This research considered the effect of non-natural aging on the microstructural characteristics and mechanical properties of as-cast aluminum 6063 alloys. The samples were developed through a sand casting process and ...This research considered the effect of non-natural aging on the microstructural characteristics and mechanical properties of as-cast aluminum 6063 alloys. The samples were developed through a sand casting process and machined into tensile and impact test samples before carrying out solution heat treatment at 550?C (0.83 T<sub>m</sub>) on two parts of the samples while retaining one part as the control. The two parts were further divided into sets denoted A and B and were aged at 180?C (0.27 T<sub>m</sub>) and 160?C (0.24 T<sub>m</sub>), respectively, for 12 hours. The results showed that sample A has the optimal yield strength and ultimate tensile strength of 192 and 206 MPa, respectively. Likewise, the sample gave the highest impact strength value of about 9.63 J/mm<sup>2</sup>. The observed results were supported by the optical micrograph, which revealed that the sample has evenly dispersed precipitates in its microstructure. This is deemed responsible for the observed increase in strength of the sample.展开更多
In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrica...In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrical structures of the subject, light flux reconstruction on arbitrary surface, calibration and quantification of the surface light flux and internal bioluminescence reconstruction. In particular, the geometrical structures are retrieved using a completely optical method and captured under identical viewing conditions with the bioluminescent images. As a result, the proposed framework avoids the utilization of computed tomography or magnetic resonance imaging to provide the geometrical structures. On the basis of experimental measurements, we evaluate the performance of the proposed all-optical quantitative framework using a mouse shaped phantom. Preliminary result reveals the potential and feasibility of the proposed framework for bioluminescence tomography.展开更多
In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Pro...In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Probe Microanalysis) and by analyzing the total oxygen. The results showed that in the slabs the total oxygen was quite low and the inclusions discovered were mainly small-sized angular alumina inclusions. This indicates that most inclusions have been removed by floating out during the continuous casting process. In addition, the countermeasures were discussed to decrease the alumina inclusions in the slabs further.展开更多
A chromium-free environmental protection aluminum surface treatment technology was developed by theoretical analysis and a large number of experiments. Add zirconium ions and cerium ions to the treatment solution, bes...A chromium-free environmental protection aluminum surface treatment technology was developed by theoretical analysis and a large number of experiments. Add zirconium ions and cerium ions to the treatment solution, besides adding fluoride, aluminum and hydrogen peroxide, etc. According to the orthogonal test obtained a non-chromate film-formation process of environmental friendly aluminum. The characterization methods including SEM, XPS and XRD were applied to study and analyze the morphology, composition, phase, and corrosion resistance of phosphate film, then discussed the film-forming reaction mechanism. Results showed that chemical conversion film formed on the aluminum surface was uniform, compact and stronger anti-corrosion could replace the traditional, more toxic chromate conversion film.展开更多
The structural evolution of non dendritic AlSi7Mg alloy during reheating in resistance furnace was studied. The alloy ingots were produced by electromagnetic stirring during solidification. It was found that, the Si p...The structural evolution of non dendritic AlSi7Mg alloy during reheating in resistance furnace was studied. The alloy ingots were produced by electromagnetic stirring during solidification. It was found that, the Si phase in eutectic dissolves in a way of diffusion toward α phase, its appearance changes from flake to dot like, and tends to be fine and spheroidal with increasing reheating temperature. The thinner the flake, the lower the temperature for the occurrence of this process, and the higher the transforming speed. The eutectic melts partially when Si phase dissolves to some extent, and the morphology and size of primary α phase begin to change. The dendrite and rosette α phases tends to sphericize. The size of the former becomes larger, while the size of the latter reduces to be 1/2~1/4 of the original size. The spheroidal primary α phase has a tendency of grain growth.展开更多
