composite roll consists of diffusion region, chilled solidified layer and columnar grain region.
基金Project supported by"863"Project (2006AA03Z532)the National Natural Science Foundation of China (NSFC 50341050)
文摘The influence of rare earth (RE) elements on the solidification process and eutectic transformation and mechanical properties of the high-V type cast, high-speed steel roll was studied. Test materials with different RE additions were prepared on a horizontal centrifugal casting machine. The solidification process, eutectic structure transformation, carbide morphology, and the elements present, were all investigated by means of differential scanning calorimetry (DSC) and scanning electron microscopy energy dispersive spectrometry (SEM-EDS). The energy produced by crack initiation and crack extension was analyzed using a digital impact test machine. It was found that rare earth elements increased the tensile strength of the steel by inducing crystallization of earlier eutectic γ-Fe during the solidification process, which in turn increased the solidification temperature and thinned the dendritic grains. Rare earth elements with large atomic radius changed the lattice parameters of the MC carbide by forming rare earth carbides. This had the effect of dispersing longpole M C carbides to provide carbide grains, thereby, reducing the formation of the gross carbide and making more V available, to increase the secondary hardening process and improve the hardness level. The presence of rare earth elements in the steel raised the impact toughness by changing the mechanism of MC carbide formation, thereby increasing the crack initiation energy.
基金ItemSponsored by National Natural Science Foundation of China (50274028) State Key Fundamental Research Project(G19990650)
文摘The fatigue behavior of high speed steel (HSS) roll materials for hot rolling was researched under watercooling conditions by laser impacting. The microstructure of HSS sample and the morphologies of fatigue samples were observed by scanning electron microscope. The phase structure was detected by XRD. The morphology of situ oxide scale was observed by optical microscope, and the expansion coefficient was measured by TGA. The experiment results indicate that the cracks come into being at the carbide-matrix interface, but there are no cracks in the matrix after many times of laser impacting treatment, for the situ sample taken from the fractured roll surface, big carbides are more sensitive to the fatigue, and peel off prior to small ones. The relevant fatigue mechanisms are also discussed.
文摘The influence of the metal pool depth and the local solidification time on the structure of high speed steel ingot produced by electroslag remelting (ESR) process has been studied by measuring the dendritic arm spacing and the size of the carbides. It is shown that the metal pool depth is a factor that influences the uniformity of the ESR ingot structure and not only the dendritic arm spacing, but also the size of the carbides can be influenced by the local solidification time in the solidification process of the ingot. The relationship between the melting rate during ESR process and the local solidification time has been studied. It is shown that there is an optimum melting rate at which the local solidification time is minimum as a result of the combination of the influence of the melt rate on the width of the local mushy zone and on the local solidification rate. The influence of the inoculants on the solidification structure of high speed steel produced by ESR has been studied and it is shown that the size of the grain can be significantly reduced by inoculation process.
文摘The scratch behaviors of two high speed steels (HSS) for hot rolls were studied by a Micro-combi Tester, and the emphasis was placed on researching the relations between the microstructure and the scratch resistance property of different HSS. The experimental results indicate that during the scratch process, the carbides are embedded into the matrix, the penetration depth of different HSS is closely related with the matrix hardness, i.e., the higher the matrix hardness, the better the scratch resistance property; and in the matrix, the fine, dispersive carbides are beneficial to form steady friction between the indenter and the scratched materials, but the coarser carbides are easier to fall into pieces.
文摘The oxidation behavior of high speed steel (HSS) was researched by high temperature thermo balance at 500 to 800 °C in water vapor. The morphology was observed by scanning electron microscope, the microstructure of oxide scale was analyzed by energy dispersive spectrometer and X-ray diffraction spectrum. The results indicate that the mass gain of HSS increases with oxidation temperature rising, the effect of oxidation temperature on the morphology is obvious, water vapor temperature only affects mass gain and affects hardly morphology of oxide scale at the same oxidation temperature. The relevant oxidation mechanisms are also discussed.
基金This research was financially supported by the National Natural Science Foundation of China (No.50274028) and the Major StateBasic Research Development Program of China (973 Program No.G19990650).
