We develop a master equation approach to describe the dynamics of distant resonators coupled through a one-dimensional waveguide. Our method takes into account the back-actions of the reservoirs, and enables us to cal...We develop a master equation approach to describe the dynamics of distant resonators coupled through a one-dimensional waveguide. Our method takes into account the back-actions of the reservoirs, and enables us to calculate the exact dynamics of the complete system at all times. We show that such system can cause nonexponential and long-lived photon decay due to the existence of a relaxation effect. The physical origin of non-Markovianity in our model system is the finite propagation speed resulting in time delays in communication between the nodes, and strong decay rate of the emitters into the waveguide. When the distance satisfies the standing wave condition, we find that when the time delay is increased, the dark modes formation is no longer perfect, and the average photon number of dark mode decreases in steady time limit.展开更多
Non-Markovian master equation of Harmonic oscillator and two-level systems are investigated using the hyper-operator approach. Exact solution of time evolution operator of Harmonic oscillator is obtained exactly. For ...Non-Markovian master equation of Harmonic oscillator and two-level systems are investigated using the hyper-operator approach. Exact solution of time evolution operator of Harmonic oscillator is obtained exactly. For two-level system the time evolution operator is exactly found and coefficients satisfy ordinary differential equation.展开更多
By introducing a fictitious mode to be a counterpart mode of the system mode under review we introduce the entangled state representation (η|, which can arrange master equations of density operators p(t) in quant...By introducing a fictitious mode to be a counterpart mode of the system mode under review we introduce the entangled state representation (η|, which can arrange master equations of density operators p(t) in quantum statistics as state-vector evolution equations due to the elegant properties of (η|. In this way many master equations (respectively describing damping oscillator, laser, phase sensitive, and phase diffusion processes with different initial density operators) can be concisely solved. Specially, for a damping process characteristic of the decay constant k we find that the matrix element of p(t) at time t in 〈η| representation is proportional to that of the initial po in the decayed entangled state (ηe^-kt| representation, accompanying with a Gaussian damping factor. Thus we have a new insight about the nature of the dissipative process. We also set up the so-called thermo-entangled state representation of density operators, ρ = f(d^2η/π)(η|ρ〉D(η), which is different from all the previous known representations.展开更多
By introducing thermo-entangled state representation Ⅰη〉, which can map master equations of density operator in quantum statistics as state-vector evolution equations, and using "dissipative interaction picture" ...By introducing thermo-entangled state representation Ⅰη〉, which can map master equations of density operator in quantum statistics as state-vector evolution equations, and using "dissipative interaction picture" we solve the master equation of Jaynes-Cummings model with cavity damping. In addition we derive the Wigner function for density operator when the atom is initially in the up state Ⅰ↑〉 and the cavity mode is in coherent state.展开更多
A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploratio...A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation.展开更多
We consider the population and decay of a qubit under the electromagnetic environment. Employing the time- convolutionless master equation, we investigate the Markovian and non-Markovian behaviour of the corresponding...We consider the population and decay of a qubit under the electromagnetic environment. Employing the time- convolutionless master equation, we investigate the Markovian and non-Markovian behaviour of the corresponding perturbation expansion. The Jaynes-Cummings model on resonance is investigated. Some figures clearly show the different evolution behaviours. The reasons are interpreted in the paper.展开更多
The evolution of a pure coherent state into a chaotic state is described very well by a master equation, as is validated via an examination of the coherent state's evolution during the diffusion process, fully utiliz...The evolution of a pure coherent state into a chaotic state is described very well by a master equation, as is validated via an examination of the coherent state's evolution during the diffusion process, fully utilizing the technique of integration within an ordered product (IWOP) of operators. The same equation also describes a limitation that maintains the coherence in a weak diffusion process, i.e., when the dissipation is very weak and the initial average photon number is large. This equation is dp/dt = -κ[a+ap -a+pa -apa+ + paa+]. The physical difference between this diffusion equation and the better-known amplitude damping master equation is pointed out.展开更多
The approach proposed in the study is based on the revision of the concept of time as a point on the real axis. It uses the concept of fuzzy time as the set of real numbers with a finite, but not equal to one, functio...The approach proposed in the study is based on the revision of the concept of time as a point on the real axis. It uses the concept of fuzzy time as the set of real numbers with a finite, but not equal to one, function of membership to the time set, i.e. the fuzzy time concept. It is postulated that in fuzzy time t the system dynamics follows from the standard variational principle of the least action and is ordinary Hamilton-Jacobi mechanics. This validates the passage to the limit from fuzzy mechanics to ordinary variational conservative mechanics. The Liouville equation is solved by the method of successive approximations in the time domain of a much larger characteristic scale of fuzziness, using interaction as a small parameter. A standard diagram technique is used. It can be shown that the defuzzification of the Liouville equation inevitably reduces the reversible part in the description to the irreversible evolutionary equation. The latter leads to the second law of thermodynamics. Generalization to the quantum case is possible, i.e. the so-called fuzzy Pauli equation can be drawn.展开更多
