The resistive switching memory characteristics of 100 randomly measured devices were observed by reducing device size in a Cr/Cr Ox/Ti Ox/Ti N structure for the first time.Transmission electron microscope image confir...The resistive switching memory characteristics of 100 randomly measured devices were observed by reducing device size in a Cr/Cr Ox/Ti Ox/Ti N structure for the first time.Transmission electron microscope image confirmed a viahole size of 0.4 lm.A 3-nm-thick amorphous Ti Oxwith 4-nm-thick polycrystalline Cr Oxlayer was observed.A small 0.4-lm device shows reversible resistive switching at a current compliance of 300 l A as compared to other larger size devices(1–8 lm)owing to reduction of leakage current through the Ti Oxlayer.Good device-to-device uniformity with a yield of[85%has been clarified by weibull distribution owing to higher slope/shape factor.The switching mechanism is based on oxygen vacancy migration from the Cr Oxlayer and filament formation/rupture in the Ti Oxlayer.Long read pulse endurance of[105cycles,good data retention of 6 h,and a program/erase speed of 1 ls pulse width have been obtained.展开更多
A new device has been realized using flip-chip joining two printed circuit boards(PCBs) on which zinc oxide(ZnO) nanowires were synthesized. Energy dispersive X-ray measurement has been conducted for the ZnO nanowires...A new device has been realized using flip-chip joining two printed circuit boards(PCBs) on which zinc oxide(ZnO) nanowires were synthesized. Energy dispersive X-ray measurement has been conducted for the ZnO nanowires, confirming that Cu elements have been diffused into the nanowires during the chemical growth process. From I-V measurements, this Cu/ZnO nanowire/Cu structure exhibits a resistive tuning behaviour, which varies greatly with the frequency of the applied sinusoidal source.展开更多
The Ag/Mg0.2Zn0.8O/ZnMn2O4/p^+-Si heterostructure devices were fabricated by sol-gel spin coating technique and the resistive switching behavior,conduction mechanism,endurance characteristic,and retention properties ...The Ag/Mg0.2Zn0.8O/ZnMn2O4/p^+-Si heterostructure devices were fabricated by sol-gel spin coating technique and the resistive switching behavior,conduction mechanism,endurance characteristic,and retention properties were investigated.A distinct bipolar resistive switching behavior of the devices was observed at room temperature.The resistance ratio R_(HRS)/RLRS of high resistance state and low resistance state is as large as four orders of magnitude with a readout voltage of 2.0 V.The dominant conduction mechanism of the device is trap-controlled space charge limited current(SCLC).The devices exhibit good durability under 1×10^3cycles and the degradation is invisible for more than 10^6 s.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
A three-terminal device based on electronic phase separated manganites is suggested to produce high performance resistive switching. Our Monte Carlo simulations reveal that the conductive filaments can be formed/annih...A three-terminal device based on electronic phase separated manganites is suggested to produce high performance resistive switching. Our Monte Carlo simulations reveal that the conductive filaments can be formed/annihilated by reshaping the ferromagnetic metal phase domains with two cross-oriented switching voltages. Besides, by controlling the high resistance state(HRS) to a stable state that just after the filament is ruptured, the resistive switching remains stable and reversible, while the switching voltage and the switching time can be greatly reduced.展开更多
Memristive devices have attracted intensive attention in developing hardware neuromorphic computing systems with high energy efficiency due to their simple structure,low power consumption,and rich switching dynamics r...Memristive devices have attracted intensive attention in developing hardware neuromorphic computing systems with high energy efficiency due to their simple structure,low power consumption,and rich switching dynamics resembling biological synapses and neurons in the last decades.Fruitful demonstrations have been achieved in memristive synapses neurons and neural networks in the last few years.Versatile dynamics are involved in the data processing and storage in biological neurons and synapses,which ask for carefully tuning the switching dynamics of the memristive emulators.Note that switching dynamics of the memristive devices are closely related to switching mechanisms.Herein,from the perspective of switching dynamics modulations,the mainstream switching mechanisms including redox reaction with ion migration and electronic effect have been systemically reviewed.The approaches to tune the switching dynamics in the devices with different mechanisms have been described.Finally,some other mechanisms involved in neuromorphic computing are briefly introduced.展开更多
Considerable efforts are currently being devoted to investigation of metal-organic, organic-organic and organic-inorganic interfaces relevant to organic electronic devices such as organic light emitting diode (OLEDs),...Considerable efforts are currently being devoted to investigation of metal-organic, organic-organic and organic-inorganic interfaces relevant to organic electronic devices such as organic light emitting diode (OLEDs), organic photovoltaic solar cells, organic field effect transistors (OFETs), organic spintronic devices and organic-based Write Once Read Many times (WORM) memory devices on both rigid and flexible substrates in laboratories around the world. The multilayer structure of these devices makes interfaces between dissimilar materials in contact and plays a prominent role in charge transport and injection efficiency which inevitably affect device performance. This paper presents results of an initial study on how switching between voltage thresholds and chemical surface treatment affects adhesion properties of a metal-organic (Au-PEDOT:PSS) contact interface in a WORM device. Contact and Tapping-mode Atomic Force Microscopy (AFM) gave surface topography, phase imaging and interface adhesion properties in addition to SEM/EDX imaging which showed that surface treatment, switching and surface roughness all appeared to be key factors in increasing interface adhesion with implications for increased device performance.展开更多
