Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with...Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with other materials,carbon materials are abundant,low-cost,and environmentally friendly,and have excellent electrochemical properties,which make them especially suitable for negative electrode materials of SIBs and PIBs.Compared with traditional carbon materials,modifications of the morphology and size of nanomaterials represent effective strategies to improve the quality of electrode materials.Different nanostructures make different contributions toward improving the electrochemical performance of electrode materials,so the synthesis of nanomaterials is promising for controlling the morphology and size of electrode materials.This paper reviews the progress made and challenges in the use of carbon materials as negative electrode materials for SIBs and PIBs in recent years.The differences in Na+and K+storage mechanisms among different types of carbon materials are emphasized.展开更多
In recent years,low-dimensional materials have received extensive attention in the field of electronics and optoelectronics.Among them,photoelectric devices based on photoconductive effect in low-dimensional materials...In recent years,low-dimensional materials have received extensive attention in the field of electronics and optoelectronics.Among them,photoelectric devices based on photoconductive effect in low-dimensional materials have a broad development space.In contrast to positive photoconductivity,negative photoconductivity(NPC)refers to a phenomenon that the conductivity decreases under illumination.It has novel application prospects in the field of optoelectronics,memory,and gas detection,etc.In this paper,we review reports about the NPC effect in low-dimensional materials and systematically summarize the mechanisms to form the NPC effect in existing low-dimensional materials.展开更多
Materials with function of producing negative ions effection,containing valency-variable rare earth elements and semiconductor oxide,were fabricated.Free radicals produced by the materials were tested.The result shows...Materials with function of producing negative ions effection,containing valency-variable rare earth elements and semiconductor oxide,were fabricated.Free radicals produced by the materials were tested.The result shows that the materials can produce quite a few free radicals as·O^-_2 no matter whether they are under illumination of ultraviolet radiation or under visible light radiation,or under no light radiation, demonstrating semiconductor oxide can be catalysed under the visible light radiation.At the same time the result shows there is direct relation between the number of free radicals and of the negative ion produced by the materials,which meant that during photo-catalyzed and redox process of valency-variable rare earth elements free radicals translate into negative ions. A circular model is presented involving circulating change of valency-variable rare earth elements and water and oxygen absorbed on the surface of materials under the condition of photocatalysis.展开更多
The oxide ZrW_2O_8 displays unusual property of isotropic negative thermalexpansion in a large wide temperature range, which makes it have a number of important potentialapplications. The cubic Zr_(1-x)Hf_xW_2O_8 (x v...The oxide ZrW_2O_8 displays unusual property of isotropic negative thermalexpansion in a large wide temperature range, which makes it have a number of important potentialapplications. The cubic Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) were synthesized bystandard solid state reaction technique. The high and low temperature X-ray diffraction analysisindicate that the substitution of the Hf^(4+) for Zr^(4+) only leads to reducing the latticeconstants, and the changes of negative thermal expansion coefficients are not obvious. The linearexpansion coefficients of Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) are about -6 X 10^(-6) K^(-1) in the temperature range of 298 to 973 K, while that of Zr_(0.5)Hf_(0.5)W_2O_8 is -9.6X 10^(-6) K_(-1) from 83 to 298 K. The phase transition temperatures from alpha-ZrW_2O_8 tobeta-ZrW_2O_8 structure were also determined by X-ray diffraction method. Thermogravimetric analysis(TGA) exhibits that Zr_(1-x)Hf_xW_2O_8 is not hygroscopic in air.展开更多
