期刊文献+
共找到19,312篇文章
< 1 2 250 >
每页显示 20 50 100
Tetrathiafulvalene esters with high redox potentials and improved solubilities for non-aqueous redox flow battery applications
1
作者 Weikang Hu Jiaqi Xu +3 位作者 Nanjie Chen Zongcai Deng Yuekun Lai Dongyang Chen 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期899-908,共10页
The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution gr... The exploitation of high performance redox-active substances is critically important for the development of non-aqueous redoxflow batteries.Herein,three tetrathiofulvalene(TTF)derivatives with different substitution groups,namely TTF diethyl ester(TTFDE),TTF tetramethyl ester(TTFTM),and TTF tetraethyl ester(TTFTE),are prepared and their energy storage properties are evaluated.It has been found that the redox potential and solubility of these TTF derivatives in conventional carbonate electrolytes increases with the number of ester groups.The battery with a catholyte of 0.2 mol L^(-1) of TTFTE delivers a specific capacity of more than 10 Ah L^(-1) at the current density of 0.5 C with two discharge voltage platforms locating at as high as 3.85 and 3.60 V vs.Li/Liþ.Its capacity retention can be improved from 2.34 Ah L^(-1) to 3.60 Ah L^(-1) after 100 cycles by the use of an anion exchange membrane to block the crossover of TTF species.The excellent cycling stability of the TIF esters is supported by their well-delocalized electrons,as revealed by the density function theory calculations.Therefore,the introduction of more and larger electron-withdrawing groups is a promising strategy to simultaneously increase the redox-potential and solubility of redox-active ma-terials for non-aqueous redoxflow batteries. 展开更多
关键词 non-aqueous redox flow batteries Tetrathiofulvarene Redox potential SOLUBILITY Substituent effect
下载PDF
Design of the reactive dyes containing large planar multi-conjugated systems and their application in non-aqueous dyeing 被引量:1
2
作者 Aiqin Gao Xiang Luo +3 位作者 Huanghuang Chen Aiqin Hou Hongjuan Zhang Kongliang Xie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期264-271,共8页
The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Des... The development of pollution-free dyeing technology, including anhydrous dyeing and non-aqueous dyeing technologies, has always been an important way and research hot in energy conservation and emission reduction. Designing new structural dye molecules is the key to water-saving dyeing processes.Herein, three reactive dyes were designed and synthesized, which contained large planar multiconjugated systems and multi-reactive groups. The designed reactive dyes are expected to have high affinity and high fixations in non-aqueous or small bath dyeing processes. The reactive dyes were applied in the decamethylcyclopentasiloxane(DMCS) reverse micelle dyeing for cotton fabric. High exhaustion rate of 99.35%, 98.10% and 98.80%, and fixation rate of 95.15%, 96.34% and 94.40% for three dyes, R1,R2 and R3, could be respectively obtained. The dyes can be fully utilized and had excellent dyeing performance, fastness and levelling properties under the revere micelle dyeing. The cotton fabric is like an oil-water separator in the dyeing process, where the dye micelles rapidly absorb and permeate into the cotton fibers. DMCS circulates around the fabric to transfer mass and energy. After dyeing, the solvent can be separated quickly and reused. The new reactive dyes containing large planar and multi-conjugated systems have potential application in green and sustainable dyeing technology with less wastewater and higher utilization. 展开更多
关键词 Reactive dyes non-aqueous dyeing High fixation rate Waste water Synthesis RECOVERY
下载PDF
Analyses of non-aqueous reactive polymer insulation layer in high geothermal tunnel
3
作者 Yu Chen Shiyu Wang +2 位作者 Chengchao Guo Cungang Lin Chenyang Zhao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期169-178,共10页
The scenario of geothermal tunnel is commonly observed around the world,and increases with the new constructions in the long and deep tunnels,for example in China.Tunnel insulation is generally divided into active and... The scenario of geothermal tunnel is commonly observed around the world,and increases with the new constructions in the long and deep tunnels,for example in China.Tunnel insulation is generally divided into active and passive insulation.In passive insulation,it is an effective way to set low thermal con-ductivity materials as the thermal insulation layer as the choice of insulation material mainly depends on the thermal conductivity.Polymer is a kind of material with good geothermal performance,but there are relatively few studies.In this context,the transient plane source(TPS)method was used to