Neuromorphic computing is a brain-inspired computing paradigm that aims to construct efficient,low-power,and adaptive computing systems by emulating the information processing mechanisms of biological neural systems.A...Neuromorphic computing is a brain-inspired computing paradigm that aims to construct efficient,low-power,and adaptive computing systems by emulating the information processing mechanisms of biological neural systems.At the core of neuromorphic computing are neuromorphic devices that mimic the functions and dynamics of neurons and synapses,enabling the hardware implementation of artificial neural networks.Various types of neuromorphic devices have been proposed based on different physical mechanisms such as resistive switching devices and electric-double-layer transistors.These devices have demonstrated a range of neuromorphic functions such as multistate storage,spike-timing-dependent plasticity,dynamic filtering,etc.To achieve high performance neuromorphic computing systems,it is essential to fabricate neuromorphic devices compatible with the complementary metal oxide semiconductor(CMOS)manufacturing process.This improves the device’s reliability and stability and is favorable for achieving neuromorphic chips with higher integration density and low power consumption.This review summarizes CMOS-compatible neuromorphic devices and discusses their emulation of synaptic and neuronal functions as well as their applications in neuromorphic perception and computing.We highlight challenges and opportunities for further development of CMOS-compatible neuromorphic devices and systems.展开更多
Graphene and related two-dimensional materials have attracted great research interests due to prominently optical and electrical properties and flexibility in integration with versatile photonic structures.Here,we rep...Graphene and related two-dimensional materials have attracted great research interests due to prominently optical and electrical properties and flexibility in integration with versatile photonic structures.Here,we report an in-fiber photoelec-tric device by wrapping a few-layer graphene and bonding a pair of electrodes onto a tilted fiber Bragg grating(TFBG)for photoelectric and electric-induced thermo-optic conversions.The transmitted spectrum from this device consists of a dense comb of narrowband resonances that provides an observable window to sense the photocurrent and the electrical injection in the graphene layer.The device has a wavelength-sensitive photoresponse with responsivity up to 11.4 A/W,allowing the spectrum analysis by real-time monitoring of photocurrent evolution.Based on the thermal-optic effect of electrical injection,the graphene layer is energized to produce a global red-shift of the transmission spectrum of the TF-BG,with a high sensitivity approaching 2.167×10^(4)nm/A^(2).The in-fiber photoelectric device,therefore as a powerful tool,could be widely available as off-the-shelf product for photodetection,spectrometer and current sensor.展开更多
Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the t...Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the tremendous difficulties in the design of completely reverse absorptions in transmissive and colored states.Herein,we report on an electrochemical device that can switch between colorless and black by using the electrochemical process of hybrid organic–inorganic perovskite MAPbBr_(3),which shows a high integrated contrast ratio of up to 73%from 400 to 800 nm.The perovskite solution can be used as the active layer to assemble the device,showing superior transmittance over the entire visible region in neutral states.By applying an appropriate voltage,the device undergoes reversible switching between colorless and black,which is attributed to the formation of lead and Br_(2)in the redox reaction induced by the electron transfer process in MAPbBr_(3).In addition,the contrast ratio can be modulated over the entire visible region by changing the concentration and the applied voltage.These results contribute toward gaining an insightful understanding of the electrochemical process of perovskites and greatly promoting the development of switchable devices.展开更多
Resistive switching(RS)devices have great application prospects in the emerging memory field and neuromorphic field,but their stability and unclear RS mechanism limit their relevant applications.In this work,we constr...Resistive switching(RS)devices have great application prospects in the emerging memory field and neuromorphic field,but their stability and unclear RS mechanism limit their relevant applications.In this work,we construct a hydrogenated Au/SnO_(2)nanowire(NW)/Au device with two back-to-back Schottky diodes and investigate the RS characteristics in air and vacuum.We find that the Ion/Io ff ratio increases from 20 to 10^(4)when the read voltage decreases from 3.1 V to^(-1)V under the condition of electric field.Moreover,the rectification ratio can reach as high as 10^4owing to oxygen ion migration modulated by the electric field.The nanodevice also shows non-volatile resistive memory characteristic.The RS mechanism is clarified based on the changes of the Schottky barrier width and height at the interface of Au/SnO_(2)NW/Au device.Our results provide a strategy for designing high-performance memristive devices based on SnO_(2)NWs.展开更多