Introduction: Diabetic ulcers are one of the main causes of morbidity and hospitalisation and thereby affecting the quality of life of persons suffering from the condition. The aim of the study was to assess the level...Introduction: Diabetic ulcers are one of the main causes of morbidity and hospitalisation and thereby affecting the quality of life of persons suffering from the condition. The aim of the study was to assess the level of satisfaction of persons who underwent treatment for diabetic ulcers using negative pressure produced from locally available materials. Materials and Methods: Creating negative pressure using locally available materials such as sterilized foam, tubes with diameter between 0.5 and 0.8 cm, transparent adhesive plaster and a suction machine. Results: Thirty-seven patients were enrolled in the current study;70.3% (n = 26) were known diabetic patients on regular treatment while 29.7% (n = 11) were diagnosed when they presented for the first time with ulcers. Patients were made to grade their level of satisfaction with therapy involving these locally used materials. Out of the 37 patients, 35 (94.6%) stated their therapy was excellent while 1 (2.7%) said the therapy was good;therapy was discontinued in one patient (2.7%) who had some complication. Conclusion: Desirable outcomes were obtained when patients were treated using negative pressure wound therapy (NPWT) produced using locally manufactured materials. Patients were able to pay for the therapy since the cost was reasonably low.展开更多
Negative refraction performance of Au nanowires arrays-based metamaterials was explored by means of finite difference and time domain (FDTD) algorithm for the purpose of providing flexible design freedom of the negati...Negative refraction performance of Au nanowires arrays-based metamaterials was explored by means of finite difference and time domain (FDTD) algorithm for the purpose of providing flexible design freedom of the negative index metamaterials (NIMs) working in visible regime from nanofabrication point of view. Tuning performance of the nanowires for negative refraction was analyzed by use of varying refractive index of filling materials among the metallic nanowires. Computational numerical simulation and analyses were carried out. The performance of negative refraction was compared by optimization of the structures. By optimizing the nanowires radius, E-field intensity was calculated in the case that the refractive index of filling material is changeable. The calculated refraction angles illustrate a relationship between the refraction angle and the index of filling material. Our computational results demonstrate that effective value of the negative refractive index strongly depends on the refractive index of the filling material when other parameters are fixed.展开更多
Since the complete correction of all five monochromatic Seidel aberrations for a singlet lens with random shape or a two-thin-lens system is unprocurable merely by using the conventional positive-index materials both ...Since the complete correction of all five monochromatic Seidel aberrations for a singlet lens with random shape or a two-thin-lens system is unprocurable merely by using the conventional positive-index materials both in theory and practice, this paper proposes that when one or both of the two lenses is/are made from negative-index materials, an imaging system composed of a pair of spherical thin lenses is possible to form a real image, in air, free from all five monochromatic Seidel aberrations. The calculated numerical solutions to the structural parameters of such lens systems possessing superior performance are provided and examples of them are illustrated for the given combinations of the two lenses' refractive indices, including an ultimately-remote imaging system.展开更多
We present a detailed theoretical analysis on the possibilities and conditions for negative permeability and negative refraction occuring in the magnetic materials with both pronounced magnetic and dielectric response...We present a detailed theoretical analysis on the possibilities and conditions for negative permeability and negative refraction occuring in the magnetic materials with both pronounced magnetic and dielectric responses to electromagnetic waves. The results indicate that the permeability is always positive for 5 = (2q +0.5)π (5 is the initial phase difference of magnetic components hx and hy of incident electromagnetic wave, q is integer), which means that it is difficult to realize negative refraction. However, for 5 = 2qπ, 5 = (2q + 1)π, or 5 = (2q - 0.5)π, the negative permeability occurs at some range of free procession frequency, which means that the refraction can become negative under certain conditions. Further analysis reveals that for general positive permittivity there are various opportunities for realizing the negative refraction provided that some requirements are met. One concludes also that the refractive index for δ = 2qπ case is similar to 5 = (2q + 1)π The only difference between two cases of δ = 2qπ and 5 = (2q + 1)π is that the x-direction for δ = 2qπ corresponds to the y-direction for 5 = (2q + 1)π and the y-direction for 5 = 2qπ corresponds to the x-direction for δ = (2q + 1)π. The results are valuable for designing and analysing the complex negative refraction of magnetic materials.展开更多
