The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi-...The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi- zation platform at 0° incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller comer stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7° incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS).展开更多
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
Non-axisymmetric endwall is numerically investigated to suppress the secondary endwall flow in a HP turbine suction surface.The endwall contour is represented by a non-uniform rational B-spline surface.Two solution sp...Non-axisymmetric endwall is numerically investigated to suppress the secondary endwall flow in a HP turbine suction surface.The endwall contour is represented by a non-uniform rational B-spline surface.Two solution spaces are designed by the rule of hypercube sampling through variation of nodal radial extension.Final most effective endwall contour is obtained through screening all available samples with surrogate-based model.Results show that non axisymmetric endwall reduces the turbulence kinetic energy of the passage vortex by 5.5%and the total pressure loss 1.6%.Local heat transfer coefficient is lowered on the afore passage endwall surface with a certain increment on the aft passage endwall.Overall averaged heat transfer coefficient is reduced.展开更多
Numerical simulations are carried out to investigate the effect of the endwall contouring on the secondary flow in turbine nozzle guide vane.The three contoured cascades with the same contouring profile and the differ...Numerical simulations are carried out to investigate the effect of the endwall contouring on the secondary flow in turbine nozzle guide vane.The three contoured cascades with the same contouring profile and the different positions where the contoured profile locates at are researched.The results show that the contouring configuration can reduce the aerodynamic losses of the cascade.The flat side takes advantage of a stronger decrease of the losses,compared to the contoured side.The contouring configuration can also inhibit the secondary flow.The contoured cascade in which the contouring profile starts upstream of the airfoil,ends at the middle of the airfoil has the best effect of improving secondary flow.展开更多
Non-Axisymmetric Endwall Profiling(NAEP) is commonly utilized in turbines to eliminate secondary flows.Nevertheless,most of the NAEP methods consider a single-blade row environment without incorporating the effect of ...Non-Axisymmetric Endwall Profiling(NAEP) is commonly utilized in turbines to eliminate secondary flows.Nevertheless,most of the NAEP methods consider a single-blade row environment without incorporating the effect of the stage environment.This paper aims to investigate the influence mechanism of the incoming vortex on the endwall secondary flow structures of NAEP in a highly loaded turbine cascade.To model the incoming vortex in a stage environment,this study considers a half-delta wing as the vortex generator at the upstream of the turbine cascade.The NAEP is then carried out for a highly loaded turbine cascade with an in-house numerical optimization design platform subject to no incoming vortex.Numerical simulation is also carried out under the influence of the incoming vortex for the turbine cascades with both planar and non-axisymmetric endwall.This paper furthers investigated the pitchwise effect of the incoming vortex on the near endwall secondary flow.The results indicate that the NAEP effectively improves the endwall secondary flow of the turbine cascade,where the total pressure loss coefficient and the secondary kinetic energy(SKE) are reduced by 7.3%,and 45.7%,respectively.It is further seen that with the incoming vortex,the NAEP achieves a considerable control effect on the endwall secondary flow of the turbine cascade.With incoming vortex,the NAEP can still achieve considerable control effect on the endwall secondary flow of the turbine cascade;the averaged reductions of loss coefficient and SKE are 7.8% and 14.2%,respectively.Under some pitchwise locations,incoming vortex can suppress the convection of cross-passage flow toward the suction corner greatly and reduce the loss coefficient of the baseline cascade.The incoming vortex at 4/7 pitch impinged right at the blade leading edge,leading to the generation of low-momentum fluid,which increased the size and the strength of the horseshoe vortex.Under all the pitchwise locations,NAEP can suppress the secondary vortices,e.g.,the passage vortex and the counter vortex,considerably.展开更多
This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The pla...This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The platform is constructed by integrating adaptive genetic algorithm(AGA), design of experiments(DOE), response surface methodology(RSM) based on the artificial neural network(ANN), and a 3D Navier–Stokes solver.The visual analysis method based on DOE is used to define the design space and analyze the impact of the design parameters on the target function(response).Optimization of the axisymmetric and the non-axisymmetric endwall contouring in an S-shaped duct is performed and evaluated to minimize the total pressure loss.The optimal ducts are found to reduce the hub corner separation and suppress the migration of the low momentum fluid.The non-axisymmetric endwall contouring is shown to remove the separation completely and reduce the net duct loss by 32.7%.展开更多