Pseudo-spark switch(PSS) is one of the most widely used discharge switches for pulse power technology.It has many special characteristics such as reliability in a wide voltage range,small delay time,as well as small...Pseudo-spark switch(PSS) is one of the most widely used discharge switches for pulse power technology.It has many special characteristics such as reliability in a wide voltage range,small delay time,as well as small delay jitter.In this paper,the measuring method for the initial plasma of ZnO surface flashover triggering device of PSS is studied and the results of the measurement show that the electron emission charge is mainly influenced by trigger voltage,gas pressure and DC bias voltage.When the bias voltage increases from 2 kV to 6 kV with the gap distancc fixed at 3 mm,the electron emission charge changes from 2 μC to about 6μC.When the gap distance changes from 3 mm to 5 mm with the bias voltage fixed at 2 kV,the electron emission charge increases from 1.5 μC to 2.5μC.When the gap distance is 4 mm,the hold-off voltage of PSS is 45 kV at gas pressure of 2 Pa,the minimum operating voltage is less than 1 kV.So,the operating scope is from 2.22%to 99%of its self-breakdown voltage.The discharging delay time decreases from 450 ns to 150 ns when the trigger pulse voltage is 1 kV and the discharging voltage is changed from 1 kV to 12 kV.When the trigger pulse voltage is 6 kV,the discharging delay time is less than 100 ns and changes from 100 ns to 50 ns,and the delay jitters are less than30 ns.展开更多
To design a Double-Pole Four-Throw (DP4T) RF switch, measurement of device parameters is required. In this DP4T RF switch CMOS is a unit cell, so with a thin oxide layer of thickness 628 ? which is measured optically....To design a Double-Pole Four-Throw (DP4T) RF switch, measurement of device parameters is required. In this DP4T RF switch CMOS is a unit cell, so with a thin oxide layer of thickness 628 ? which is measured optically. Some of the material parameters were found by the curve drawn between Capacitance versus Voltage (C-V) and Capacitance versus Frequency (C-F) with the application of Visual Engineering Environment Programming (VEE Pro). To perform the measurement processing at a distance, from the hazardous room, we use VEE Pro software. In this research, to acquire a fine result for RF MOSFET, we vary the voltage with minor increments and perform the measurements by vary the applying voltage from +5 V to –5 V and then back to +5 V again and then save this result in a data sheet with respect to temperature, voltage and frequency using this program. We have investigated the characteristics of RF MOSFET, which will be used for the wireless telecommunication systems.展开更多
The characteristics of the triggered vacuum switch (TVS) are obviously influenced by the emission current ie and emission charge of the trigger device. In this paper, an RC charge collector is designed, and the char...The characteristics of the triggered vacuum switch (TVS) are obviously influenced by the emission current ie and emission charge of the trigger device. In this paper, an RC charge collector is designed, and the characteristics of emission current ie and collecting charge Qc of the trigger device are studied. The experimental results indicate that the emission current ie which is produced by the initial plasma has both positive and negative components, and the polarity of the emission current ie depends mainly on the polarity of the bias voltage UBias. The emission current ie and collecting charge Qe increase with the increase of the trigger voltage Utr and the bias voltage UBias. The emission efficient r] increases linearly with the increase of the bias voltage UBias. When the gap distance is 15 mm and bias voltage UBias is 160 V and trigger voltage Utr is 2.6 kV, the emission efficiency r/reaches 6%展开更多
Single-molecule devices not only promise to provide an alternative strategy to break through the miniaturization and functionalization bottlenecks faced by traditional semiconductor devices,but also provide a reliable...Single-molecule devices not only promise to provide an alternative strategy to break through the miniaturization and functionalization bottlenecks faced by traditional semiconductor devices,but also provide a reliable platform for exploration of the intrinsic properties of matters at the single-molecule level.Because the regulation of the electrical properties of single-molecule devices will be a key factor in enabling further advances in the development of molecular electronics,it is necessary to clarify the interactions between the charge transport occurring in the device and the external fields,particularly the optical field.This review mainly introduces the optoelectronic effects that are involved in single-molecule devices,including photoisomerization switching,photoconductance,plasmon-induced excitation,photovoltaic effect,and electroluminescence.We also summarize the optoelectronic mechanisms of single-molecule devices,with particular emphasis on the photoisomerization,photoexcitation,and photo-assisted tunneling processes.Finally,we focus the discussion on the opportunities and challenges arising in the single-molecule optoelectronics field and propose further possible breakthroughs.展开更多