The quest of exact and nonperturbative methods on quantum dissipation with nonlinear coupling environments remains in general a great challenge.In this review we present a comprehensive account on two approaches to th...The quest of exact and nonperturbative methods on quantum dissipation with nonlinear coupling environments remains in general a great challenge.In this review we present a comprehensive account on two approaches to the entangled system-and-environment dynamics,in the presence of linear-plus-quadratic coupling bath.One is the dissipaton-equation-ofmotion(DEOM)theory that has been extended recently to treat the nonlinear coupling environment.Another is the extended Fokker-Planck quantum master equation(FP-QME)approach that will be constructed in this work,based on its DEOM correspondence.We closely compare these two approaches,with the focus on the underlying quasi-particle picture,physical implications,and implementations.展开更多
We restudy the master-equation approach applied to aggregation in a one-dimensional freeway, where the decay transition probabilities for the jump processes are reconstructed based on a car-following model. According ...We restudy the master-equation approach applied to aggregation in a one-dimensional freeway, where the decay transition probabilities for the jump processes are reconstructed based on a car-following model. According to the reconstructed transition probabilities, the clustering behaviours and the stochastic properties of the master equation in a one-lane freeway traffic model are investigated in detail The numerical results show that the size of the clusters initially below the critical size of the unstable cluster and initially above that of the unstable cluster all enter the same stable state, which also accords with the nucleation theory and is known from the result in earlier work. Moreover, we have obtained more reasonable parameters of the master equation based on some results of cellular automata models.展开更多
This paper solves the newly constructed nonlinear master equation dρ/dt = κ[2f (N) aρ (1/f (N - 1))a^+ -a^+aρ- ρa^+a], where f(N) is an operator-valued function of N = a^+a, for describing amplitude d...This paper solves the newly constructed nonlinear master equation dρ/dt = κ[2f (N) aρ (1/f (N - 1))a^+ -a^+aρ- ρa^+a], where f(N) is an operator-valued function of N = a^+a, for describing amplitude damping channel, and derives the infinite operator sum representation of quasi-Kraus operators for the density operator. It also shows that in this nonlinear process the initial pure number state density operator will evolve into the binomial field (a mixed state) when f (N) = 1√N + 1.展开更多
By virtue of the well-behaved properties of the bipartite entangled states representation, this paper analyse and solves some master equations for generalized phase diffusion models, which seems concise and effective....By virtue of the well-behaved properties of the bipartite entangled states representation, this paper analyse and solves some master equations for generalized phase diffusion models, which seems concise and effective. This method can also be applied to solve other master equations.展开更多
We study the long-time limit behavior of the solution to an atom's master equation. For the first time we derive that the probability of the atom being in the α-th (α = j + 1 -jz, j is the angular momentum quantu...We study the long-time limit behavior of the solution to an atom's master equation. For the first time we derive that the probability of the atom being in the α-th (α = j + 1 -jz, j is the angular momentum quantum number, jz is the z-component of angular momentum) state is {(1 - K/G)/[1 - (K/G)2j+1]}(K/G)^α-1 as t → +∞, which coincides with the fact that when K/G 〉 1, the larger the a is, the larger the probability of the atom being in the α-th state (the lower excited state) is. We also consider the case for some possible generaizations of the atomic master equation.展开更多
We study shot noise in tunneling current through a double quantum dot connected to two electric leads. We derive two master equations in the occupation-state basis and the eigenstate basis to describe the electron dyn...We study shot noise in tunneling current through a double quantum dot connected to two electric leads. We derive two master equations in the occupation-state basis and the eigenstate basis to describe the electron dynamics. The approach based on the occupation-state basis, despite being widely used in many previous studies, is valid only when the interdot coupling strength is much smaller than the energy difference between the two dots. In contrast, the calculations using the eigenstate basis are valid for an arbitrary interdot coupling. Using realistic model parameters, we demonstrate that the predicted currents and shot-noise properties from the two approaches are significantly different when the interdot coupling is not small. Furthermore, properties of the shot noise predicted using the eigenstate basis successfully reproduce qualitative features found in a recent experiment.展开更多
In this paper, we analytically solve the master equation for Jaynes-Cummings model in the dispersive regime including phase damping and the field is assumed to be initially in a superposition of coherent states. Using...In this paper, we analytically solve the master equation for Jaynes-Cummings model in the dispersive regime including phase damping and the field is assumed to be initially in a superposition of coherent states. Using an established entanglement measure based on the negativity of the eigenvalues of the partially transposed density matrix we find a very strong sensitivity of the maximally generated entanglement to the amount of phase damping. Qualitatively this behavior is also reflected in alternative entanglement measures, but the quantitative agreement between different measures depends on the chosen noise model The phase decoherence for this model results in monotonic increase in the total entropy while the atomic sub-entropy keeps its periodic behaviour without any effect.展开更多