This paper presents an optimization of a high pressure turbine by constructing non-axisymmetric endwalls to the stator row and the rotor hub.The optimization was quantified by using optimization algorithms based on th...This paper presents an optimization of a high pressure turbine by constructing non-axisymmetric endwalls to the stator row and the rotor hub.The optimization was quantified by using optimization algorithms based on the multi-objective function.The objective was to increase total-to-total efficiency with the constraint on the mass flow rate equal to the design point value.In order to ensure that global optimum could be achieved,the function of parameters was first approximated through the artificial neural network,and then optimum was achieved by implementing the genetic algorithm.It was adopted through the design and optimization environment of FineTM/Design3 D.Three individual treatments of the endwalls were presented.Firstly,the hub and the shroud of the stator were optimized together.Secondly,the hub of the rotor was optimized.Thirdly,the rotor hub was optimized in the presence of the optimized stator.The result of the investigation showed that the optimized shape of the endwalls can significantly help to increase the efficiency up to 0.18%with the help of a reduction of the transverse pressure gradient.The coefficient of secondary kinetic energy,entropy coefficient,spanwise mass averaged entropy were reduced.In order to investigate the periodic effects,the design of the optimized turbine under steady simulations was confirmed through unsteady simulations.The last part of the investigation made sure that the performance improvement remained consistent over the full operating line at off-design conditions by the implementation of non-axisymmetric endwalls.展开更多
Non-axisymmetric endwall contouring has been proved to be an effective flow control technique in turbomachinery.Several different flow control mechanisms and qualitative design strategies have been proposed.The endwal...Non-axisymmetric endwall contouring has been proved to be an effective flow control technique in turbomachinery.Several different flow control mechanisms and qualitative design strategies have been proposed.The endwall contouring mechanism based on the flow governing equations is significant for exploring the quantitative design strategies of the nonaxisymmetric endwall contouring.In this paper,the static pressure redistribution mechanism of endwall contouring was explained based on the radial equilibrium equation.A quantified expression of the static pressure redistribution mechanism was proposed.Compressor cascades were simulated using an experimentally validated numerical method to validate the static pressure redistribution mechanism.A geometric parameter named meridional curvature(Cme)is defined to quantify the concave and convex features of the endwall.Results indicate that the contoured endwall changes the streamline curvature,inducing a centrifugal acceleration.Consequently,the radial pressure gradient is reformed to maintain the radial equilibrium.The convex endwall represented by positive Cme increases the radial pressure gradient,decreasing the endwall static pressure,while the concave endwall represented by negative Cme increases the endwall static pressure.The Cme helps to establish the quantified relation between the change in the endwall radial pressure gradient and the endwall geometry.Besides,there is a great correlation between the distributions of the Cme and the change in the endwall static pressure.It can be concluded that the parameter Cme can be considered as a significant parameter to parameterize the endwall surface and to explore the quantitative design strategies of the nonaxisymmetric endwall contouring.展开更多
A survey of research on aerodynamic loss investigations for turbine components of gas tuibine engines is presented.Experimental and numerically predicted results are presented from investigations undertaken over the p...A survey of research on aerodynamic loss investigations for turbine components of gas tuibine engines is presented.Experimental and numerically predicted results are presented from investigations undertaken over the past 65 plus years.Of particular interest are losses from the development of secondary flows from airfoil/endwall interactions.The most important of the airfoilAmdwall secondary flows are passage vortices,counter voitices,and corner vortices.The structure and development of these secondaiy flows are described as they affect aerodynamic perfonnance within and downstream of turbine passage flows in compressible,high speed flows with either subsonic or transonic Mach number distributions,as well as within low-speed,incompressible flows.Also discussed are methods of endwall contouring,and its consequences in regard to airfoil/endwall secondary flows.展开更多
基金supported by National Natural Science Foundation of China(51236001)National Basic Research Program of China(2012CB720201)Beijing Natural Science Foundation(No.3151002)
文摘The current paper presents experimental and computational results to assess the effectiveness of non-axisymmetric endwall contouring in a compressor linear cascade. The endwaU was designed by an endwall design optimi- zation platform at 0° incidence (design condition). The optimization method is based on a genetic algorithm. The design objective was to minimize the total pressure losses. The experiments were carried out in a compressor cascade at a low-speed test facility with a Mach number of 0.15. Four nominal inlet flow angles were chosen to test the performance of non-axisymmetric Contoured Endwall (CEW). A five-hole pressure probe with a head diameter of 2 mm was used to traverse the downstream flow fields of the flat-endwall (FEW) and CEW cascades. Both the measured and predicted results indicated that the implementation of CEW results in smaller comer stall, and reduction of total pressure losses. The CEW gets 15.6% total pressure loss coefficient reduction at design condition, and 22.6% at off-design condition (+7° incidence). And the mechanism of the improvement of CEW based on both measured and calculated results is that the adverse pressure gradient (APG) has been reduced through the groove configuration near the leading edge (LE) of the suction surface (SS).