Objective: Dual bronchodilation with long-acting muscarinic antagonist and long-acting β2-agonist combinations are available worldwide in COPD patients. However, the choice of agents remains under debate. We hypothes...Objective: Dual bronchodilation with long-acting muscarinic antagonist and long-acting β2-agonist combinations are available worldwide in COPD patients. However, the choice of agents remains under debate. We hypothesized that switching devices between dry powder and soft mist inhalers without a wash-out period to mimic clinical practice would improve clinical symptoms and lung function. The aim of this study was to examine the effects of switching between once-daily glycopyrronium/indacaterol (GLY/IND) or umeclidinium/vilanterol (UMEC/VI), dry powder inhalers, and tiotropium/olodaterol (TIO/OLO), a soft mist inhaler, in COPD patients. Methods: This was a prospective, open-label, 8-week, observational study with follow-up. Subjects included 57 COPD patients, who attended outpatient clinics at Shizuoka General Hospital for routine check-ups between February and December 2015, receiving GLY/IND (50/110 μg) or UMEC/VI (62.5/25 μg). After an 8-week run-in period, medications were switched to TIO/OLO (5/5 μg). Study outcomes included patient’s global rating (PGR), modified MRC (mMRC), COPD assessment test (CAT), and spirometric and forced oscillatory parameters after 8 weeks. PGR used in this study was a 7-point scale ranging from 1 to 7, with 4 in the middle. Patients who consented to switch from TIO/OLO to GLY/IND or UMEC/VI were followed-up thereafter. Results: In total, 53 patients completed the study (mean age, 75 years;48 males and 5 females;GOLD 1/2/3/4 = 19/27/6/1;mMRC 0/1/2/3/4 = 14/22/12/4/1;UMEC/VI 26, GLY/IND 27). PGR, mMRC, and CAT improved in 20 (38%), 9 (17%), and 15 patients (28%), respectively. Respiratory system resistance at 5 Hz (R5), 20 Hz (R20), and the difference between R5 and R20 (R5 - R20) significantly improved. In a follow-up of 16 patients after switching from TIO/OLO to UMEC/VI (9) or GLY/IND (7), PGR, mMRC, and CAT improved in 5 (31%), 3 (12%), and 4 patients (25%), respectively, and R20 significantly improved (p = 0.011). Conclusions: Switching dual bronchodilators between dry powder and soft mist inhalers improves symptoms and airway narrowing in some COPD patients.展开更多
Ag/ZnO/Zn/Pt structure resistive switching devices are prepared by radio frequency magnetron sputtering. The ZnO thin films are grown at room temperature and 400 ℃ substrate temperature, respectively. By comparing th...Ag/ZnO/Zn/Pt structure resistive switching devices are prepared by radio frequency magnetron sputtering. The ZnO thin films are grown at room temperature and 400 ℃ substrate temperature, respectively. By comparing the data, we find that the latter device displayed better stability in the repetitive switching cycle test, and the resistance ratio between a high resistance state and a low resistance state is correspondingly increased. After 104-s storage time measurement, this device exhibits a good retention property. Moreover, the operation voltages are very low: -0.3 V/-0.7 V (OFF state) and 0.3 V (ON state). A high-voltage forming process in the initial state is not required, and a multistep reset process is demonstrated.展开更多
Power semiconductor devices are the key technology driver for all power electronic system engineering.The main development trend for power devices is going towards higher power handling capability at even smaller Sivo...Power semiconductor devices are the key technology driver for all power electronic system engineering.The main development trend for power devices is going towards higher power handling capability at even smaller Sivolume, faster switching performance,advanced ruggedness and reliability at elevated operating temperature and extended SOA diagrams.To cover all applications in the various fields of industry,consumer,computing and automotive the device optimization is different for low voltage power MOSFET,for high voltage MOSFET,for plasma modulated devices and components based on wide bandgap(WB) material.In the paper,the main development trends will be described and discussed.展开更多
An all-optical cryptographic device for secure communication, based on the properties of soliton beams, is presented. It can encode a given bit stream of optical pulses, changing their phase and their amplitude as a f...An all-optical cryptographic device for secure communication, based on the properties of soliton beams, is presented. It can encode a given bit stream of optical pulses, changing their phase and their amplitude as a function of an encryption serial key that merge with the data stream, generating a ciphered stream. The greatest advantage of the device is real-time encrypting – data can be transmitted at the original speed without slowing down.展开更多
Inspired by recent discoveries of the quasi-Josephson effect in shunted nanowire devices,we propose a superconducting nanowire interference device in this study,which is a combination of parallel ultrathin superconduc...Inspired by recent discoveries of the quasi-Josephson effect in shunted nanowire devices,we propose a superconducting nanowire interference device in this study,which is a combination of parallel ultrathin superconducting nanowires and a shunt resistor.A simple model based on the switching effect of nanowires and fluxoid quantization effect is developed to describe the behavior of the device.The current-voltage characteristic and flux-to-voltage conversion curves are simulated and discussed to verify the feasibility.Appropriate parameters of the shunt resistor and inductor are deduced for fabricating the devices.展开更多
基金supported by Ministry of Sci ence and Technology(MOST)Taiwan,under Contract no.NSC-1022221-E-182-057-MY2grateful to EOL/ITRI Hsinchu,Taiwan for their experimental support
文摘The resistive switching memory characteristics of 100 randomly measured devices were observed by reducing device size in a Cr/Cr Ox/Ti Ox/Ti N structure for the first time.Transmission electron microscope image confirmed a viahole size of 0.4 lm.A 3-nm-thick amorphous Ti Oxwith 4-nm-thick polycrystalline Cr Oxlayer was observed.A small 0.4-lm device shows reversible resistive switching at a current compliance of 300 l A as compared to other larger size devices(1–8 lm)owing to reduction of leakage current through the Ti Oxlayer.Good device-to-device uniformity with a yield of[85%has been clarified by weibull distribution owing to higher slope/shape factor.The switching mechanism is based on oxygen vacancy migration from the Cr Oxlayer and filament formation/rupture in the Ti Oxlayer.Long read pulse endurance of[105cycles,good data retention of 6 h,and a program/erase speed of 1 ls pulse width have been obtained.