By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quant...By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quantity of stochastic entropy due to the deviation from the most probable path is related to the responsibility of a system to the external macroscopic perturbations. This evolution rate of the partial excess stochastic entropy is equivalent to the partlal excess stochastic entropy production, as well as the stochastic excess entropy production rate based on the stochastic potential npproach. It appears also as an eqivalent quantity of the Gibbs excess entropy production for the Polsson distribution. The macroscopic stability of chemical reaction systems is dominnted by this new stochastic quantity when the local equilibrium thermodynamics is broken down .展开更多
In this paper we investigate an environmental effects to Josephson charge qubit (JCQ) when the environmentis taken as the Ohmic bath.At first,we derive the master equation from a JCQ-bath model.Then we investigate the...In this paper we investigate an environmental effects to Josephson charge qubit (JCQ) when the environmentis taken as the Ohmic bath.At first,we derive the master equation from a JCQ-bath model.Then we investigate thecoefficients of the equations that describe the shift in frequency,diffusive,decoherence,and so on.It is shown that ourresult on decoherence agrees with experimental one very well as the time is short enough.展开更多
We extend the approach of solving master equations for density matrices by projecting it onto the thermal entangled state representation(Hong-Yi Fan and Jun-Hua Chen,J.Phys.A35(2002)6873)to two-mode case.In this appro...We extend the approach of solving master equations for density matrices by projecting it onto the thermal entangled state representation(Hong-Yi Fan and Jun-Hua Chen,J.Phys.A35(2002)6873)to two-mode case.In this approach the two-photon master equations can be directly and conveniently converted into c-number partial differential equations.As an example,we solve the typical master equation for two-photon process in some limiting cases.展开更多
The generalized quantum master equation(GQME)provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment.Dynamics of op...The generalized quantum master equation(GQME)provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment.Dynamics of open quantum systems is important in excitation energy,charge,and quantum coherence transfer as well as reactive photochemistry.The system is usually chosen to be the interested degrees of freedom such as the electronicstates in light-harvesting molecules or tagged vibrational modes in a condensed-phase system.The environment is also called the bath,whose influence on the system has to be considered,and for instance can be described by the GQME formalisms using the projection operator technique.In this review,we provide a heuristic description of the development of two canonical forms of GQME,namely the time-convoluted Nakajima-Zwanzig form(NZ-GQME)and the time-convolutionless form(TCL-GQME).In the more popular NZ-GQME form,the memory kernel serves as the essential part that reflects the non-Markovian and non-perturbative effects,which gives formally exact dynamics of the reduced density matrix.We summarize several schemes to express the projection-based memory kernel of NZ-GQME in terms of projection-free time correlation function inputs that contain molecular information.In particular,the recently proposed modified GQME approach based on NZ-GQME partitions the Hamiltonian into a more general diagonal and off-diagonal parts.The projection-free inputs in the above-mentioned schemes expressed in terms of different system-dependent time correlation functions can be calculated via numerically exact or approximate dynamical methods.We hope this contribution would help lower the barrier of understanding the theoretical pillars for GQME-based quantum dynamics methods and also envisage that their combination with the quantum computing techniques will pave the way for solving complex problems related to quantum dynamics and quantum information that are currently intractable even with today’s state-of-the-art classical supercomputers.展开更多
The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈...The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈 2, and the probability density function ω(t) of a particle's waiting time t follows a power law form for large t: ω(t) ~t^-(1+α), 0 〈 α 〈 1. The results indicate that the expressions of the generalized master equation are determined by the correlation exponent 7 and the long-tailed index α of the waiting time. Moreover, the diffusion results obtained from the generalized master equation are in accordance with the previous known results and the numerical simulation results.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.11574041,11475037,and 11704026
文摘We develop a master equation approach to describe the dynamics of distant resonators coupled through a one-dimensional waveguide. Our method takes into account the back-actions of the reservoirs, and enables us to calculate the exact dynamics of the complete system at all times. We show that such system can cause nonexponential and long-lived photon decay due to the existence of a relaxation effect. The physical origin of non-Markovianity in our model system is the finite propagation speed resulting in time delays in communication between the nodes, and strong decay rate of the emitters into the waveguide. When the distance satisfies the standing wave condition, we find that when the time delay is increased, the dark modes formation is no longer perfect, and the average photon number of dark mode decreases in steady time limit.