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
文摘Non-axisymmetric endwall is numerically investigated to suppress the secondary endwall flow in a HP turbine suction surface.The endwall contour is represented by a non-uniform rational B-spline surface.Two solution spaces are designed by the rule of hypercube sampling through variation of nodal radial extension.Final most effective endwall contour is obtained through screening all available samples with surrogate-based model.Results show that non axisymmetric endwall reduces the turbulence kinetic energy of the passage vortex by 5.5%and the total pressure loss 1.6%.Local heat transfer coefficient is lowered on the afore passage endwall surface with a certain increment on the aft passage endwall.Overall averaged heat transfer coefficient is reduced.
文摘Numerical simulations are carried out to investigate the effect of the endwall contouring on the secondary flow in turbine nozzle guide vane.The three contoured cascades with the same contouring profile and the different positions where the contoured profile locates at are researched.The results show that the contouring configuration can reduce the aerodynamic losses of the cascade.The flat side takes advantage of a stronger decrease of the losses,compared to the contoured side.The contouring configuration can also inhibit the secondary flow.The contoured cascade in which the contouring profile starts upstream of the airfoil,ends at the middle of the airfoil has the best effect of improving secondary flow.
基金supported by National Science and Technology Major Project (J2019-Ⅱ-0011-0031)the foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research (No. D5150230005)+1 种基金the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (No.PF2023091)National Natural Science Foundation of China (No.51806174)。
文摘Non-Axisymmetric Endwall Profiling(NAEP) is commonly utilized in turbines to eliminate secondary flows.Nevertheless,most of the NAEP methods consider a single-blade row environment without incorporating the effect of the stage environment.This paper aims to investigate the influence mechanism of the incoming vortex on the endwall secondary flow structures of NAEP in a highly loaded turbine cascade.To model the incoming vortex in a stage environment,this study considers a half-delta wing as the vortex generator at the upstream of the turbine cascade.The NAEP is then carried out for a highly loaded turbine cascade with an in-house numerical optimization design platform subject to no incoming vortex.Numerical simulation is also carried out under the influence of the incoming vortex for the turbine cascades with both planar and non-axisymmetric endwall.This paper furthers investigated the pitchwise effect of the incoming vortex on the near endwall secondary flow.The results indicate that the NAEP effectively improves the endwall secondary flow of the turbine cascade,where the total pressure loss coefficient and the secondary kinetic energy(SKE) are reduced by 7.3%,and 45.7%,respectively.It is further seen that with the incoming vortex,the NAEP achieves a considerable control effect on the endwall secondary flow of the turbine cascade.With incoming vortex,the NAEP can still achieve considerable control effect on the endwall secondary flow of the turbine cascade;the averaged reductions of loss coefficient and SKE are 7.8% and 14.2%,respectively.Under some pitchwise locations,incoming vortex can suppress the convection of cross-passage flow toward the suction corner greatly and reduce the loss coefficient of the baseline cascade.The incoming vortex at 4/7 pitch impinged right at the blade leading edge,leading to the generation of low-momentum fluid,which increased the size and the strength of the horseshoe vortex.Under all the pitchwise locations,NAEP can suppress the secondary vortices,e.g.,the passage vortex and the counter vortex,considerably.