The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the micros...The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the microstructures of semi-solid billets transform from coarse dendrites into fine equiaxed grains as the pouring temperature of molten alloy decreases o.r roll-shoe cavity height is reduced. From the inlet to the exit of roll-shoe cavity, microstructure of semi-solid slurry near the shoe surface is in the order of coarse dendrites, degenerated dendrites or equiaxed grains, but fine equiaxed grains are near the roll surface. Microstructural evolution of semi-solid slurry prepared by SCR process is that the molten alloy nucleates and grows into dendrite firstly on the roll and shoe's surface. Under the shearing and stirring given by the rotating roll, the dendrites crush off and disperse into the melt. Under the shearing and stirring on semi-solid slurry with high volume fraction of solid, the dendrite arms fracture and form equiaxed grain microstructures.展开更多
Conjugated polymers are commonly used as effective hole transport materials(HTMs) for preparation of high-performance perovskite solar cells. However, the hydrophobic nature of these materials renders it difficult to ...Conjugated polymers are commonly used as effective hole transport materials(HTMs) for preparation of high-performance perovskite solar cells. However, the hydrophobic nature of these materials renders it difficult to deposit photovoltaic perovskite layers on top via solution processing. In this article, we report a generic surface modification strategy that enables the deposition of uniform and dense perovskite films on top of non-wetting interfaces. In contrast to the previous proposed chemical modifications which might alter the optoelectronic properties of the interfacial layers, we realized a nondestructive surface modification enabled by introducing a layer of insulating mesoporous aluminum oxide(Al2O3). The surface energies of the typical non-wetting hole-transport layers(PTAA, P3 HT, and Poly-TPD) were significantly reduced by the Al2O3 modification. Benefiting from the intact optoelectronic properties of the HTMs, perovskite solar cells deposited on these interface materials show full open-circuit voltages( V OC) with high fill factors(FF) up to 80%. Our method provides an effective avenue for exploiting the full potential of the existing as well as newly developed non-wetting interface materials for the fabrication of high-performance inverted perovskite solar cells.展开更多
Non-orthogonal multiple access (NOMA) schemes have achieved great attention recently and been considered as a crucial compo-nent for 5G wireless networks since they can efficiently enhance the spectrum efficiency, s...Non-orthogonal multiple access (NOMA) schemes have achieved great attention recently and been considered as a crucial compo-nent for 5G wireless networks since they can efficiently enhance the spectrum efficiency, support massive connections and poten-tially reduce access latency via grant free access. In this paper, we introduce the candidate NOMA solutions in 5G networks, com-paring the principles, key features, application scenarios, transmitters and receivers, etc. In addition, a unified framework of these multiple access schemes are proposed to improve resource utilization, reduce the cost and support the flexible adaptation of multi-ple access schemes. Further, flexible multiple access schemes in 5G systems are discussed. They can support diverse deployment scenarios and traffic requirements in 5G. Challenges and future research directions are also highlighted to shed some lights for the standardization in 5G.展开更多
Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in th...Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of a-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room tem- perature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.展开更多
The effect of barium on the refinement of primary aluminum and on themodification of eutectics in a hypoeutectic aluminum-silicon alloy was investigated. The resultsindicate that barium not only modifies the eutectic ...The effect of barium on the refinement of primary aluminum and on themodification of eutectics in a hypoeutectic aluminum-silicon alloy was investigated. The resultsindicate that barium not only modifies the eutectic silicon but also refines the primary aluminumand there is a relationship between the retained barium and the second spacing of primary aluminum.Experiments of barium-treated commercial Al-Si hypoeutectic alloy show that barium is a bettermodifier than sodium when there is a longer holding time.展开更多