文摘Non-Markovian master equation of Harmonic oscillator and two-level systems are investigated using the hyper-operator approach. Exact solution of time evolution operator of Harmonic oscillator is obtained exactly. For two-level system the time evolution operator is exactly found and coefficients satisfy ordinary differential equation.
基金supported by President Foundation of Chinese Academy of Sciences and National Natural Science Foundation of China under Grant Nos. 10775097 and 10874174
文摘By introducing a fictitious mode to be a counterpart mode of the system mode under review we introduce the entangled state representation (η|, which can arrange master equations of density operators p(t) in quantum statistics as state-vector evolution equations due to the elegant properties of (η|. In this way many master equations (respectively describing damping oscillator, laser, phase sensitive, and phase diffusion processes with different initial density operators) can be concisely solved. Specially, for a damping process characteristic of the decay constant k we find that the matrix element of p(t) at time t in 〈η| representation is proportional to that of the initial po in the decayed entangled state (ηe^-kt| representation, accompanying with a Gaussian damping factor. Thus we have a new insight about the nature of the dissipative process. We also set up the so-called thermo-entangled state representation of density operators, ρ = f(d^2η/π)(η|ρ〉D(η), which is different from all the previous known representations.
文摘By introducing thermo-entangled state representation Ⅰη〉, which can map master equations of density operator in quantum statistics as state-vector evolution equations, and using "dissipative interaction picture" we solve the master equation of Jaynes-Cummings model with cavity damping. In addition we derive the Wigner function for density operator when the atom is initially in the up state Ⅰ↑〉 and the cavity mode is in coherent state.
基金Project supported by the National Natural Science Foun dation of China(Grant No.11274398).
文摘A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074072)
文摘We consider the population and decay of a qubit under the electromagnetic environment. Employing the time- convolutionless master equation, we investigate the Markovian and non-Markovian behaviour of the corresponding perturbation expansion. The Jaynes-Cummings model on resonance is investigated. Some figures clearly show the different evolution behaviours. The reasons are interpreted in the paper.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB922103)the National Natural Science Foundation of China(GrantNos.11175113 and 11274104)the Natural Science Foundation of Hubei Province of China(Grant No.2011CDA021)
文摘The evolution of a pure coherent state into a chaotic state is described very well by a master equation, as is validated via an examination of the coherent state's evolution during the diffusion process, fully utilizing the technique of integration within an ordered product (IWOP) of operators. The same equation also describes a limitation that maintains the coherence in a weak diffusion process, i.e., when the dissipation is very weak and the initial average photon number is large. This equation is dp/dt = -κ[a+ap -a+pa -apa+ + paa+]. The physical difference between this diffusion equation and the better-known amplitude damping master equation is pointed out.
文摘The approach proposed in the study is based on the revision of the concept of time as a point on the real axis. It uses the concept of fuzzy time as the set of real numbers with a finite, but not equal to one, function of membership to the time set, i.e. the fuzzy time concept. It is postulated that in fuzzy time t the system dynamics follows from the standard variational principle of the least action and is ordinary Hamilton-Jacobi mechanics. This validates the passage to the limit from fuzzy mechanics to ordinary variational conservative mechanics. The Liouville equation is solved by the method of successive approximations in the time domain of a much larger characteristic scale of fuzziness, using interaction as a small parameter. A standard diagram technique is used. It can be shown that the defuzzification of the Liouville equation inevitably reduces the reversible part in the description to the irreversible evolutionary equation. The latter leads to the second law of thermodynamics. Generalization to the quantum case is possible, i.e. the so-called fuzzy Pauli equation can be drawn.