measure the thermal conductivity of the developed polymer.Then,the temperature field of the high geothermal tunnel insulated by the non-aqueous reactive polymer layer was simulated.With the parametric analysis results,the suggestions for the tunnel layers were proposed accordingly.It revealed that the thermal conductivity of polymer first increases and then decreases with temperature.There are two rising sec-tions(?40e10?C and 20e90?C),one flat section(10e20?C)and one descending section(>90?C).It is observed the thermal conductivity of polymer increases with increase of the density of insulation layer and the density,and the thermal conductivity decreases when exposed to high temperatures.The temperature of the surrounding rocks increases with increase of the thermal conductivity and the thickness of polymer.Finally,a more economical thickness(5 cm)was proposed.Based on the parametric study,a thermal insulation layer with thermal conductivity less than 0.045 W/(m K),thickness of 5 cm and a density less than 0.12 g/cm 3 is suggested for practice. 展开更多
关键词 Geothermal tunnel non-aqueous reactive polymer Thermal conductivity Heat insulation
下载PDF
Theoretical analysis of hydrogen solubility in direct coal liquefaction solvents 被引量:1
4
作者 Xiaobin Zhang Aoqi Wang +1 位作者 Xingbao Wang Wenying Li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期187-197,共11页
The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimiz... The cyclic hydrogenation technology in a direct coal liquefaction process relies on the dissolved hydrogen of the solvent or oil participating in the hydrogenation reaction.Thus,a theoretical basis for process optimization and reactor design can be established by analyzing the solubility of hydrogen in liquefaction solvents.Experimental studies of hydrogen solubility in liquefaction solvents are challenging due to harsh reaction conditions and complex solvent compositions.In this study,the composition and content of liquefied solvents were analyzed.As model compounds,hexadecane,toluene,naphthalene,tetrahydronaphthalene,and phenanthrene were chosen to represent the liquefied solvents in chain alkanes and monocyclic,bicyclic,and tricyclic aromatic hydrocarbons.The solubility of hydrogen X(mol/mol)in pure solvent components and mixed solvents(alkanes and aromatics mixed in proportion to the chain alkanes+bicyclic aromatic hydrocarbons,bicyclic saturated aromatic hydrocarbons+bicyclic aromatic hydrocarbons,and bicyclic aromatic hydrocarbons+compounds containing het-eroatoms composed of mixed components)are determined using Aspen simulation at temperature and pressure conditions of 373–523 K and 2–10 MPa.The results demonstrated that at high temperatures and pressures,the solubility of hydrogen in the solvent increases with the increase in temperature and pressure,with the pressure having a greater impact.Further-more,the results revealed that hydrogen is more soluble in straight-chain alkanes than in other solvents,and the solubility of eicosanoids reaches a maximum of 0.296.The hydrogen solubility in aromatic ring compounds decreased gradually with an increase in the aromatic ring number.The influence of chain alkanes on the solubility of hydrogen predominates in a mixture of solvents with different mixing ratios of chain alkanes and aromatic hydrocarbons.The solubility of hydrogen in mixed aromatic solvents is less than that in the corresponding single solvents.Hydrogen is less soluble in solvent compounds containing heteroatoms than in compounds without heteroatoms. 展开更多
关键词 Direct coal liquefaction Liquefaction solvents Process simulation Hydrogen solubility
下载PDF
Experimental investigation on coal pore-fracture variation and fractal characteristics synergistically affected by solvents for improving clean gas extraction 被引量:1
5
作者 Feilin Han Sheng Xue +3 位作者 Chunshan Zheng Zhongwei Chen Guofu Li Bingyou Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期413-425,共13页
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal... Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology. 展开更多
关键词 Clean gas extraction Chemical solvent Experimental investigation Fractal characteristics Pore fracture
下载PDF
Alcohol solvent effect on the self-assembly behaviors of lignin oligomers
6
作者 Ya Ma Zhicheng Jiang +4 位作者 Yafei Luo Xingjie Guo Xudong Liu Yiping Luo Bi Shi 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期597-603,共7页