文摘The oxidation characteristics of high speed steel (HSS) were studied at 500 to 800°C. The non-isothermal oxidation and isothermal oxidation (500, 575, 650, 725, 800°C) of HSS were investigated by thermo-gravimetric analysis (TGA). The microstruc- ture, morphology and oxide scale thickness of the isothermal oxidation samples were analyzed by optical microscope (OM), electron probe micro analyzer (EPMA), X-ray diffraction spectrum (XRD) and scanning electron microscope (SEM). The results indicate that the oxidation rate of HSS is very slow at 500 to 650°C, increasing gradually at 650 to 750°C, and drastically at 750 to 800°C, be- cause the phase transformation happens at about 750°C.
文摘The morphology and structure of δ-eutectoid and the transformation of δ-eutectoidic austenite in high speed steel have been studied under SEM and TEM.The δ-eutectoid in as-cast high speed steel is rod-shaped eutectoidic units with different orientations and is markedly surrounded by carbide shell.The eutectoidic carbide is rod-shaped M_6C of square eross section.The eutectoidic austenite may transform into pearlite structure during cooling.
文摘The present study aims at developing the high speed steel (HSS) as rollmaterials to replace the traditional roll materials such as the alloy cast iron and powdermetallurgical (PM) hard alloy. The HSS roll billet was formed by centrifugal casting, and the billetwas rough machined alter soften annealing heat treatment, then it was quenched and tempered to getsuitable hardness and toughness. After that the HSS roll was finish machined to the final dimensionof phi 285 mm in the outer diameter, phi 160 mm in the inner diameter and 120 mm in width and itssurface hardness was tested. Finally the HSS roll was used in high speed wire rod mill. The testresults show that a high and homogeneous hardness can obtain on the work surface of HSS rolls, thesurface hardness is 63-65HRC and its variation is smaller than 2HRC. The impact toughness of thiskind of HSS is about 16 J/cm^2. The results of on-line service investigation in high speed wire rodmill indicate that the HSS rolls have excellent wear resistance, the steel rolling quantity per mmof HSS rolls is 3120 t, the service life-span of HSS rolls is 4 times longer than that of highchromium cast iron rolls and it is close to that of the PM hard alloy rolls. The manufacturingburden of HSS rolls is obviously lower than that of the PM hard alloy rolls, it is only 25 percentof that of the PM hard alloy rolls.
文摘The present study aims at developing high speed steel (HSS) as roll materialsto replace traditional roll materials such as the alloy cast iron and powder metallurgical (PM)hard alloy, because low-cost alloy cast iron rolls have poor wear resistance and the cost ofhigh-quality PM hard alloy rolls is too high to be accepted by some users. By means of a centrifugalcasting method, HSS rolls with excellent wear resistance have been developed. Its hardness is 65-67 HRC, and its variation is smaller than 2HRC; its impact toughness excels 15J/cm^2. Usingpre-finishing stands of a high-speed hot wire-rod rolling mill, the wear rate of HSS rolls per onethousand ton of steel is 0. 25mm. However, the manufacturing burden of HSS rolls is obviously lowerthan that of PM hard alloy rolls; it is only 30% of that of PM hard alloy rolls.
基金Project supported by the Natural Science Foundation-Steel and Iron Foundation of Hebei Province(E2019202482)the Hebei Province Education Department Science and Technology Research Project(QN2018034)the Tianjin Science and Technology Support Program(18YFZCGX00220)。
文摘The effects of RE and Ti microalloying during electroslag remelting(ESR)process on the microsegregation and morphology of eutectic M2C carbides in M2 high speed steel were investigated.The results show that the addition of 0.2 wt%RE can alleviate the segregation of C,W,Mo,V and Cr,while the morphology of eutectic M2C carbides hardly changes.The microalloying with the addition of 0.5 wt%Ti has the lowest degree of microsegregation due to the improvement of primary dendrites by the effective heterogeneous nucleating agent of(Ti,V)(C,N)particles.The addition of Ti makes the mo rphology of M2C carbides change from rod-like or maze-like shape into a coarse feathery shape,exhibiting anisotropic facet growth characteristics.For the microalloying of 0.2 wt%RE and 0.5 wt%Ti,the segregation of the main metal alloying elements is slightly more severe than that of the addition of only RE or Ti.Under the combined action of RE and Ti,the feathery eutectic M2C becomes thinner and shorter and tends to be isolated or distributed in a discontinuous network.