基金supported by the National Natural Science Foundation of China (Nos.51006005, 51236001)the National Basic Research Program of China (No.2012CB720201)the Fundamen tal Research Funds for the Central Universities of China
文摘This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization.The platform is constructed by integrating adaptive genetic algorithm(AGA), design of experiments(DOE), response surface methodology(RSM) based on the artificial neural network(ANN), and a 3D Navier–Stokes solver.The visual analysis method based on DOE is used to define the design space and analyze the impact of the design parameters on the target function(response).Optimization of the axisymmetric and the non-axisymmetric endwall contouring in an S-shaped duct is performed and evaluated to minimize the total pressure loss.The optimal ducts are found to reduce the hub corner separation and suppress the migration of the low momentum fluid.The non-axisymmetric endwall contouring is shown to remove the separation completely and reduce the net duct loss by 32.7%.
文摘This paper presents an optimization of a high pressure turbine by constructing non-axisymmetric endwalls to the stator row and the rotor hub.The optimization was quantified by using optimization algorithms based on the multi-objective function.The objective was to increase total-to-total efficiency with the constraint on the mass flow rate equal to the design point value.In order to ensure that global optimum could be achieved,the function of parameters was first approximated through the artificial neural network,and then optimum was achieved by implementing the genetic algorithm.It was adopted through the design and optimization environment of FineTM/Design3 D.Three individual treatments of the endwalls were presented.Firstly,the hub and the shroud of the stator were optimized together.Secondly,the hub of the rotor was optimized.Thirdly,the rotor hub was optimized in the presence of the optimized stator.The result of the investigation showed that the optimized shape of the endwalls can significantly help to increase the efficiency up to 0.18%with the help of a reduction of the transverse pressure gradient.The coefficient of secondary kinetic energy,entropy coefficient,spanwise mass averaged entropy were reduced.In order to investigate the periodic effects,the design of the optimized turbine under steady simulations was confirmed through unsteady simulations.The last part of the investigation made sure that the performance improvement remained consistent over the full operating line at off-design conditions by the implementation of non-axisymmetric endwalls.
基金This study was supported by the National Natural Science Foundation Project(52376021).
文摘Non-axisymmetric endwall contouring has been proved to be an effective flow control technique in turbomachinery.Several different flow control mechanisms and qualitative design strategies have been proposed.The endwall contouring mechanism based on the flow governing equations is significant for exploring the quantitative design strategies of the nonaxisymmetric endwall contouring.In this paper,the static pressure redistribution mechanism of endwall contouring was explained based on the radial equilibrium equation.A quantified expression of the static pressure redistribution mechanism was proposed.Compressor cascades were simulated using an experimentally validated numerical method to validate the static pressure redistribution mechanism.A geometric parameter named meridional curvature(Cme)is defined to quantify the concave and convex features of the endwall.Results indicate that the contoured endwall changes the streamline curvature,inducing a centrifugal acceleration.Consequently,the radial pressure gradient is reformed to maintain the radial equilibrium.The convex endwall represented by positive Cme increases the radial pressure gradient,decreasing the endwall static pressure,while the concave endwall represented by negative Cme increases the endwall static pressure.The Cme helps to establish the quantified relation between the change in the endwall radial pressure gradient and the endwall geometry.Besides,there is a great correlation between the distributions of the Cme and the change in the endwall static pressure.It can be concluded that the parameter Cme can be considered as a significant parameter to parameterize the endwall surface and to explore the quantitative design strategies of the nonaxisymmetric endwall contouring.
文摘A survey of research on aerodynamic loss investigations for turbine components of gas tuibine engines is presented.Experimental and numerically predicted results are presented from investigations undertaken over the past 65 plus years.Of particular interest are losses from the development of secondary flows from airfoil/endwall interactions.The most important of the airfoilAmdwall secondary flows are passage vortices,counter voitices,and corner vortices.The structure and development of these secondaiy flows are described as they affect aerodynamic perfonnance within and downstream of turbine passage flows in compressible,high speed flows with either subsonic or transonic Mach number distributions,as well as within low-speed,incompressible flows.Also discussed are methods of endwall contouring,and its consequences in regard to airfoil/endwall secondary flows.