基金This work was supported from the Ministry of Science and Technology(No.2016YFA0400900),the National Natural Science Foundation of China(No.21373191,No.21633006,and No.21303090),and the Fundamental Research Funds for the Central Universities(No.2030020028).
文摘The quest of exact and nonperturbative methods on quantum dissipation with nonlinear coupling environments remains in general a great challenge.In this review we present a comprehensive account on two approaches to the entangled system-and-environment dynamics,in the presence of linear-plus-quadratic coupling bath.One is the dissipaton-equation-ofmotion(DEOM)theory that has been extended recently to treat the nonlinear coupling environment.Another is the extended Fokker-Planck quantum master equation(FP-QME)approach that will be constructed in this work,based on its DEOM correspondence.We closely compare these two approaches,with the focus on the underlying quasi-particle picture,physical implications,and implementations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10435080 and 60674011)exoteric project Foundation of State Key Laboratory of Rail Traffic Control and Safety (Beijing Jiaotong University)
文摘We restudy the master-equation approach applied to aggregation in a one-dimensional freeway, where the decay transition probabilities for the jump processes are reconstructed based on a car-following model. According to the reconstructed transition probabilities, the clustering behaviours and the stochastic properties of the master equation in a one-lane freeway traffic model are investigated in detail The numerical results show that the size of the clusters initially below the critical size of the unstable cluster and initially above that of the unstable cluster all enter the same stable state, which also accords with the nucleation theory and is known from the result in earlier work. Moreover, we have obtained more reasonable parameters of the master equation based on some results of cellular automata models.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10775097 and 10874174)the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ10097)
文摘This paper solves the newly constructed nonlinear master equation dρ/dt = κ[2f (N) aρ (1/f (N - 1))a^+ -a^+aρ- ρa^+a], where f(N) is an operator-valued function of N = a^+a, for describing amplitude damping channel, and derives the infinite operator sum representation of quasi-Kraus operators for the density operator. It also shows that in this nonlinear process the initial pure number state density operator will evolve into the binomial field (a mixed state) when f (N) = 1√N + 1.
基金supported by the Natural Science Foundation of Heze University of Shandong Province,China (Grant No XY07WL01)the University Experimental Technology Foundation of Shandong Province,China (Grant No S04W138)
文摘By virtue of the well-behaved properties of the bipartite entangled states representation, this paper analyse and solves some master equations for generalized phase diffusion models, which seems concise and effective. This method can also be applied to solve other master equations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11105133)
文摘We study the long-time limit behavior of the solution to an atom's master equation. For the first time we derive that the probability of the atom being in the α-th (α = j + 1 -jz, j is the angular momentum quantum number, jz is the z-component of angular momentum) state is {(1 - K/G)/[1 - (K/G)2j+1]}(K/G)^α-1 as t → +∞, which coincides with the fact that when K/G 〉 1, the larger the a is, the larger the probability of the atom being in the α-th state (the lower excited state) is. We also consider the case for some possible generaizations of the atomic master equation.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2009CB929300 and 2006CB921205)the National Natural Science Foundation of China (Grant Nos. 10534060 and 0625416)the Research Grant Council of Hong Kong SAR project (Grant No. 500908)
文摘We study shot noise in tunneling current through a double quantum dot connected to two electric leads. We derive two master equations in the occupation-state basis and the eigenstate basis to describe the electron dynamics. The approach based on the occupation-state basis, despite being widely used in many previous studies, is valid only when the interdot coupling strength is much smaller than the energy difference between the two dots. In contrast, the calculations using the eigenstate basis are valid for an arbitrary interdot coupling. Using realistic model parameters, we demonstrate that the predicted currents and shot-noise properties from the two approaches are significantly different when the interdot coupling is not small. Furthermore, properties of the shot noise predicted using the eigenstate basis successfully reproduce qualitative features found in a recent experiment.
文摘In this paper, we analytically solve the master equation for Jaynes-Cummings model in the dispersive regime including phase damping and the field is assumed to be initially in a superposition of coherent states. Using an established entanglement measure based on the negativity of the eigenvalues of the partially transposed density matrix we find a very strong sensitivity of the maximally generated entanglement to the amount of phase damping. Qualitatively this behavior is also reflected in alternative entanglement measures, but the quantitative agreement between different measures depends on the chosen noise model The phase decoherence for this model results in monotonic increase in the total entropy while the atomic sub-entropy keeps its periodic behaviour without any effect.
