Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiment...Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.展开更多
The Yunlong Depression, Chuxiong Basin, Yunnan Province, southwest China is one of the least explored areas in China. A RAMANOR-U1000 laser Raman probe was used to investigate the gas phase and liquid phase components...The Yunlong Depression, Chuxiong Basin, Yunnan Province, southwest China is one of the least explored areas in China. A RAMANOR-U1000 laser Raman probe was used to investigate the gas phase and liquid phase components in 28 inclusions from outcrop and core in the Yunlong Depression. An investigation into hydrocarbon prospect and accumulation characteristics in the study area was performed by studying inclusion components. Oil and gas are the richest in the Devonian according to the organic inclusion content, which supports the prior research findings with conventional methods. Multitime accumulation of oil and gas in the study area was also recognized through analysis of inclusion components. This study could provide a reference for the exploration ofoil and gas in this area.展开更多
Natural wax gelators have different compositions of compounds(hydrocarbons,wax esters,free fatty alcohols,and free fatty acids),which results in oleogels with varying properties.To maintain a consistent composition,th...Natural wax gelators have different compositions of compounds(hydrocarbons,wax esters,free fatty alcohols,and free fatty acids),which results in oleogels with varying properties.To maintain a consistent composition,the individual components can be added to the original wax gelator.The content of hydrocarbons and wax esters greatly affects the structuring process of liquid edible oils with waxes.The aim of this study was to evaluate the possibility of modifying the properties of beeswax as a gelling agent by adding hydrocarbons or monoesters to obtain oleogels with specific properties.Various tests were conducted to assess the changes in the oleogel properties,such as color,microstructure,oil-binding capacity,thermal and textural properties.The research results have shown that the addition of the studied fractions has led to a significant change in all properties of oleogels.The initial size of oleogel crystals(7.29±1.80μm)changed after adding fractions,varying from 5.28μm to 12.58μm with hydrocarbons and from 9.95μm to 30.41μm with wax esters.The addition of 30%–50% hydrocarbons decreased the ability of the oleogels to bind oil and made them less firm compared to samples with 10%-20% hydrocarbons.Adding 10%-20% monoesters increased the firmness of the oleogels,but this indicator decreased when their content was increased to 50%.The obtained data indicate that hydrocarbons and wax esters can be used for targeted correction of the gelling properties of beeswax.展开更多
The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditi...The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditions,i.e.economic initial production,commercial cumulative oil production of single well,and large-scale recoverable reserves confirmed by the testing production,determine whether the continental shale oil can be put into large-scale commercial development.The quantity and quality of movable hydrocarbons are confirmed to be crucial to economic development of shale oil,and focuses in evaluation of shale oil enrichment area/interval.The evaluation indexes of movable hydrocarbon enrichment include:(1)the material basis for forming retained hydrocarbon,including TOC>2%(preferentially 3%-4%),and typeⅠ-Ⅱkerogens;(2)the mobility of retained hydrocarbon,which is closely related to the hydrocarbon composition and flow behaviors of light/heavy components,and can be evaluated from the perspectives of thermal maturity(Ro),gas-oil ratio(GOR),crude oil density,quality of hydrocarbon components,preservation conditions;and(3)the reservoir characteristics associated with the engineering reconstruction,including the main pore throat distribution zone,reservoir physical properties(including fractures),lamellation feature and diagenetic stage,etc.Accordingly,13 evaluation indexes in three categories and their reference values are established.The evaluation indicates that the light shale oil zones in the Gulong Sag of Songliao Basin have the most favorable enrichment conditions of movable hydrocarbons,followed by light oil and black oil zones,containing 20.8×10^(8) t light oil resources in reservoirs with R_(0)>1.2%,pressure coefficient greater than 1.4,effective porosity greater than 6%,crude oil density less than 0.82 g/cm^(3),and GOR>100 m/m^(3).The shale oil in the Gulong Sag can be explored and developed separately by the categories(resource sweet spot,engineering sweet spot,and tight oil sweet spot)depending on shale oil flowability.The Gulong Sag is the most promising area to achieve large-scale breakthrough and production of continental shale oil in China.展开更多