Aluminum titanate has been widely used in low expansion applications and its thermal stability has been a hot topic. The stability of aluminium titanate research for improving product quality, and expanding its applic...Aluminum titanate has been widely used in low expansion applications and its thermal stability has been a hot topic. The stability of aluminium titanate research for improving product quality, and expanding its application field is of great significance. Aluminum titanate as glass melt erosion resistance and high temperature resistant, can be applied to high temperature pigment base. The medium temperature stability of aluminum titanate can be improved by ion doping, and magnesium stability of aluminum titanate has been widely studied. Therefore aluminium titanate is expected to become an ideal high temperature ceramic base material. In this paper, the preparation technology of magnesium-stabilized aluminum titanate powder was reviewed, and the preparation of magnesium-stabilized aluminum titanate powder by non-hydrolyzed sol-gel was mainly introduced.展开更多
Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollu...Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollutants. While catalytic decomposition and zeolites are traditional ways used to reduce the amount of these gases. We need to develop and explore new promising materials. Covalent organic framework (COF) has become an attractive platform for researcher due to its extended robust covalent bonds, porosity, and crystallinity. In this study, first principal calculations were performed for gases adsorption using COFs containing nitrogen and π-bonds. Different building blocks (BBs) and linkers (LINKs/LINK1 & LINK2) were investigated by means of density functional theory (DFT) calculations with B3LYP and 3-21G basis sets to calculate the binding energies of gases @COF systems. Electrostatic potential maps (ESPM), Mulliken charges and non-covalent interaction (NCI) are used to understand the type of interactions between gas and COFs fragments. O3 was found to bind strongly with COF system in comparison with NO which could make COF a useful selective material for mixed gases environment for sensing and removal application.展开更多
采用熔体水淬法(水冷法)、气雾化法和单辊熔融纺丝技术(甩带法)制备不同冷却速率的快速凝固过共晶Al-50%Si合金,并通过扫描电子显微镜(scanning electron microscope,SEM)和X射线衍射仪(X-ray diffractometer,XRD)分析了快速凝固与常规...采用熔体水淬法(水冷法)、气雾化法和单辊熔融纺丝技术(甩带法)制备不同冷却速率的快速凝固过共晶Al-50%Si合金,并通过扫描电子显微镜(scanning electron microscope,SEM)和X射线衍射仪(X-ray diffractometer,XRD)分析了快速凝固与常规凝固的差异,以及快速凝固Al-50%Si合金微观组织的演变。结果表明:在水冷的Al-50%Si合金组织中观察到了树枝状的Al相,较大的过冷度导致这种亚共晶组织的形成,此组织属于非稳定状态,且共晶Si完全细化至纤维状;随着冷却速率的增加,在甩带试样中Al相的树枝状组织消失;通过甩带以及气雾化制备的Al-50%Si合金中,初晶Si颗粒被明显细化,由常规凝固的200μm细化至20μm左右,使Si在Al基体中的固溶度增大,造成Al基体晶格发生畸变。展开更多
文摘This research considered the effect of non-natural aging on the microstructural characteristics and mechanical properties of as-cast aluminum 6063 alloys. The samples were developed through a sand casting process and machined into tensile and impact test samples before carrying out solution heat treatment at 550?C (0.83 T<sub>m</sub>) on two parts of the samples while retaining one part as the control. The two parts were further divided into sets denoted A and B and were aged at 180?C (0.27 T<sub>m</sub>) and 160?C (0.24 T<sub>m</sub>), respectively, for 12 hours. The results showed that sample A has the optimal yield strength and ultimate tensile strength of 192 and 206 MPa, respectively. Likewise, the sample gave the highest impact strength value of about 9.63 J/mm<sup>2</sup>. The observed results were supported by the optical micrograph, which revealed that the sample has evenly dispersed precipitates in its microstructure. This is deemed responsible for the observed increase in strength of the sample.
基金supported by National Basic Research Program of China (973 Program) (No.2011CB707702)National Natural Science Foundation of China (No.81090272, No.81000632, and No.30900334)+1 种基金Shaanxi Provincial Natural Science Foundation Research Project (No.2009JQ8018)Fundamental Research Funds for the Central Universities
文摘In this contribution, we present an all-optical quantitative framework for bioluminescence tomography with non-contact measurement. The framework is comprised of four indispensable steps: extraction of the geometrical structures of the subject, light flux reconstruction on arbitrary surface, calibration and quantification of the surface light flux and internal bioluminescence reconstruction. In particular, the geometrical structures are retrieved using a completely optical method and captured under identical viewing conditions with the bioluminescent images. As a result, the proposed framework avoids the utilization of computed tomography or magnetic resonance imaging to provide the geometrical structures. On the basis of experimental measurements, we evaluate the performance of the proposed all-optical quantitative framework using a mouse shaped phantom. Preliminary result reveals the potential and feasibility of the proposed framework for bioluminescence tomography.