基金This research work is supported by the National Natural Science Foundation of China.
文摘By means of both the separation of the perturbation in accordance with characteristic parnmeters and the Kramers Moyal-expansion of the master equation, it is shown that the time derivative of the partial excess quantity of stochastic entropy due to the deviation from the most probable path is related to the responsibility of a system to the external macroscopic perturbations. This evolution rate of the partial excess stochastic entropy is equivalent to the partlal excess stochastic entropy production, as well as the stochastic excess entropy production rate based on the stochastic potential npproach. It appears also as an eqivalent quantity of the Gibbs excess entropy production for the Polsson distribution. The macroscopic stability of chemical reaction systems is dominnted by this new stochastic quantity when the local equilibrium thermodynamics is broken down .
基金National Natural Science Foundation of China under Grant No.10675066K.C.Wong Magna Foundation in Ningbo University
文摘In this paper we investigate an environmental effects to Josephson charge qubit (JCQ) when the environmentis taken as the Ohmic bath.At first,we derive the master equation from a JCQ-bath model.Then we investigate thecoefficients of the equations that describe the shift in frequency,diffusive,decoherence,and so on.It is shown that ourresult on decoherence agrees with experimental one very well as the time is short enough.
基金The project supported by National Natural Science Foundation of China under Grant No.10175057the President Foundation of the Chinese Academy of Sciences
文摘We extend the approach of solving master equations for density matrices by projecting it onto the thermal entangled state representation(Hong-Yi Fan and Jun-Hua Chen,J.Phys.A35(2002)6873)to two-mode case.In this approach the two-photon master equations can be directly and conveniently converted into c-number partial differential equations.As an example,we solve the typical master equation for two-photon process in some limiting cases.
基金support from NYU Shanghai,the National Natural Science Foundation of China(No.21903054)the Hefei National Laboratory for Physical Sciences at the Microscale(No.KF2020008)+1 种基金the Shanghai Sailing Program(No.19YF1435600)the Program for Eastern Young Scholar at Shanghai Institutions of Higher Learning。
文摘The generalized quantum master equation(GQME)provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment.Dynamics of open quantum systems is important in excitation energy,charge,and quantum coherence transfer as well as reactive photochemistry.The system is usually chosen to be the interested degrees of freedom such as the electronicstates in light-harvesting molecules or tagged vibrational modes in a condensed-phase system.The environment is also called the bath,whose influence on the system has to be considered,and for instance can be described by the GQME formalisms using the projection operator technique.In this review,we provide a heuristic description of the development of two canonical forms of GQME,namely the time-convoluted Nakajima-Zwanzig form(NZ-GQME)and the time-convolutionless form(TCL-GQME).In the more popular NZ-GQME form,the memory kernel serves as the essential part that reflects the non-Markovian and non-perturbative effects,which gives formally exact dynamics of the reduced density matrix.We summarize several schemes to express the projection-based memory kernel of NZ-GQME in terms of projection-free time correlation function inputs that contain molecular information.In particular,the recently proposed modified GQME approach based on NZ-GQME partitions the Hamiltonian into a more general diagonal and off-diagonal parts.The projection-free inputs in the above-mentioned schemes expressed in terms of different system-dependent time correlation functions can be calculated via numerically exact or approximate dynamical methods.We hope this contribution would help lower the barrier of understanding the theoretical pillars for GQME-based quantum dynamics methods and also envisage that their combination with the quantum computing techniques will pave the way for solving complex problems related to quantum dynamics and quantum information that are currently intractable even with today’s state-of-the-art classical supercomputers.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11605003 and 11547231
文摘The generalized master equation for the space-time coupled continuous time random walk is derived analytically, in which the space-time coupling is considered through the correlated function 9(t) ~ t^γ, 0 ≤ γ 〈 2, and the probability density function ω(t) of a particle's waiting time t follows a power law form for large t: ω(t) ~t^-(1+α), 0 〈 α 〈 1. The results indicate that the expressions of the generalized master equation are determined by the correlation exponent 7 and the long-tailed index α of the waiting time. Moreover, the diffusion results obtained from the generalized master equation are in accordance with the previous known results and the numerical simulation results.