基金the UK Leverhulme Trust, College of Engineering and Department of Research and Innovation of Swansea University for financial support
文摘A new device has been realized using flip-chip joining two printed circuit boards(PCBs) on which zinc oxide(ZnO) nanowires were synthesized. Energy dispersive X-ray measurement has been conducted for the ZnO nanowires, confirming that Cu elements have been diffused into the nanowires during the chemical growth process. From I-V measurements, this Cu/ZnO nanowire/Cu structure exhibits a resistive tuning behaviour, which varies greatly with the frequency of the applied sinusoidal source.
基金Funded by the National Natural Science Foundation of China(No.51262003)the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology),China(No.1110908-10-Z)
文摘The Ag/Mg0.2Zn0.8O/ZnMn2O4/p^+-Si heterostructure devices were fabricated by sol-gel spin coating technique and the resistive switching behavior,conduction mechanism,endurance characteristic,and retention properties were investigated.A distinct bipolar resistive switching behavior of the devices was observed at room temperature.The resistance ratio R_(HRS)/RLRS of high resistance state and low resistance state is as large as four orders of magnitude with a readout voltage of 2.0 V.The dominant conduction mechanism of the device is trap-controlled space charge limited current(SCLC).The devices exhibit good durability under 1×10^3cycles and the degradation is invisible for more than 10^6 s.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
基金supported by the National Basic Research Program of China(Grant No.2011CB922101)the National Natural Science Foundation of China(Grant Nos.51301084 and 11234005)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130576)Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1243)
文摘A three-terminal device based on electronic phase separated manganites is suggested to produce high performance resistive switching. Our Monte Carlo simulations reveal that the conductive filaments can be formed/annihilated by reshaping the ferromagnetic metal phase domains with two cross-oriented switching voltages. Besides, by controlling the high resistance state(HRS) to a stable state that just after the filament is ruptured, the resistive switching remains stable and reversible, while the switching voltage and the switching time can be greatly reduced.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1832116 and 51772112)Fundamental Research Funds for the Central Universities,China(Grant No.HUST:2016YXZD058).
文摘Memristive devices have attracted intensive attention in developing hardware neuromorphic computing systems with high energy efficiency due to their simple structure,low power consumption,and rich switching dynamics resembling biological synapses and neurons in the last decades.Fruitful demonstrations have been achieved in memristive synapses neurons and neural networks in the last few years.Versatile dynamics are involved in the data processing and storage in biological neurons and synapses,which ask for carefully tuning the switching dynamics of the memristive emulators.Note that switching dynamics of the memristive devices are closely related to switching mechanisms.Herein,from the perspective of switching dynamics modulations,the mainstream switching mechanisms including redox reaction with ion migration and electronic effect have been systemically reviewed.The approaches to tune the switching dynamics in the devices with different mechanisms have been described.Finally,some other mechanisms involved in neuromorphic computing are briefly introduced.
文摘Considerable efforts are currently being devoted to investigation of metal-organic, organic-organic and organic-inorganic interfaces relevant to organic electronic devices such as organic light emitting diode (OLEDs), organic photovoltaic solar cells, organic field effect transistors (OFETs), organic spintronic devices and organic-based Write Once Read Many times (WORM) memory devices on both rigid and flexible substrates in laboratories around the world. The multilayer structure of these devices makes interfaces between dissimilar materials in contact and plays a prominent role in charge transport and injection efficiency which inevitably affect device performance. This paper presents results of an initial study on how switching between voltage thresholds and chemical surface treatment affects adhesion properties of a metal-organic (Au-PEDOT:PSS) contact interface in a WORM device. Contact and Tapping-mode Atomic Force Microscopy (AFM) gave surface topography, phase imaging and interface adhesion properties in addition to SEM/EDX imaging which showed that surface treatment, switching and surface roughness all appeared to be key factors in increasing interface adhesion with implications for increased device performance.
