Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices ...Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices p, q are joined by an edge if and only if pq ∈ πe(G). In this case, we write p - q. For p ∈π(G), put deg(p) := |{q ∈ π(G)|p - q}|, which is called the degree of p. We also define D(G) := (deg(p1), deg(p2),..., deg(pk)), where pl 〈 p2 〈 -……〈 pk, which is called the degree pattern of G. We say a group G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups with the same order and degree pattern as G. Specially, a l-fold OD-characterizable group is simply called an OD-characterizable group. Let L := U6(2). In this article, we classify all finite groups with the same order and degree pattern as an almost simple groups related to L. In fact, we prove that L and L.2 are OD-characterizable, L.3 is 3-fold OD-characterizable, and L.S3 is 5-fold OD-characterizable.展开更多
In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=...In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.展开更多
In this paper, We show that the simple K\-3-groups can be characterized by the orders of their maximal abelian subgroups. That is, we have Theorem Let G be a finite group and M a simple K \-3-group. Then ...In this paper, We show that the simple K\-3-groups can be characterized by the orders of their maximal abelian subgroups. That is, we have Theorem Let G be a finite group and M a simple K \-3-group. Then G is isomorphic to M if and only if the set of the orders of the maximal abelian subgoups of G is the same as that of M .展开更多
This work deals with the power exponent 1rand 2r respectively of the maximal and second-maximal prime factors of the order of simple K4-group, and the classification for simple 4{5,7}K--group G (i.e. G can not be divi...This work deals with the power exponent 1rand 2r respectively of the maximal and second-maximal prime factors of the order of simple K4-group, and the classification for simple 4{5,7}K--group G (i.e. G can not be divided by 5 nor by 7 or ()Gp= 4 ), simple 5 -4K-group G (i.e. G can not divided by 5 and ()Gp=4) and simple 7-4K-group G (i.e. G can not divided by 7 and ()Gp= 4). It is derived that 1r =1, 2 and 4, and 2r is not greater than 4. All the simple 4K-groups with order 235,237abcdabcdpp and 2357abcd are obtained.展开更多
Let G be a finite group and Irr(G)the set of all irreducible complex characters of G.Let cd(G)be the set of all irreducible complex character degrees of G and denote byρ(G)the set of all primes which divide some char...Let G be a finite group and Irr(G)the set of all irreducible complex characters of G.Let cd(G)be the set of all irreducible complex character degrees of G and denote byρ(G)the set of all primes which divide some character degree of G.The character-prime graphΓ(G)associated to G is a simple undirected graph whose vertex set isρ(G)and there is an edge between two distinct primes p and q if and only if the product p q divides some character degree of G.We show that the finite nonabelian simple groups A_(7),J_(1),J_(3),J_(4),L_(3)(3)and U_(3)(4)are uniquely determined by their degree-patterns and orders.展开更多
Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to...Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to be an algebraically closed field of characteristic zero, K a finite group, F K the group algebra of K over F , then all local automorphisms of F K are also characterized.展开更多
In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In ...In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In this paper, we calculate the contributions of this new particle to the processes e^+e^-→l^+l^-, bb^-, and cc^- and study the possibility of detecting this new particle via these processes in the future high-energy linear e^+e^- collider(LC) experiments with √s= 500 GeV and £int= 340 fb^-1. We find that the new gauge boson Z' is most sensitive to the process e^+e^-→b^+b^-. As long as Mz,≤2 TeV , the absolute values of the relative correction parameter are larger than 5%. We calculate the forward-backward asymmetries and left-right asymmetries for the process e^+e^-→c^+c^-, with both the universal and anomaly-free fermion embeddings. Bounds on Z' masses are also estimated within 95% confidence level.展开更多
In this paper, we obtain some classification theorems of finite simple groups with two subgroups of coprime indices which are both supersolvable or one supersolvable and the other nilpotent. Using these classification...In this paper, we obtain some classification theorems of finite simple groups with two subgroups of coprime indices which are both supersolvable or one supersolvable and the other nilpotent. Using these classification theorems, we prove some sufficient conditions of finite solvable groups. Finally, we provide a supplement of Doerks Theorem.展开更多
The spectrum of a finite group is the set of element orders of this group.The main goal of this paper is to survey results concerning recognition of finite simple groups by spectrum,in particular,to list all finite si...The spectrum of a finite group is the set of element orders of this group.The main goal of this paper is to survey results concerning recognition of finite simple groups by spectrum,in particular,to list all finite simple groups for which the recognition problem is solved.展开更多