By using a first-principles approach, we investigate the pathway of electric displacement fields in shaped graded dielectric materials existing in the form of cloaks with various shapes. We reveal a type of apparently...By using a first-principles approach, we investigate the pathway of electric displacement fields in shaped graded dielectric materials existing in the form of cloaks with various shapes. We reveal a type of apparently negative electric polarization (ANEP), which is due to a symmetric oscillation of the paired electric permittivities, satisfying a sum rule. The ANEP does not occur for a spherical cloak, but appears up to maximum as a/b (the ratio between the long and short principal axis of the spheroidal cloak) is about 5/2, and eventually disappears as a/b becomes large enough corresponding to a rod-like shape. Further, the cloaking efficiency is calculated for different geometrical shapes and demonstrated to closely relate to the ANEP. The possibility of experiments is discussed. This work has relevance to dielectric shielding based on shaped graded dielectric materials.展开更多
The anti-resonant phenomenon of effective electromagnetic parameters of metamaterials has aroused controversy due to negative imaginary permittivity or permeability. It is experimentally found that the negative imagin...The anti-resonant phenomenon of effective electromagnetic parameters of metamaterials has aroused controversy due to negative imaginary permittivity or permeability. It is experimentally found that the negative imaginary permittivity can occur for the natural passive materials near the Fabry Perot resonances. We reveal the nature of negative imaginary permittivity, which is correlated with the magnetoelectric coupling. The anti-resonance of permittivity is a non-inherent feature for passive materials, while it can be inherent for devices or metamaterials. Our finding validates that the negative imaginary part of effective permittivity does not contradict the second law of thermodynamics for metamaterials owing to the magnetoelectric coupling.展开更多
Metamaterial structure based on split ring resonators (SRR) is proposed in order to produce a negative refractive index. For this structure we have used a new approach, instead of applying light perpendicularly incide...Metamaterial structure based on split ring resonators (SRR) is proposed in order to produce a negative refractive index. For this structure we have used a new approach, instead of applying light perpendicularly incident. We apply horizontally incident input waves. A model of SRR is used to understand the behavior and its affects. We calculate the S-parameters using S-parameter analysis and the results for transmission, refractive index, permeability and permittivity of the structure is induced. The negative refractive index is found to be significantly dependent upon the width of the continuous wire as well as gap between resonators. Moreover, we study the effect of lattice constant on the electromagnetic response of the structure. It is expected that this work will provide useful information for design and fabrication of metamaterials with negative refractive index for in-plane applications.展开更多
In this work, a waveguide structure consisting of a new artificial negative index material (NIM) surrounded by a nonlinear cover and a ferrite (YIG) substrate has been designed and investigated. We apply the boundary ...In this work, a waveguide structure consisting of a new artificial negative index material (NIM) surrounded by a nonlinear cover and a ferrite (YIG) substrate has been designed and investigated. We apply the boundary conditions and impose the condition of negative effective permeability of the ferrite slab to derive the dispersion relation related to the proposed structure. The NIM permittivity and permeability are not constant and depend on the operating frequency. The dispersion properties of the nonlinear electromagnetic surface waves (NEM) are analyzed and the associated propagation index is calculated. Results show that the dispersion could be tuned and controlled by selecting the NIM film thickness and the film-cover interface nonlinearity. The proposed structure is supporting unusual types of NEM surface waves having a non-reciprocal behavior widely used in designing optoelectronic devices.展开更多
Metamaterial structure based on cascaded split ring resonators (CSRR) is proposed in order to produce a negative refractive index in terahertz regime at near-infrared range. We have incident light horizontally instead...Metamaterial structure based on cascaded split ring resonators (CSRR) is proposed in order to produce a negative refractive index in terahertz regime at near-infrared range. We have incident light horizontally instead of incidenting it perpendicular. We have measured the negative refractive index, permeability and permittivity by using the S-parameter analysis. Furthermore, it is found out that negative refractive index, permeability and permittivity are dependent upon the width of the wire and the gap between resonators at near-infrared range. This work will be helpful for the fabrication and design of double negative metamaterials structure having negative permeability, permittivity and negative refractive index for in plane applications.展开更多