Located in the northern South China Sea,Chaoshan Depression is mainly a residual Mesozoic depression,with a construction of Meso-Cenozoic strata over 7000m thick and good hydrocarbon accumulation conditions.Amplitude ...Located in the northern South China Sea,Chaoshan Depression is mainly a residual Mesozoic depression,with a construction of Meso-Cenozoic strata over 7000m thick and good hydrocarbon accumulation conditions.Amplitude attribute of-90°phase component derived by phase decomposition is employed to detect Hydrocarbon in the zone of interest(ZOI)in Chaoshan Depression.And it is found that there are evident amplitude anomalies occurring around ZOI.Phase decomposition is applied to forward modeling results of the ZOI,and high amplitudes occur on the-90°phase component more or less when ZOI is charged with hydrocarbon,which shows that the amplitude abnormality in ZOI is probably caused by oil and gas accumulation.展开更多
基金Supported by the National Natural Science Foundation of China(U22B6004)Scientific Research and Technological Development Project of RIPED(2022yjcq03)Technology Research Project of PetroChina Changqing Oilfield Company(KJZX2023-01)。
文摘Based on the production curves,changes in hydrocarbon composition and quantities over time,and production systems from key trial production wells in lacustrine shale oil areas in China,fine fraction cutting experiments and molecular dynamics numerical simulations were conducted to investigate the effects of changes in shale oil composition on macroscopic fluidity.The concept of“component flow”for shale oil was proposed,and the formation mechanism and conditions of component flow were discussed.The research reveals findings in four aspects.First,a miscible state of light,medium and heavy hydrocarbons form within micropores/nanopores of underground shale according to similarity and intermiscibility principles,which make components with poor fluidity suspended as molecular aggregates in light and medium hydrocarbon solvents,such as heavy hydrocarbons,thereby decreasing shale oil viscosity and enhancing fluidity and outflows.Second,small-molecule aromatic hydrocarbons act as carriers for component flow,and the higher the content of gaseous and light hydrocarbons,the more conducive it is to inhibit the formation of larger aggregates of heavy components such as resin and asphalt,thus increasing their plastic deformation ability and bringing about better component flow efficiency.Third,higher formation temperatures reduce the viscosity of heavy hydrocarbon components,such as wax,thereby improving their fluidity.Fourth,preservation conditions,formation energy,and production system play important roles in controlling the content of light hydrocarbon components,outflow rate,and forming stable“component flow”,which are crucial factors for the optimal compatibility and maximum flow rate of multi-component hydrocarbons in shale oil.The component flow of underground shale oil is significant for improving single-well production and the cumulative ultimate recovery of shale oil.
文摘The Yunlong Depression, Chuxiong Basin, Yunnan Province, southwest China is one of the least explored areas in China. A RAMANOR-U1000 laser Raman probe was used to investigate the gas phase and liquid phase components in 28 inclusions from outcrop and core in the Yunlong Depression. An investigation into hydrocarbon prospect and accumulation characteristics in the study area was performed by studying inclusion components. Oil and gas are the richest in the Devonian according to the organic inclusion content, which supports the prior research findings with conventional methods. Multitime accumulation of oil and gas in the study area was also recognized through analysis of inclusion components. This study could provide a reference for the exploration ofoil and gas in this area.
基金supported by the Russian Science Foundation under grant(Project No.19-16-00113).