The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with th... The interactions between lignin oligomers and solvents determine the behaviors of lignin oligomers self-assembling into uniform lignin nanoparticles(LNPs).Herein,several alcohol solvents,which readily interact with the lignin oligomers,were adopted to study their effects during solvent shifting process for LNPs’production.The lignin oligomers with widely distributed molecular weight and abundant guaiacyl units were extracted from wood waste(mainly consists of pine wood),exerting outstanding self-assembly capability.Uniform and spherical LNPs were generated in H_(2)O-n-propanol cosolvent,whereas irregular LNPs were obtained in H_(2)O-methanol cosolvent.The unsatisfactory self-assembly performance of the lignin oligomers in H_(2)O-methanol cosolvent could be attributed to two aspects.On one hand,for the initial dissolution state,the distinguishing Hansen solubility parameter and polarity between methanol solvent and lignin oligomers resulted in the poor dispersion of the lignin oligomers.On the other hand,strong hydrogen bonds between methanol solvent and lignin oligomers during solvent shifting process,hindered the interactions among the lignin oligomers for self-assembly. 展开更多
关键词 Lignin oligomers Alcohol solvent SELF-ASSEMBLY LNPs solvent effects
下载PDF
Solvent transport dynamics and its effect on evolution of mechanical properties of nitrocellulose(NC)-based propellants under hot-air drying process
7
作者 Enfa Fu Mingjun Yi +1 位作者 Qianling Liu Zhenggang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期262-270,共9页
Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics... Appropriate drying process with optimized controlling of drying parameters plays a vital role in the improvement of the quality and performance of propellant products.However,few research on solvent transport dynamics within NC-based propellants was reported,and its effect on the evolution of mechanical properties was not interpreted yet.This study is conducted to gain a comprehensive understanding of hot-air drying for NC-based propellants and clarify the effect of temperature on solvent transport behavior and further the change of mechanical properties during drying.The drying kinetic curves show the drying time required is decreased but the steady solvent content is increased and the drying rate is obviously increased with the increase of hot-air temperatures,indicating hot-air temperatures have a significant effect on drying kinetics.A modified drying model was established,and results show it is more appropriate to describe solvent transport behavior within NC-based propellants.Moreover,two linear equations were established to exhibit the relationship between solvent content and its effect on the change of tensile properties,and the decrease of residual solvent content causes an obvious increase of tensile strength and tensile modulus of propellant products,indicating its mechanical properties can be partly improved by adjustment of residual solvent content.The outcomes can be used to clarify solvent transport mechanisms and optimize drying process parameters of double-based gun propellants. 展开更多
关键词 Nitrocellulose-based propellants solvent transport dynamics Mechanical properties Drying kinetics Effective solvent diffusion coefficient
下载PDF
The prediction of donor number and acceptor number of electrolyte solvent molecules based on machine learning
8
作者 Huaping Hu Yuqing Shan +3 位作者 Qiming Zhao Jinglun Wang Lingjun Wu Wanqiang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期374-382,共9页
Electrolyte solvents have a critical impact on the design of high performance and safe batteries.Gutmann's donor number(DN) and acceptor number(AN) values are two important parameters to screen and design superior... Electrolyte solvents have a critical impact on the design of high performance and safe batteries.Gutmann's donor number(DN) and acceptor number(AN) values are two important parameters to screen and design superior electrolyte solvents. However, it is more time-consuming and expensive to obtain DN and AN values through experimental measurements. Therefore, it is essential to develop a method to predict DN and AN values. This paper presented the prediction models for DN and AN based on molecular structure descriptors of solvents, using four machine learning algorithms such as Cat Boost(Categorical Boosting), GBRT(Gradient Boosting Regression Tree), RF(Random Forest) and RR(Ridge Regression).The results showed that the DN and AN prediction models based on Cat Boost algorithm possesses satisfactory prediction ability, with R^(2) values of the testing set are 0.860 and 0.96. Moreover, the study analyzed the molecular structure parameters that impact DN and AN. The results indicated that TDB02m(3D Topological distance based descriptors-lag 2 weighted by mass) had a significant effect on DN, while HATS1s(leverage-weighted autocorrelation of lag 1/weighted by I-state) plays an important role in AN. The work provided an efficient approach for accurately predicting DN and AN values, which is useful for screening and designing electrolyte solvents. 展开更多