文摘In aluminum killed steels, the size, shape, quantity and formation of non-metallic inclusions in ladle steel (before and after RH vacuum treatment) and in tundish as well as in slabs were studied by EPMA (Electron Probe Microanalysis) and by analyzing the total oxygen. The results showed that in the slabs the total oxygen was quite low and the inclusions discovered were mainly small-sized angular alumina inclusions. This indicates that most inclusions have been removed by floating out during the continuous casting process. In addition, the countermeasures were discussed to decrease the alumina inclusions in the slabs further.
文摘A chromium-free environmental protection aluminum surface treatment technology was developed by theoretical analysis and a large number of experiments. Add zirconium ions and cerium ions to the treatment solution, besides adding fluoride, aluminum and hydrogen peroxide, etc. According to the orthogonal test obtained a non-chromate film-formation process of environmental friendly aluminum. The characterization methods including SEM, XPS and XRD were applied to study and analyze the morphology, composition, phase, and corrosion resistance of phosphate film, then discussed the film-forming reaction mechanism. Results showed that chemical conversion film formed on the aluminum surface was uniform, compact and stronger anti-corrosion could replace the traditional, more toxic chromate conversion film.
文摘The structural evolution of non dendritic AlSi7Mg alloy during reheating in resistance furnace was studied. The alloy ingots were produced by electromagnetic stirring during solidification. It was found that, the Si phase in eutectic dissolves in a way of diffusion toward α phase, its appearance changes from flake to dot like, and tends to be fine and spheroidal with increasing reheating temperature. The thinner the flake, the lower the temperature for the occurrence of this process, and the higher the transforming speed. The eutectic melts partially when Si phase dissolves to some extent, and the morphology and size of primary α phase begin to change. The dendrite and rosette α phases tends to sphericize. The size of the former becomes larger, while the size of the latter reduces to be 1/2~1/4 of the original size. The spheroidal primary α phase has a tendency of grain growth.
基金The authors would like to thank the National Natural Science Foundation of China and Baoshan Iron&Steel Co.of Shanghai for financial support under the grant No.50274020.
文摘The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the microstructures of semi-solid billets transform from coarse dendrites into fine equiaxed grains as the pouring temperature of molten alloy decreases o.r roll-shoe cavity height is reduced. From the inlet to the exit of roll-shoe cavity, microstructure of semi-solid slurry near the shoe surface is in the order of coarse dendrites, degenerated dendrites or equiaxed grains, but fine equiaxed grains are near the roll surface. Microstructural evolution of semi-solid slurry prepared by SCR process is that the molten alloy nucleates and grows into dendrite firstly on the roll and shoe's surface. Under the shearing and stirring given by the rotating roll, the dendrites crush off and disperse into the melt. Under the shearing and stirring on semi-solid slurry with high volume fraction of solid, the dendrite arms fracture and form equiaxed grain microstructures.
基金supported by the National Natural Science Foundation of China (Grant no. 61705090)
文摘Conjugated polymers are commonly used as effective hole transport materials(HTMs) for preparation of high-performance perovskite solar cells. However, the hydrophobic nature of these materials renders it difficult to deposit photovoltaic perovskite layers on top via solution processing. In this article, we report a generic surface modification strategy that enables the deposition of uniform and dense perovskite films on top of non-wetting interfaces. In contrast to the previous proposed chemical modifications which might alter the optoelectronic properties of the interfacial layers, we realized a nondestructive surface modification enabled by introducing a layer of insulating mesoporous aluminum oxide(Al2O3). The surface energies of the typical non-wetting hole-transport layers(PTAA, P3 HT, and Poly-TPD) were significantly reduced by the Al2O3 modification. Benefiting from the intact optoelectronic properties of the HTMs, perovskite solar cells deposited on these interface materials show full open-circuit voltages( V OC) with high fill factors(FF) up to 80%. Our method provides an effective avenue for exploiting the full potential of the existing as well as newly developed non-wetting interface materials for the fabrication of high-performance inverted perovskite solar cells.