文摘Natural wax gelators have different compositions of compounds(hydrocarbons,wax esters,free fatty alcohols,and free fatty acids),which results in oleogels with varying properties.To maintain a consistent composition,the individual components can be added to the original wax gelator.The content of hydrocarbons and wax esters greatly affects the structuring process of liquid edible oils with waxes.The aim of this study was to evaluate the possibility of modifying the properties of beeswax as a gelling agent by adding hydrocarbons or monoesters to obtain oleogels with specific properties.Various tests were conducted to assess the changes in the oleogel properties,such as color,microstructure,oil-binding capacity,thermal and textural properties.The research results have shown that the addition of the studied fractions has led to a significant change in all properties of oleogels.The initial size of oleogel crystals(7.29±1.80μm)changed after adding fractions,varying from 5.28μm to 12.58μm with hydrocarbons and from 9.95μm to 30.41μm with wax esters.The addition of 30%–50% hydrocarbons decreased the ability of the oleogels to bind oil and made them less firm compared to samples with 10%-20% hydrocarbons.Adding 10%-20% monoesters increased the firmness of the oleogels,but this indicator decreased when their content was increased to 50%.The obtained data indicate that hydrocarbons and wax esters can be used for targeted correction of the gelling properties of beeswax.
基金Supported by the National Natural Science Foundation of China(U22B6004)the PetroChina Research Institute of Petroleum Exploration&Development Project(2022yjcq03).
文摘The geological characteristics and production practices of the major middle-and high-maturity shale oil exploration areas in China are analyzed.Combined with laboratory results,it is clear that three essential conditions,i.e.economic initial production,commercial cumulative oil production of single well,and large-scale recoverable reserves confirmed by the testing production,determine whether the continental shale oil can be put into large-scale commercial development.The quantity and quality of movable hydrocarbons are confirmed to be crucial to economic development of shale oil,and focuses in evaluation of shale oil enrichment area/interval.The evaluation indexes of movable hydrocarbon enrichment include:(1)the material basis for forming retained hydrocarbon,including TOC>2%(preferentially 3%-4%),and typeⅠ-Ⅱkerogens;(2)the mobility of retained hydrocarbon,which is closely related to the hydrocarbon composition and flow behaviors of light/heavy components,and can be evaluated from the perspectives of thermal maturity(Ro),gas-oil ratio(GOR),crude oil density,quality of hydrocarbon components,preservation conditions;and(3)the reservoir characteristics associated with the engineering reconstruction,including the main pore throat distribution zone,reservoir physical properties(including fractures),lamellation feature and diagenetic stage,etc.Accordingly,13 evaluation indexes in three categories and their reference values are established.The evaluation indicates that the light shale oil zones in the Gulong Sag of Songliao Basin have the most favorable enrichment conditions of movable hydrocarbons,followed by light oil and black oil zones,containing 20.8×10^(8) t light oil resources in reservoirs with R_(0)>1.2%,pressure coefficient greater than 1.4,effective porosity greater than 6%,crude oil density less than 0.82 g/cm^(3),and GOR>100 m/m^(3).The shale oil in the Gulong Sag can be explored and developed separately by the categories(resource sweet spot,engineering sweet spot,and tight oil sweet spot)depending on shale oil flowability.The Gulong Sag is the most promising area to achieve large-scale breakthrough and production of continental shale oil in China.
基金Supported by“Investigation of Mesozoic Oil and Gas Resources in Northeast of the South China Sea,Project No.DD20190212”from China Geological Survey.
文摘Located in the northern South China Sea,Chaoshan Depression is mainly a residual Mesozoic depression,with a construction of Meso-Cenozoic strata over 7000m thick and good hydrocarbon accumulation conditions.Amplitude attribute of-90°phase component derived by phase decomposition is employed to detect Hydrocarbon in the zone of interest(ZOI)in Chaoshan Depression.And it is found that there are evident amplitude anomalies occurring around ZOI.Phase decomposition is applied to forward modeling results of the ZOI,and high amplitudes occur on the-90°phase component more or less when ZOI is charged with hydrocarbon,which shows that the amplitude abnormality in ZOI is probably caused by oil and gas accumulation.