基金supported by the National Natural Science Foundation of China(Grant Nos.62074075,62174082,and 61834001).
文摘Neuromorphic computing is a brain-inspired computing paradigm that aims to construct efficient,low-power,and adaptive computing systems by emulating the information processing mechanisms of biological neural systems.At the core of neuromorphic computing are neuromorphic devices that mimic the functions and dynamics of neurons and synapses,enabling the hardware implementation of artificial neural networks.Various types of neuromorphic devices have been proposed based on different physical mechanisms such as resistive switching devices and electric-double-layer transistors.These devices have demonstrated a range of neuromorphic functions such as multistate storage,spike-timing-dependent plasticity,dynamic filtering,etc.To achieve high performance neuromorphic computing systems,it is essential to fabricate neuromorphic devices compatible with the complementary metal oxide semiconductor(CMOS)manufacturing process.This improves the device’s reliability and stability and is favorable for achieving neuromorphic chips with higher integration density and low power consumption.This review summarizes CMOS-compatible neuromorphic devices and discusses their emulation of synaptic and neuronal functions as well as their applications in neuromorphic perception and computing.We highlight challenges and opportunities for further development of CMOS-compatible neuromorphic devices and systems.
基金We are grateful for financial supports from National Natural Science Foundation of China(Grant No.61975166)Key Research and Development Program(Grant No.2022YFA1404800).
文摘Graphene and related two-dimensional materials have attracted great research interests due to prominently optical and electrical properties and flexibility in integration with versatile photonic structures.Here,we report an in-fiber photoelec-tric device by wrapping a few-layer graphene and bonding a pair of electrodes onto a tilted fiber Bragg grating(TFBG)for photoelectric and electric-induced thermo-optic conversions.The transmitted spectrum from this device consists of a dense comb of narrowband resonances that provides an observable window to sense the photocurrent and the electrical injection in the graphene layer.The device has a wavelength-sensitive photoresponse with responsivity up to 11.4 A/W,allowing the spectrum analysis by real-time monitoring of photocurrent evolution.Based on the thermal-optic effect of electrical injection,the graphene layer is energized to produce a global red-shift of the transmission spectrum of the TF-BG,with a high sensitivity approaching 2.167×10^(4)nm/A^(2).The in-fiber photoelectric device,therefore as a powerful tool,could be widely available as off-the-shelf product for photodetection,spectrometer and current sensor.
基金Natural Science Foundation of Hebei Province(China),Grant/Award Numbers:B2020203013,B2021203016Science and Technology Project of Hebei Education Department(China),Grant/Award Number:QN2020137+3 种基金Cultivation Project for Basic Research Innovation of Yanshan University(China),Grant/Award Number:2021LGZD015Subsidy for Hebei Key Laboratory of Applied Chemistry after Operation Performance(China),Grant/Award Number:22567616HNatural Science Foundation of Heilongjiang Province(China),Grant/Award Number:LH2022B025Fundamental Research Funds for the Provincial Universities of Heilongjiang Province(China),Grant/Award Number:KYYWF10236190104。
文摘Colorless‐to‐black switching has attracted widespread attention for smart windows and multifunctional displays because they are more useful to control solar energy.However,it still remains a challenge owing to the tremendous difficulties in the design of completely reverse absorptions in transmissive and colored states.Herein,we report on an electrochemical device that can switch between colorless and black by using the electrochemical process of hybrid organic–inorganic perovskite MAPbBr_(3),which shows a high integrated contrast ratio of up to 73%from 400 to 800 nm.The perovskite solution can be used as the active layer to assemble the device,showing superior transmittance over the entire visible region in neutral states.By applying an appropriate voltage,the device undergoes reversible switching between colorless and black,which is attributed to the formation of lead and Br_(2)in the redox reaction induced by the electron transfer process in MAPbBr_(3).In addition,the contrast ratio can be modulated over the entire visible region by changing the concentration and the applied voltage.These results contribute toward gaining an insightful understanding of the electrochemical process of perovskites and greatly promoting the development of switchable devices.
基金Chenzhou Science and Technology Plan Project of China(Grant No.ZDYF2020159)Scientific Research Project of Hunan Provincial Department of Education(Grant No.21C0708)。
文摘Resistive switching(RS)devices have great application prospects in the emerging memory field and neuromorphic field,but their stability and unclear RS mechanism limit their relevant applications.In this work,we construct a hydrogenated Au/SnO_(2)nanowire(NW)/Au device with two back-to-back Schottky diodes and investigate the RS characteristics in air and vacuum.We find that the Ion/Io ff ratio increases from 20 to 10^(4)when the read voltage decreases from 3.1 V to^(-1)V under the condition of electric field.Moreover,the rectification ratio can reach as high as 10^4owing to oxygen ion migration modulated by the electric field.The nanodevice also shows non-volatile resistive memory characteristic.The RS mechanism is clarified based on the changes of the Schottky barrier width and height at the interface of Au/SnO_(2)NW/Au device.Our results provide a strategy for designing high-performance memristive devices based on SnO_(2)NWs.