关键词 Machine learning Donor number Acceptor number Electrolyte solvents
下载PDF
Simultaneous purification of minor components in natural products using twin-column recycling chromatography with a step solvent gradient
9
作者 Guangxia Jin Yuxue Wu Feng Wei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期212-219,共8页
The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar co... The isolation of minor components from complex natural product matrices presents a significant challenge in the field of purification science due to their low concentrations and the presence of structurally similar compounds.This study introduces an optimized twin-column recycling chromatography method for the efficient and simultaneous purification of these elusive constituents.By introducing water at a small flowing rate between the twin columns,a step solvent gradient is created,by which the leading edge of concentration band would migrate at a slower rate than the trailing edge as it flowing from the upstream to downstream column.Hence,the band broadening is counterbalanced,resulting in an enrichment effect for those minor components in separation process.Herein,two target substances,which showed similar peak position in high performance liquid chromatography(HPLC)and did not exceed 1.8%in crude paclitaxel were selected as target compounds for separation.By using the twin-column recycling chromatography with a step solvent gradient,a successful purification was achieved in getting the two with the purity almost 100%.We suggest this method is suitable for the separation of most components in natural produces,which shows higher precision and recovery rate compared with the common lab-operated separation ways for natural products(thin-layer chromatography and prep-HPLC). 展开更多
关键词 solvent gradient Twin-column recycling chromatography PURIFICATION Minor component Natural products
下载PDF
Study on the green extraction of corncob xylan by deep eutectic solvent
10
作者 Bingyu Jiao Le Wang +3 位作者 Haitao Gui Zifu Ni Rong Du Yuansen Hu 《Grain & Oil Science and Technology》 CAS 2024年第1期50-59,共10页
Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other ... Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other problems.As one of the most abundant polymers in nature,xylan is widely used in food,medicine,materials and other fields.Corn cob is rich in xylan,which is an ideal raw material for extracting xylan.However,the intractable lignin is covalently linked to xylan,which increases the difficulty of xylan extraction.It has been reported that the deep eutectic solvent(DES)could preferentially dissolve lignin in biomass,thereby dissolving the xylan.Then,the xylan in the extract was separated by ethanol precipitation method.The xylan precipitate was obtained after centrifugation,while the supernatant was retained.The components of the supernatant after ethanol precipitation were separated by the rotary evaporator.The ethanol,water and DES were collected for the subsequent extraction of corn cob xylan.In this study,a novel way was provided for the green production of corn cob xylan.The DES was used to extract xylan from corn cob which was used as the raw material.The effects of solid-liquid ratio,reaction time,reaction temperature and water content of DES on the extraction rate of corn cob xylan were investigated by the single factor test.Furthermore,the orthogonal test was designed to optimize the xylan extraction process.The structure of corn cob xylan was analyzed and verified.The results showed that the optimum extraction conditions of corn cob xylan were as follows:the ratio of corn cob to DES was 1:15(g:mL),the extraction time was 3 h,the extraction temperature was 60℃,and the water content of DES was 70%.Under these conditions,the extraction rate of xylan was 16.46%.The extracted corn cob xylan was distinctive triple helix of polysaccharide,which was similar to the structure of commercially available xylan.Xylan was effectively and workably extracted from corn cob by the DES method.This study provided a new approach for high value conversion of corn cob and the clean production of xylan. 展开更多
关键词 CORNCOB Deep eutectic solvent XYLAN Process optimization EXTRACTION
下载PDF
Insight into the experiment and extraction mechanism for separating carbazole from anthracene oil with quaternary ammonium-based deep eutectic solvents
11
作者 Xudong Zhang Yanhua Liu +4 位作者 Jun Shen Yugao Wang Gang Liu Yanxia Niu Qingtao Sheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期188-199,共12页
Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in che... Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar. 展开更多
