An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, ...An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, the condition of transversely homoclinic intersection was given. The generalized Melnikov function of the perturbed system was found by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters.展开更多
Bifurcation of limit cycles to a perturbed integrable non-Hamiltonian system is investigated using both qualitative analysis and numerical exploration.The investigation is based on detection functions which are partic...Bifurcation of limit cycles to a perturbed integrable non-Hamiltonian system is investigated using both qualitative analysis and numerical exploration.The investigation is based on detection functions which are particularly effective for the perturbed integrable non-Hamiltonian system.The study reveals that the system has 3 limit cycles.By the method of numerical simulation,the distributed orderliness of the 3 limitcycles is observed,and their nicety places are determined.The study also indicates that each of the 3 limit cycles passes the corresponding nicety point.展开更多
The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessar...The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.展开更多
In this paper, we aim to find eventually vanished solutions, a special class of bounded solutions which tend to 0 as t → ±∞), to a Lienard system with a time-dependent force. Since it is not a Hamiltonian syst...In this paper, we aim to find eventually vanished solutions, a special class of bounded solutions which tend to 0 as t → ±∞), to a Lienard system with a time-dependent force. Since it is not a Hamiltonian system with small perturbations, the well-known Melnikov method is not applicable to the determination of the existence of eventually vanished solutions. We use a sequence of periodically forced systems to approximate the considered system, and find their periodic solutions. Difficulties caused by the non- Hamiltonian form are overcome by applying the Schauder's fixed point theorem. We show that the sequence of the periodic solutions has an accumulation giving an eventually vanished solution of the forced Lienard system.展开更多
In principle, non-Hermitian quantum equations of motion can be formulated using as a starting point either the Heisenberg's or the Schroedinger's picture of quantum dynamics. Here it is shown in both cases how to ma...In principle, non-Hermitian quantum equations of motion can be formulated using as a starting point either the Heisenberg's or the Schroedinger's picture of quantum dynamics. Here it is shown in both cases how to map the algebra of commutators, defining the time evolution in terms of a non-Hermitian Hamiltonian, onto a non-Hamiltonian algebra with a Hermitian Hamiltonian. The logic behind such a derivation is reversible, so that any Hermitian Hamiltonian can be used in the formulation of non-Hermitian dynamics through a suitable algebra of generalized (non-Hamiltonian) commutators. These results provide a general structure (a template) for non-Hermitian equations of motion to be used in the computer simulation of open quantum systems dynamics.展开更多
文摘An analytical method for predicting chaos in perturbed planar non Hamiltonian integrable systems with slowly varying parameters was developed. Based on the analysis of the geometric structure of unperturbed systems, the condition of transversely homoclinic intersection was given. The generalized Melnikov function of the perturbed system was found by applying the theorem on the differentiability of ordinary differential equation solutions with respect to parameters.
基金supported by the Natural Science Foundation of China(Grant No.11161038)
文摘Bifurcation of limit cycles to a perturbed integrable non-Hamiltonian system is investigated using both qualitative analysis and numerical exploration.The investigation is based on detection functions which are particularly effective for the perturbed integrable non-Hamiltonian system.The study reveals that the system has 3 limit cycles.By the method of numerical simulation,the distributed orderliness of the 3 limitcycles is observed,and their nicety places are determined.The study also indicates that each of the 3 limit cycles passes the corresponding nicety point.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10932002,11172120,and 11202090)
文摘The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.
文摘In this paper, we aim to find eventually vanished solutions, a special class of bounded solutions which tend to 0 as t → ±∞), to a Lienard system with a time-dependent force. Since it is not a Hamiltonian system with small perturbations, the well-known Melnikov method is not applicable to the determination of the existence of eventually vanished solutions. We use a sequence of periodically forced systems to approximate the considered system, and find their periodic solutions. Difficulties caused by the non- Hamiltonian form are overcome by applying the Schauder's fixed point theorem. We show that the sequence of the periodic solutions has an accumulation giving an eventually vanished solution of the forced Lienard system.
基金Supported by the National Research Foundation of South Africa
文摘In principle, non-Hermitian quantum equations of motion can be formulated using as a starting point either the Heisenberg's or the Schroedinger's picture of quantum dynamics. Here it is shown in both cases how to map the algebra of commutators, defining the time evolution in terms of a non-Hermitian Hamiltonian, onto a non-Hamiltonian algebra with a Hermitian Hamiltonian. The logic behind such a derivation is reversible, so that any Hermitian Hamiltonian can be used in the formulation of non-Hermitian dynamics through a suitable algebra of generalized (non-Hamiltonian) commutators. These results provide a general structure (a template) for non-Hermitian equations of motion to be used in the computer simulation of open quantum systems dynamics.