In this paper, we showed how groups are embedded into wreath products, we gave a simpler proof of the theorem by Audu (1991) (see <a href="#ref1">[1]</a>), also proved that a group can be embedde...In this paper, we showed how groups are embedded into wreath products, we gave a simpler proof of the theorem by Audu (1991) (see <a href="#ref1">[1]</a>), also proved that a group can be embedded into the wreath product of a factor group by a normal subgroup and also proved that a factor group can be embedded inside a wreath product and the wreath product of a factor group by a factor group can be embedded into a group. We further showed that when the abstract group in the Universal Embedding Theorem is a <em>p</em>-group, cyclic and simple, the embedding becomes an isomorphism. Examples were given to justify the results.展开更多
For a characterχof a finite group G,the number cod(χ) := ∣G:ker(χ)∣/χ(1)is called the codegree ofχ.In this paper,we give a solvability criterion for a finite group G depending on the minimum of the ratioχ(1)^(...For a characterχof a finite group G,the number cod(χ) := ∣G:ker(χ)∣/χ(1)is called the codegree ofχ.In this paper,we give a solvability criterion for a finite group G depending on the minimum of the ratioχ(1)^(2)/cod(χ),whenχvaries among the irreducible characters of G.展开更多
The structure of inner p closed groups for p=2,3,5 are known (see ). In this paper, we shall dermine the structure of the inner 7 closed simple groups.
After the classification of flag-transitive linear spaces,attention has now turned to line-transitive linear spaces.Such spaces are first divided into the point-imprimitive and the point-primitive,the first class is u...After the classification of flag-transitive linear spaces,attention has now turned to line-transitive linear spaces.Such spaces are first divided into the point-imprimitive and the point-primitive,the first class is usually easy by the theorem of Delandtsheer and Doyen.The primitive ones are now subdivided,according to the O'Nan-Scotte theorem and some further work by Camina,into the socles which are an elementary abelian or non-abelian simple.In this paper,we consider the latter.Namely,T ≤ G ≤ Aut(T) and G acts line-transitively on finite linear spaces,where T is a non-abelian simple.We obtain some useful lemmas.In particular,we prove that when T is isomorphic to 3D4(q),then T is line-transitive,where q is a power of the prime p.展开更多
Let G be a finite group with order |G|=p1^α1p2^α2……pk^αk, where p1 〈 p2 〈……〈 Pk are prime numbers. One of the well-known simple graphs associated with G is the prime graph (or Gruenberg- Kegel graph) den...Let G be a finite group with order |G|=p1^α1p2^α2……pk^αk, where p1 〈 p2 〈……〈 Pk are prime numbers. One of the well-known simple graphs associated with G is the prime graph (or Gruenberg- Kegel graph) denoted .by г(G) (or GK(G)). This graph is constructed as follows: The vertex set of it is π(G) = {p1,p2,…,pk} and two vertices pi, pj with i≠j are adjacent by an edge (and we write pi - pj) if and only if G contains an element of order pipj. The degree deg(pi) of a vertex pj ∈π(G) is the number of edges incident on pi. We define D(G) := (deg(p1), deg(p2),..., deg(pk)), which is called the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non- isomorphic groups H such that |H| = |G| and D(H) = D(G). Moreover, a 1-fold OD-characterizable group is simply called OD-characterizable. Let L := U3(5) be the projective special unitary group. In this paper, we classify groups with the same order and degree pattern as an almost simple group related to L. In fact, we obtain that L and L.2 are OD-characterizable; L.3 is 3-fold OD-characterizable; L.S3 is 6-fold OD-characterizable.展开更多
基金supported by Natural Science Foundation Project of CQ CSTC (2010BB9206)NNSF of China (10871032)+1 种基金Fundamental Research Funds for the Central Universities (Chongqing University, CDJZR10100009)National Science Foundation for Distinguished Young Scholars of China (11001226)
文摘Let G be a finite group and π(G) = {pl,p2,…… ,pk} be the set of the primes dividing the order of G. We define its prime graph F(G) as follows. The vertex set of this graph is 7r(G), and two distinct vertices p, q are joined by an edge if and only if pq ∈ πe(G). In this case, we write p - q. For p ∈π(G), put deg(p) := |{q ∈ π(G)|p - q}|, which is called the degree of p. We also define D(G) := (deg(p1), deg(p2),..., deg(pk)), where pl 〈 p2 〈 -……〈 pk, which is called the degree pattern of G. We say a group G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups with the same order and degree pattern as G. Specially, a l-fold OD-characterizable group is simply called an OD-characterizable group. Let L := U6(2). In this article, we classify all finite groups with the same order and degree pattern as an almost simple groups related to L. In fact, we prove that L and L.2 are OD-characterizable, L.3 is 3-fold OD-characterizable, and L.S3 is 5-fold OD-characterizable.