基金supported by National Natural Science Foundation of China(No.51177131)the New Century Talent Foundation of Ministry of Education of China(NCET-08-0438)
文摘Pseudo-spark switch(PSS) is one of the most widely used discharge switches for pulse power technology.It has many special characteristics such as reliability in a wide voltage range,small delay time,as well as small delay jitter.In this paper,the measuring method for the initial plasma of ZnO surface flashover triggering device of PSS is studied and the results of the measurement show that the electron emission charge is mainly influenced by trigger voltage,gas pressure and DC bias voltage.When the bias voltage increases from 2 kV to 6 kV with the gap distancc fixed at 3 mm,the electron emission charge changes from 2 μC to about 6μC.When the gap distance changes from 3 mm to 5 mm with the bias voltage fixed at 2 kV,the electron emission charge increases from 1.5 μC to 2.5μC.When the gap distance is 4 mm,the hold-off voltage of PSS is 45 kV at gas pressure of 2 Pa,the minimum operating voltage is less than 1 kV.So,the operating scope is from 2.22%to 99%of its self-breakdown voltage.The discharging delay time decreases from 450 ns to 150 ns when the trigger pulse voltage is 1 kV and the discharging voltage is changed from 1 kV to 12 kV.When the trigger pulse voltage is 6 kV,the discharging delay time is less than 100 ns and changes from 100 ns to 50 ns,and the delay jitters are less than30 ns.
文摘To design a Double-Pole Four-Throw (DP4T) RF switch, measurement of device parameters is required. In this DP4T RF switch CMOS is a unit cell, so with a thin oxide layer of thickness 628 ? which is measured optically. Some of the material parameters were found by the curve drawn between Capacitance versus Voltage (C-V) and Capacitance versus Frequency (C-F) with the application of Visual Engineering Environment Programming (VEE Pro). To perform the measurement processing at a distance, from the hazardous room, we use VEE Pro software. In this research, to acquire a fine result for RF MOSFET, we vary the voltage with minor increments and perform the measurements by vary the applying voltage from +5 V to –5 V and then back to +5 V again and then save this result in a data sheet with respect to temperature, voltage and frequency using this program. We have investigated the characteristics of RF MOSFET, which will be used for the wireless telecommunication systems.
基金supported by National Natural Science Foundation of China(No.51177131)the Fundamental Research Funds for the Central Universities of China(No.xjj20100159)
文摘The characteristics of the triggered vacuum switch (TVS) are obviously influenced by the emission current ie and emission charge of the trigger device. In this paper, an RC charge collector is designed, and the characteristics of emission current ie and collecting charge Qc of the trigger device are studied. The experimental results indicate that the emission current ie which is produced by the initial plasma has both positive and negative components, and the polarity of the emission current ie depends mainly on the polarity of the bias voltage UBias. The emission current ie and collecting charge Qe increase with the increase of the trigger voltage Utr and the bias voltage UBias. The emission efficient r] increases linearly with the increase of the bias voltage UBias. When the gap distance is 15 mm and bias voltage UBias is 160 V and trigger voltage Utr is 2.6 kV, the emission efficiency r/reaches 6%
基金We acknowledge primary financial supports from the National Key R&D Program of China(2017YFA0204901,2021YFA1200101 and 2021YFA1200102)the National Natural Science Foundation of China(22150013,21727806,21933001 and 22173050)+1 种基金the Tencent Foundation through the XPLORER PRIZE“Frontiers Science Center for New Organic Matter”at Nankai University(63181206).
文摘Single-molecule devices not only promise to provide an alternative strategy to break through the miniaturization and functionalization bottlenecks faced by traditional semiconductor devices,but also provide a reliable platform for exploration of the intrinsic properties of matters at the single-molecule level.Because the regulation of the electrical properties of single-molecule devices will be a key factor in enabling further advances in the development of molecular electronics,it is necessary to clarify the interactions between the charge transport occurring in the device and the external fields,particularly the optical field.This review mainly introduces the optoelectronic effects that are involved in single-molecule devices,including photoisomerization switching,photoconductance,plasmon-induced excitation,photovoltaic effect,and electroluminescence.We also summarize the optoelectronic mechanisms of single-molecule devices,with particular emphasis on the photoisomerization,photoexcitation,and photo-assisted tunneling processes.Finally,we focus the discussion on the opportunities and challenges arising in the single-molecule optoelectronics field and propose further possible breakthroughs.