文摘Non-orthogonal multiple access (NOMA) schemes have achieved great attention recently and been considered as a crucial compo-nent for 5G wireless networks since they can efficiently enhance the spectrum efficiency, support massive connections and poten-tially reduce access latency via grant free access. In this paper, we introduce the candidate NOMA solutions in 5G networks, com-paring the principles, key features, application scenarios, transmitters and receivers, etc. In addition, a unified framework of these multiple access schemes are proposed to improve resource utilization, reduce the cost and support the flexible adaptation of multi-ple access schemes. Further, flexible multiple access schemes in 5G systems are discussed. They can support diverse deployment scenarios and traffic requirements in 5G. Challenges and future research directions are also highlighted to shed some lights for the standardization in 5G.
文摘Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of a-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room tem- perature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.
基金This work is financially supported by the National Natural Science Foundation of China (No. 59631080)
文摘The effect of barium on the refinement of primary aluminum and on themodification of eutectics in a hypoeutectic aluminum-silicon alloy was investigated. The resultsindicate that barium not only modifies the eutectic silicon but also refines the primary aluminumand there is a relationship between the retained barium and the second spacing of primary aluminum.Experiments of barium-treated commercial Al-Si hypoeutectic alloy show that barium is a bettermodifier than sodium when there is a longer holding time.
文摘Aluminum titanate has been widely used in low expansion applications and its thermal stability has been a hot topic. The stability of aluminium titanate research for improving product quality, and expanding its application field is of great significance. Aluminum titanate as glass melt erosion resistance and high temperature resistant, can be applied to high temperature pigment base. The medium temperature stability of aluminum titanate can be improved by ion doping, and magnesium stability of aluminum titanate has been widely studied. Therefore aluminium titanate is expected to become an ideal high temperature ceramic base material. In this paper, the preparation technology of magnesium-stabilized aluminum titanate powder was reviewed, and the preparation of magnesium-stabilized aluminum titanate powder by non-hydrolyzed sol-gel was mainly introduced.
文摘Industrial growth in recent years led to air pollution and an increase in concentration of hazardous gases such as O<sub>3</sub> and NO. Developing new materials is important to detect and reduce air pollutants. While catalytic decomposition and zeolites are traditional ways used to reduce the amount of these gases. We need to develop and explore new promising materials. Covalent organic framework (COF) has become an attractive platform for researcher due to its extended robust covalent bonds, porosity, and crystallinity. In this study, first principal calculations were performed for gases adsorption using COFs containing nitrogen and π-bonds. Different building blocks (BBs) and linkers (LINKs/LINK1 & LINK2) were investigated by means of density functional theory (DFT) calculations with B3LYP and 3-21G basis sets to calculate the binding energies of gases @COF systems. Electrostatic potential maps (ESPM), Mulliken charges and non-covalent interaction (NCI) are used to understand the type of interactions between gas and COFs fragments. O3 was found to bind strongly with COF system in comparison with NO which could make COF a useful selective material for mixed gases environment for sensing and removal application.
文摘采用熔体水淬法(水冷法)、气雾化法和单辊熔融纺丝技术(甩带法)制备不同冷却速率的快速凝固过共晶Al-50%Si合金,并通过扫描电子显微镜(scanning electron microscope,SEM)和X射线衍射仪(X-ray diffractometer,XRD)分析了快速凝固与常规凝固的差异,以及快速凝固Al-50%Si合金微观组织的演变。结果表明:在水冷的Al-50%Si合金组织中观察到了树枝状的Al相,较大的过冷度导致这种亚共晶组织的形成,此组织属于非稳定状态,且共晶Si完全细化至纤维状;随着冷却速率的增加,在甩带试样中Al相的树枝状组织消失;通过甩带以及气雾化制备的Al-50%Si合金中,初晶Si颗粒被明显细化,由常规凝固的200μm细化至20μm左右,使Si在Al基体中的固溶度增大,造成Al基体晶格发生畸变。