文摘In this paper, we prove that if p, q are distinct primes, (p,q)≡(1,7) (mod 12) and Legendres symbol pq=1 , then the equation 1+p a=2 bq c+2 dp eq f has only solutions of the form (a,b,c,d,e,f)=(t,0,0,0,t,0), where t is a non negative integer. We also give all solutions of a kind of generalized Ramanujan Nagell equations by using the theories of imaginary quadratic field and Pells equation.
文摘In this paper, We show that the simple K\-3-groups can be characterized by the orders of their maximal abelian subgroups. That is, we have Theorem Let G be a finite group and M a simple K \-3-group. Then G is isomorphic to M if and only if the set of the orders of the maximal abelian subgoups of G is the same as that of M .
基金Supported partially by Scientific Research and Development Project of Higher Colleges of Shanxi Province(200713035)Supported by the Key Laboratory of Mathematics Mechanization(KLMM07013)
文摘In this note, we use an elementary method to prove the fact: if G is a nonabelian simple group, then 2 ∈ cdp(G), where p is a prime and p 〉 2.
文摘This work deals with the power exponent 1rand 2r respectively of the maximal and second-maximal prime factors of the order of simple K4-group, and the classification for simple 4{5,7}K--group G (i.e. G can not be divided by 5 nor by 7 or ()Gp= 4 ), simple 5 -4K-group G (i.e. G can not divided by 5 and ()Gp=4) and simple 7-4K-group G (i.e. G can not divided by 7 and ()Gp= 4). It is derived that 1r =1, 2 and 4, and 2r is not greater than 4. All the simple 4K-groups with order 235,237abcdabcdpp and 2357abcd are obtained.
基金supported by NSFC(12071484)Hunan Provincial Natural Science Foundation(2020JJ4675)Foundation of Guangdong University of Science and Technology.
文摘Let G be a finite group and Irr(G)the set of all irreducible complex characters of G.Let cd(G)be the set of all irreducible complex character degrees of G and denote byρ(G)the set of all primes which divide some character degree of G.The character-prime graphΓ(G)associated to G is a simple undirected graph whose vertex set isρ(G)and there is an edge between two distinct primes p and q if and only if the product p q divides some character degree of G.We show that the finite nonabelian simple groups A_(7),J_(1),J_(3),J_(4),L_(3)(3)and U_(3)(4)are uniquely determined by their degree-patterns and orders.
基金Supported by the Fundamental Research Funds for the Central Universities
文摘Let F be a field of characteristic not 2, and let A be a finite-dimensional semisimple F -algebra. All local automorphisms of A are characterized when all the degrees of A are larger than 1. If F is further assumed to be an algebraically closed field of characteristic zero, K a finite group, F K the group algebra of K over F , then all local automorphisms of F K are also characterized.
基金supported in part by a grant from Henan Institute of Science and Technology under Grant No.06040
文摘In the SU(3) simple group model, the new neutral gauge boson Z' couples to pairs of SM fermions with couplings fixed in terms of the SM gauge couplings and depending only on the choice of the fermion embedding. In this paper, we calculate the contributions of this new particle to the processes e^+e^-→l^+l^-, bb^-, and cc^- and study the possibility of detecting this new particle via these processes in the future high-energy linear e^+e^- collider(LC) experiments with √s= 500 GeV and £int= 340 fb^-1. We find that the new gauge boson Z' is most sensitive to the process e^+e^-→b^+b^-. As long as Mz,≤2 TeV , the absolute values of the relative correction parameter are larger than 5%. We calculate the forward-backward asymmetries and left-right asymmetries for the process e^+e^-→c^+c^-, with both the universal and anomaly-free fermion embeddings. Bounds on Z' masses are also estimated within 95% confidence level.