文摘Objective: Dual bronchodilation with long-acting muscarinic antagonist and long-acting β2-agonist combinations are available worldwide in COPD patients. However, the choice of agents remains under debate. We hypothesized that switching devices between dry powder and soft mist inhalers without a wash-out period to mimic clinical practice would improve clinical symptoms and lung function. The aim of this study was to examine the effects of switching between once-daily glycopyrronium/indacaterol (GLY/IND) or umeclidinium/vilanterol (UMEC/VI), dry powder inhalers, and tiotropium/olodaterol (TIO/OLO), a soft mist inhaler, in COPD patients. Methods: This was a prospective, open-label, 8-week, observational study with follow-up. Subjects included 57 COPD patients, who attended outpatient clinics at Shizuoka General Hospital for routine check-ups between February and December 2015, receiving GLY/IND (50/110 μg) or UMEC/VI (62.5/25 μg). After an 8-week run-in period, medications were switched to TIO/OLO (5/5 μg). Study outcomes included patient’s global rating (PGR), modified MRC (mMRC), COPD assessment test (CAT), and spirometric and forced oscillatory parameters after 8 weeks. PGR used in this study was a 7-point scale ranging from 1 to 7, with 4 in the middle. Patients who consented to switch from TIO/OLO to GLY/IND or UMEC/VI were followed-up thereafter. Results: In total, 53 patients completed the study (mean age, 75 years;48 males and 5 females;GOLD 1/2/3/4 = 19/27/6/1;mMRC 0/1/2/3/4 = 14/22/12/4/1;UMEC/VI 26, GLY/IND 27). PGR, mMRC, and CAT improved in 20 (38%), 9 (17%), and 15 patients (28%), respectively. Respiratory system resistance at 5 Hz (R5), 20 Hz (R20), and the difference between R5 and R20 (R5 - R20) significantly improved. In a follow-up of 16 patients after switching from TIO/OLO to UMEC/VI (9) or GLY/IND (7), PGR, mMRC, and CAT improved in 5 (31%), 3 (12%), and 4 patients (25%), respectively, and R20 significantly improved (p = 0.011). Conclusions: Switching dual bronchodilators between dry powder and soft mist inhalers improves symptoms and airway narrowing in some COPD patients.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50972007)the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 60825407)+3 种基金the Beijing Municipal Natural Science Foundation,China (Grant No. 4092035)the State Key Program for Basic Research of the Ministry of Science and Technology of China (Grant No. 2011CB932703)the Special Items Fund of Beijing Municipal Commission of Education,Chinathe Opened Fund of the State Key Laboratory on Integrated Optoelectronics,China
文摘Ag/ZnO/Zn/Pt structure resistive switching devices are prepared by radio frequency magnetron sputtering. The ZnO thin films are grown at room temperature and 400 ℃ substrate temperature, respectively. By comparing the data, we find that the latter device displayed better stability in the repetitive switching cycle test, and the resistance ratio between a high resistance state and a low resistance state is correspondingly increased. After 104-s storage time measurement, this device exhibits a good retention property. Moreover, the operation voltages are very low: -0.3 V/-0.7 V (OFF state) and 0.3 V (ON state). A high-voltage forming process in the initial state is not required, and a multistep reset process is demonstrated.
文摘Power semiconductor devices are the key technology driver for all power electronic system engineering.The main development trend for power devices is going towards higher power handling capability at even smaller Sivolume, faster switching performance,advanced ruggedness and reliability at elevated operating temperature and extended SOA diagrams.To cover all applications in the various fields of industry,consumer,computing and automotive the device optimization is different for low voltage power MOSFET,for high voltage MOSFET,for plasma modulated devices and components based on wide bandgap(WB) material.In the paper,the main development trends will be described and discussed.
文摘An all-optical cryptographic device for secure communication, based on the properties of soliton beams, is presented. It can encode a given bit stream of optical pulses, changing their phase and their amplitude as a function of an encryption serial key that merge with the data stream, generating a ciphered stream. The greatest advantage of the device is real-time encrypting – data can be transmitted at the original speed without slowing down.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304000)the National Natural Science Foundation of China(Grant Nos.61671438 and 61827823)+1 种基金the Science and Technology Commission of Shanghai Municipality,China(Grant No.18511110200)the Program of Shanghai Academic/Technology Research Leader,China(Grant No.18XD1404600).
文摘Inspired by recent discoveries of the quasi-Josephson effect in shunted nanowire devices,we propose a superconducting nanowire interference device in this study,which is a combination of parallel ultrathin superconducting nanowires and a shunt resistor.A simple model based on the switching effect of nanowires and fluxoid quantization effect is developed to describe the behavior of the device.The current-voltage characteristic and flux-to-voltage conversion curves are simulated and discussed to verify the feasibility.Appropriate parameters of the shunt resistor and inductor are deduced for fabricating the devices.