关键词 CARBAZOLE Model anthracene oil Deep eutectic solvents COSMO-RS Extraction mechanism
下载PDF
Reviewing electrochemical stability of ionic liquids-/deep eutectic solvents-based electrolytes in lithium-ion,lithium-metal and post-lithium-ion batteries for green and safe energy
12
作者 Yu Chen Shuzi Liu +4 位作者 Zixin Bi Zheng Li Fengyi Zhou Ruifen Shi Tiancheng Mu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期966-991,共26页
Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electroly... Sustainable energy is the key issue for the environment protection,human activity and economic development.Ionic liquids(ILs)and deep eutectic solvents(DESs)are dogmatically regarded as green and sustainable electrolytes in lithium-ion,lithium-metal(e.g.,lithium-sulphur,lithium-oxygen)and post-lithium-ion(e.g.,sodium-ion,magnesium-ion,and aluminum-ion)batteries.High electrochemical stability of ILs/DESs is one of the prerequisites for green,sustainable and safe energy;while easy electrochemical decomposition of ILs/DESs would be contradictory to the concept of green chemistry by adding the cost,releasing volatile/hazardous by-products and hindering the recyclability.However,(1)are ILs/DESs-based electrolytes really electrochemically stable when they are not used in batteries?(2)are ILs/DESs-based electrolytes really electrochemically stable in real batteries?(3)how to design ILs/DESs-based electrolytes with high electrochemical stability for batteries to achieve sustainability and green development?Up to now,there is no summary on this topic,to the best of our knowledge.Here,we review the effect of chemical structure and non-structural factors on the electrochemical stability of ILs/DESs in simulated conditions.More importantly,electrochemical stability of ILs/DESs in real lithium-ion,lithium-metal and post-lithium-ion batteries is concluded and compared.Finally,the strategies to improve the electrochemical stability of ILs/DESs in lithium-ion,lithium-metal and post-lithium-ion batteries are proposed.This review would provide a guide to design ILs/DESs with high electrochemical stability for lithium-ion,lithium-metal and postlithium-ion batteries to achieve sustainable and green energy. 展开更多
关键词 Green solvents Decomposition Sustainable chemistry Lithium-oxygen batteries Lithium-sulphur batteries Sodium-ion batteries
下载PDF
Enhancing lead-free photovoltaic performance:Minimizing buried surface voids in tin perovskite films through weakly polar solvent pre-treatment strategy
13
作者 Dongdong Yan Han Zhang +7 位作者 Chensi Gong Hailong Wang Qing Lu Jun Liu Wenzhen Lv Mingguang Li Runfeng Chen Ligang Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期556-561,共6页
Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carr... Buried interfacial voids have always been a notorious phenomenon observed in the fabrication of lead perovskite films. The existence of interfacial voids at the buried interface will capture the carrier, suppress carrier transport efficiencies, and affect the stability of photovoltaic devices. However, the impact of these buried interfacial voids on tin perovskites, a promising avenue for advancing lead-free photovoltaics, has been largely overlooked. Here, we utilize an innovative weakly polar solvent pretreatment strategy(WPSPS) to mitigate buried interfacial voids of tin perovskites. Our investigation reveals the presence of numerous voids in tin perovskites during annealing, attributed to trapped dimethyl sulfoxide(DMSO) used in film formation. The WPSPS method facilitates accelerated DMSO evaporation, effectively reducing residual DMSO. Interestingly, the WPSPS shifts the energy level of PEDOT:PSS downward, making it more aligned with the perovskite. This alignment enhances the efficiency of charge carrier transport. As the result, tin perovskite film quality is significantly improved,achieving a maximum power conversion efficiency approaching 12% with only an 8.3% efficiency loss after 1700 h of stability tests, which compares well with the state-of-the-art stability of tin-based perovskite solar cells. 展开更多
关键词 Tin perovskite Buried interfacial Weakly polar solvent pre-treatment strategy
下载PDF
Solvent effects on Diels-Alder reaction in ionic liquids:A reaction density functional study
14
作者 Zijiang Dou Weiqiang Tang +1 位作者 Peng Xie Shuangliang Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期180-188,共9页
Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However... Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions. 展开更多
关键词 solvent effect Ionic liquids Diels-Alder reaction Reaction density functional theory
下载PDF
Efficient and reversible separation of NH_(3) by deep eutectic solvents with multiple active sites and low viscosities
15