文摘In this paper, we obtain some classification theorems of finite simple groups with two subgroups of coprime indices which are both supersolvable or one supersolvable and the other nilpotent. Using these classification theorems, we prove some sufficient conditions of finite solvable groups. Finally, we provide a supplement of Doerks Theorem.
基金supported by Foreign Experts program in Jiangsu Province(No.JSB2018014)supported by the National Natural Science Foundation of China(No.12171126)+1 种基金supported by the RFBR(No.20-51-00007)supported by the National Natural Science Foundation of China(11171364,11671063).
文摘The spectrum of a finite group is the set of element orders of this group.The main goal of this paper is to survey results concerning recognition of finite simple groups by spectrum,in particular,to list all finite simple groups for which the recognition problem is solved.
文摘In this paper, we showed how groups are embedded into wreath products, we gave a simpler proof of the theorem by Audu (1991) (see <a href="#ref1">[1]</a>), also proved that a group can be embedded into the wreath product of a factor group by a normal subgroup and also proved that a factor group can be embedded inside a wreath product and the wreath product of a factor group by a factor group can be embedded into a group. We further showed that when the abstract group in the Universal Embedding Theorem is a <em>p</em>-group, cyclic and simple, the embedding becomes an isomorphism. Examples were given to justify the results.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11971391,12071376,12301018,12171058,12326356)the Natural Science Foundation of Jiangsu Province(Grant No.BK20231356)+1 种基金the Natural Science Foundation for the Universities in Jiangsu Province(Grant No.23KJB110002)The first and second authors are supported by the Chinese Scholarship Council。
文摘For a characterχof a finite group G,the number cod(χ) := ∣G:ker(χ)∣/χ(1)is called the codegree ofχ.In this paper,we give a solvability criterion for a finite group G depending on the minimum of the ratioχ(1)^(2)/cod(χ),whenχvaries among the irreducible characters of G.
文摘The structure of inner p closed groups for p=2,3,5 are known (see ). In this paper, we shall dermine the structure of the inner 7 closed simple groups.
基金This work was supported by the National Natural Science Foundation of China (Grant No.10471152).
文摘After the classification of flag-transitive linear spaces,attention has now turned to line-transitive linear spaces.Such spaces are first divided into the point-imprimitive and the point-primitive,the first class is usually easy by the theorem of Delandtsheer and Doyen.The primitive ones are now subdivided,according to the O'Nan-Scotte theorem and some further work by Camina,into the socles which are an elementary abelian or non-abelian simple.In this paper,we consider the latter.Namely,T ≤ G ≤ Aut(T) and G acts line-transitively on finite linear spaces,where T is a non-abelian simple.We obtain some useful lemmas.In particular,we prove that when T is isomorphic to 3D4(q),then T is line-transitive,where q is a power of the prime p.
基金Supported by National Natural Science Foundation of China (Grant No. 10871032)the SRFDP of China (Grant No. 20660285002)a subproject of National Natural Science Foundation of China (Grant No. 50674008) (Chongqing University, Nos. 104207520080834, 104207520080968)
文摘Let G be a finite group with order |G|=p1^α1p2^α2……pk^αk, where p1 〈 p2 〈……〈 Pk are prime numbers. One of the well-known simple graphs associated with G is the prime graph (or Gruenberg- Kegel graph) denoted .by г(G) (or GK(G)). This graph is constructed as follows: The vertex set of it is π(G) = {p1,p2,…,pk} and two vertices pi, pj with i≠j are adjacent by an edge (and we write pi - pj) if and only if G contains an element of order pipj. The degree deg(pi) of a vertex pj ∈π(G) is the number of edges incident on pi. We define D(G) := (deg(p1), deg(p2),..., deg(pk)), which is called the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non- isomorphic groups H such that |H| = |G| and D(H) = D(G). Moreover, a 1-fold OD-characterizable group is simply called OD-characterizable. Let L := U3(5) be the projective special unitary group. In this paper, we classify groups with the same order and degree pattern as an almost simple group related to L. In fact, we obtain that L and L.2 are OD-characterizable; L.3 is 3-fold OD-characterizable; L.S3 is 6-fold OD-characterizable.