Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,...Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.展开更多
This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image o...This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image of test object from incomplete detection data. According to binary CT image characteristics, we employ Splitbregman method based on L1/2regularization to solve piecewise constant region reconstruction. To improve the reconstructed image quality from incomplete detection data, we utilize a priori knowledge and Otsu's method as the optimization constraint. In our study, we make numerical simulation to investigate our proposed method,and compare reconstructed results from different reconstruction methods. Finally, the experimental results demonstrate that the proposed method could effectively reduce noise and suppress artifacts, and reconstruct high-quality binary image from incomplete detection data.展开更多
We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environment...We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.展开更多
A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of me...A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.展开更多
Image processing and image analysis are the main aspects for obtaining information from digital image owing to the fact that this techniques give the desired details in most of the applications generally and Non-Destr...Image processing and image analysis are the main aspects for obtaining information from digital image owing to the fact that this techniques give the desired details in most of the applications generally and Non-Destructive testing specifically. This paper presents a proposed method for the automatic detection of weld defects in radiographic images. Firstly, the radiographic images were enhanced using adaptive histogram equalization and are filtered using mean and wiener filters. Secondly, the welding area is selected from the radiography image. Thirdly, the Cepstral features are extracted from the Higher-Order Spectra (Bispectrum and Trispectrum). Finally, neural networks are used for feature matching. The proposed method is tested using 100 radiographic images in the presence of noise and image blurring. Results show that in spite of time consumption, the proposed method yields best results for the automatic detection of weld defects in radiography images when the features were extracted from the Trispectrum of the image.展开更多
基金supported by the Cooperative Innovation Center of Terahertz Science , the National Basic Research Program of China (Grant No. 2014CB339800)the National Natural Science Foundation of China (Grant Nos. 61138001, 61420106006)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (grant No. IRT13033)the Major National Development Project of Scientific Instruments and Equipment of China (Grant No. 2011YQ150021)
文摘Optoelectronic terahertz generation and detection play a key role in the applications of non-destructive testing,which involves different areas such as physics,biological,material science,imaging,explosions detection,astronomy applications,semiconductor technology and superconductiong electronics. In this article,we present a reviewof the principle and performance of typical terahertz sources,detectors and non-destructive testing applications. On this basis,the newdevelopment and trends of terahertz radiation detectors are also discussed.
基金Supported by the National Natural Science Foundation of China(Nos.61401049 and 61201346)Postdoctoral Science Foundation of China(No.2014M560703)+1 种基金Chongqing Postdoctoral Science Foundation(No.Xm2014105)the Fundamental Research Funds for the Central Universities(Nos.CDJZR14125501 and 106112015CDJRC121103)
文摘This paper tries to address the problem of binary CT image reconstruction in non-destructive detection with an algorithm based on compressed sensing(CS) and Otsu's method, which could reconstruct binary CT image of test object from incomplete detection data. According to binary CT image characteristics, we employ Splitbregman method based on L1/2regularization to solve piecewise constant region reconstruction. To improve the reconstructed image quality from incomplete detection data, we utilize a priori knowledge and Otsu's method as the optimization constraint. In our study, we make numerical simulation to investigate our proposed method,and compare reconstructed results from different reconstruction methods. Finally, the experimental results demonstrate that the proposed method could effectively reduce noise and suppress artifacts, and reconstruct high-quality binary image from incomplete detection data.
文摘We present a non-destructive method (NDM) to identify minute quantities of high atomic number (<em>Z</em>) elements in containers such as passenger baggage, goods carrying transport trucks, and environmental samples. This method relies on the fact that photon attenuation varies with its energy and properties of the absorbing medium. Low-energy gamma-ray intensity loss is sensitive to the atomic number of the absorbing medium, while that of higher-energies vary with the density of the medium. To verify the usefulness of this feature for NDM, we carried out simultaneous measurements of intensities of multiple gamma rays of energies 81 to 1408 keV emitted by sources<sup> 133</sup>Ba (half-life = 10.55 y) and <sup>152</sup>Eu (half-life = 13.52 y). By this arrangement, we could detect minute quantities of lead and copper in a bulk medium from energy dependent gamma-ray attenuations. It seems that this method will offer a reliable, low-cost, low-maintenance alternative to X-ray or accelerator-based techniques for the NDM of high-Z materials such as mercury, lead, uranium, and transuranic elements etc.
文摘A first and effective method is proposed to detect weld deject adaptively in various Dypes of real-time X-ray images obtained in different conditions. After weld extraction and noise reduction, a proper template of median filter is used to estimate the weld background. After the weld background is subtracted from the original image, an adaptite threshold segmentation algorithm is proposed to obtain the binary image, and then the morphological close and open operation, labeling algorithm and fids'e alarm eliminating algorithm are applied to pracess the binary image to obtain the defect, ct detection result. At last, a fast realization procedure jbr proposed method is developed. The proposed method is tested in real-time X-ray image,s obtairted in different X-ray imaging sutems. Experiment results show that the proposed method is effective to detect low contrast weld dejects with few .false alarms and is adaptive to various types of real-time X-ray imaging systems.
文摘Image processing and image analysis are the main aspects for obtaining information from digital image owing to the fact that this techniques give the desired details in most of the applications generally and Non-Destructive testing specifically. This paper presents a proposed method for the automatic detection of weld defects in radiographic images. Firstly, the radiographic images were enhanced using adaptive histogram equalization and are filtered using mean and wiener filters. Secondly, the welding area is selected from the radiography image. Thirdly, the Cepstral features are extracted from the Higher-Order Spectra (Bispectrum and Trispectrum). Finally, neural networks are used for feature matching. The proposed method is tested using 100 radiographic images in the presence of noise and image blurring. Results show that in spite of time consumption, the proposed method yields best results for the automatic detection of weld defects in radiography images when the features were extracted from the Trispectrum of the image.