作者 Jiayin Zhang Lu Zheng +4 位作者 Siqi Fang Hongwei Zhang Zhenping Cai Kuan Huang Lilong Jiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期97-105,共9页
The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)... The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)and phenol(PhOH)were used to prepare a novel class of deep eutectic solvents(DESs)with multiple active sites and low viscosities.The NH_(3) separation performance of EtOHACl+PhOH DESs was analyzed completely.It is figured out that the NH_(3) absorption rates in EtOHACl+PhOH DESs are very fast.The NH_(3) absorption capacities are very high and reach up to 5.52 and 10.74 mol·kg1 at 11.2 and 100.4 kPa under 298.2 K,respectively.In addition,the EtOHACl+PhOH DESs present highly selective absorption of NH_(3) over N_(2) and H_(2) and good regenerative properties after seven cycles of absorption/desorption.The intrinsic separation mechanism of NH_(3) by EtOHACl+PhOH DESs was further revealed by spectroscopic analysis and quantum chemistry calculations. 展开更多
关键词 SEPARATION Absorption Ionic liquid Deep eutectic solvent Multiple active site Low viscosity
下载PDF
Rational surface charge engineering of haloalkane dehalogenase for boosting the enzymatic performance in organic solvent solutions
16
作者 Yin Wu Yan Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期276-285,共10页
Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy... Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy to improve the catalytic performance of haloalkane dehalogenase DhaA in OSs based on the energetic analysis of substrate binding to the DhaA surface.Several variants with enhanced OS resistance were obtained by replacing negative charged residues on the surface with positive charged residue(Arg).Particularly,a four-substitution variant E16R/E93R/E121R/E257R exhibited the best catalytic performance(five-fold improvement in OS resistance and seven-fold half-life increase in 40%(vol)dimethylsulfoxide).As a result,the overall catalytic performance of the variant could be at least 26 times higher than the wild-type DhaA.Fluorescence spectroscopy and molecular dynamics simulation studies revealed that the residue substitution mainly enhanced OS resistance from four aspects:(a)improved the overall structural stability,(b)increased the hydrophobicity of the local microenvironment around the catalytic triad,(c)enriched the hydrophobic substrate around the enzyme molecule,and(d)lowered the contact frequency between OS molecules and the catalytic triad.Our findings validate that computationaided surface charge engineering is an effective and ingenious rational strategy for tailoring enzyme performance in OSs. 展开更多
关键词 Surface charge engineering Organic solvent resistance Molecular dynamics simulation Haloalkane dehalogenase
下载PDF
Oxidative Desulfurization of Fuel Oil with H_(3)PO_(4)-based Deep Eutectic Solvents
17
作者 Li Xiuping Zhang Jiayin +1 位作者 Hou Liangpei Zhao Rongxiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期178-186,共9页
A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were ch... A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were characterized byFourier transform infrared spectrophotometry (FT-IR), thermogravimetry/differential thermogravimetry (TG/DTG), andelectron spray ionization mass spectrometry (ESI-MS). The DESs were used as both extractants and catalysts to removedibenzothiophene from fuels via oxidative desulfurization (ODS). Experiments were performed to investigated the influenceof factors such as composition of DES, temperature, oxidant dosage (molar ratio of O:S), DES dosage (volume ratio ofDES:oil), and number of cycles on desulfurization rate. The results indicated that the removal rate of dibenzothiophene (DBT)was affected by the Lewis acidic DESs, with that of H_(3)PO_(4)/0.25∙ZnCl_(2) reaching 96.4% under optimal conditions (Voil=5 mL,VDES=1 mL, an oxidant dosage of 6, T=50 ℃). After six cycles, the desulfurization rate of H_(3)PO_(4)/0.25∙ZnCl_(2) remained above94.1%. The apparent activation energy of dibenzothiophene (DBT) removal reaction was determined by a pseudo-first orderkinetic equation according to the Arrhenius equation to be 32.34 kJ/mol, as estimated. A reaction mechanism is proposedbased on the experimental data and characterization results. 展开更多
关键词 deep eutectic solvents phosphoric acid zinc chloride oxidative desulfurization
下载PDF
Sodium Nitrate/Formamide Deep Eutectic Solvent as Flame-Retardant and Anticorrosive Electrolyte Enabling 2.6 V Safe Supercapacitors with Long Cyclic Stability
18
作者 Huachao Yang Yiheng Qi +6 位作者 Zifan Wang Qinghu Pan Chuanzhi Zhang Jianhua Yan Kefa Cen Zheng Bo Kostya(Ken)Ostrikov 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期374-383,共10页
Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are ... Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are plagued by the limited operation voltage window(typically≤2.3 V)and inherent corrosion of current collectors.Herein,a novel deep eutectic solvent(DES)-based electrolyte which uses formamide(FMD)as hydrogen-bond donor and sodium nitrate(NaNO_(3))as hydrogen-bond acceptor is demonstrated.The electrolyte exhibits the wide electrochemical stability window(3.14 V),high electrical conductivity(14.01 mScm^(-1)),good flame-retardance,anticorrosive property,and ultralow cost(7%of the commercial electrolyte and 2%of WIS).Raman spectroscopy and Density Functional Theory calculations reveal that the hydrogen bonds between the FMD molecules and NO_(3)^(-)ions are primarily responsible for the superior stability and conductivity.The developed NaNO_(3)/FMD-based coin cell supercapacitor is among the best-performing state-of-art DES and WIS devices,evidenced by the high voltage window(2.6 V),outstanding energy and power densities(22.77 Wh kg^(-1)at 630 W kg^(-1)and 17.37 kW kg^(-1)at 12.55 Wh kg^(-1)),ultralong cyclic stability(86%after 30000 cycles),and negligible current collector corrosion.The NaNO_(3)/FMD industry adoption potential is demonstrated by fabricating 100 F pouch cell supercapacitors using commercial aluminum current collectors. 展开更多
关键词 cyclic stability deep eutectic solvents electrical conductivity electrochemical stability window SUPERCAPACITORS
下载PDF
Machine-Learning-Assisted Design of Deep Eutectic Solvents Based on Uncovered Hydrogen Bond Patterns
19
作者 Usman L.Abbas Yuxuan Zhang +4 位作者 Joseph Tapia Selim Md Jin Chen Jian Shi Qing Shao 《Engineering》 SCIE EI CAS CSCD 2024年第8期74-83,共10页
Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a... Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation.The search for DES relies heavily on intuition or trial-and-error processes,leading to low success rates or missed opportunities.Recognizing that hydrogen bonds(HBs)play a central role in DES formation,we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning(ML)models to discover new DES systems.We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics(MD)simulation trajectories.The analysis reveals that DES systems have two unique features compared to non-DES systems:The DESs have①more imbalance between the numbers of the two intra-component HBs and②more and stronger inter-component HBs.Based on these results,we develop 30 ML models using ten algorithms and three types of HB-based descriptors.The model performance is first benchmarked using the average and minimal receiver operating characteristic(ROC)-area under the curve(AUC)values.We also analyze the importance of individual features in the models,and the results are consistent with the simulation-based statistical analysis.Finally,we validate the models using the experimental data of 34 systems.The extra trees forest model outperforms the other models in the validation,with an ROC-AUC of 0.88.Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs. 展开更多
关键词 Machine learning Deep eutectic solvents Molecular dynamics simulations Hydrogen bond Molecular design
下载PDF
Lithium-ion and solvent co-intercalation enhancing the energy density of fluorinated graphene cathode
20
作者 Hao Wang Jie Jiang +5 位作者 Pengyu Chen Zhenrui Wu Xiaobin Niu Chuying Ouyang Jian Liu Liping Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期208-215,I0006,共9页
Fluorinated carbons CF_xhold the highest theoretical energy density(e.g.,2180 W h kg^(-1)when x=1)among all cathode materials of lithium primary batteries.However,the low conductivity and severe polarization limit it ... Fluorinated carbons CF_xhold the highest theoretical energy density(e.g.,2180 W h kg^(-1)when x=1)among all cathode materials of lithium primary batteries.However,the low conductivity and severe polarization limit it to achieve its theory.In this study,we design a new electrolyte,namely 1 M LiBF_(4)DMSO:DOL(1:9 vol.),achieving a high energy density in Li/CF_xprimary cells.The DMSO with a small molecular size and high donor number successfully solvates Li^(+)into a defined Li^(+)-solvation structure.Such solvated Li^(+)can intercalate into the large-spacing carbon layers and achieve an improved capacity.Consequently,when discharged to 1.0 V,the CF_(1.12)cathode demonstrates a specific capacity of 1944 m A h g^(-1)with a specific energy density of 3793 W h kg^(-1).This strategy demonstrates that designing the electrolyte is powerful in improving the electrochemical performance of CF_(x) cathode. 展开更多
关键词 Fluorinated carbon Conversion reaction High-energy-density primary battery Li^(+)-solvation structure solvent co-intercalation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部