An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameter...An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameters of the metamaterials, and topology optimization technique was introduced to design the microstructure configurations of the materials with desired electromagnetic characteristics. The material considered was a periodic array of dielectric substrates attached with metal film pieces. By controlling the arrangements of the metal film pieces in the design domain, the potential microstructure with desired electromagnetic characteristics can be obtained finally. Two different LHMs were obtained with maximum bandwidth of negative refraction, and the experimental results show that negative refractive indices appear while the metamaterials have simultaneously negative permittivity and negative permeability. Topology optimization technique is found to be an effective tool for configuration design of LHMs.展开更多
Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed trans...Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed transmission peaks have a distinct transform with the relative deviation of the SRRs centre from the wire centre 8, from a single left-handed peak, double left-handed peaks with different magnitude to no transmission peak, i.e. left-handed properties of metamaterials disappear. Numerical simulation shows that the change of 8 makes the effective permeability shift at a frequency range, where stopband occurs. It is thought that the stopband in left-handed passband is due to the symmetry breaking between SRRs and wires in the metamaterials.展开更多
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a...Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.展开更多
We report the study of magnetic and transport properties of polycrystalline and single crystal Na(Zn,Mn)Sb,a new member of“111”type of diluted magnetic materials.The material crystallizes into Cu2Sb-type structure w...We report the study of magnetic and transport properties of polycrystalline and single crystal Na(Zn,Mn)Sb,a new member of“111”type of diluted magnetic materials.The material crystallizes into Cu2Sb-type structure which is isostructural to“111”type Fe-based superconductors.With suitable carrier and spin doping,the Na(Zn,Mn)Sb establishes spin-glass ordering with freezing temperature(Tf)below 15 K.Despite lack of long-range ferromagnetic ordering,Na(Zn,Mn)Sb single crystal still shows sizeable anomalous Hall effect below Tf.Carrier concentration determined by Hall effect measurements is over 1019 cm-3.More significantly,we observe colossal negative magnetoresistance(MR≡[ρ(H)−ρ(0)]/ρ(0))of-94%in the single crystal sample.展开更多
The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-bas...The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.展开更多
The degradation mechanism of an Sn_4P_3 electrode as Na-ion battery anode was investigated by using a transmission electron microscopic observation. At the first desodiation, we confirmed that Sn nanoparticles with 6 ...The degradation mechanism of an Sn_4P_3 electrode as Na-ion battery anode was investigated by using a transmission electron microscopic observation. At the first desodiation, we confirmed that Sn nanoparticles with 6 nm in size were dispersed in an amorphous-like P matrix.Compared to this, we observed aggregated Sn particles with sizes exceeding 50 nm after the drastic capacity fading. The capacity fading mechanism was for the first time confirmed to be Sn aggregation. To improve the capacity decay, we carried out the two kinds of chargeàdischarge cycling tests under the reduced volume changes of Sn particles and P matrix by limiting desodiation reactions of Nae Sn and Na3P, respectively. The Sn_4P_3 electrode exhibited an excellent cyclability with the discharge capacity of 500 mA hg^(-1) for 420 cycles under the limited desodiation, whereas the capacity decay was accelerated under the limited sodiation. The results suggest that the Sn aggregation can be improved by the reduced volume change of the P matrix, and that it is very effective for improving anode performance of Sn_4P_3 electrode.展开更多
To develop the urgent requirement for high-rate electrodes in next-generation lithium-ion batteries,SnO_(2)-based negative materials have been spotlighted as potential alternatives.However,the intrinsic problems,such ...To develop the urgent requirement for high-rate electrodes in next-generation lithium-ion batteries,SnO_(2)-based negative materials have been spotlighted as potential alternatives.However,the intrinsic problems,such as conspicuous volume variation and unremarkable conductivity,make the rate capability behave badly at a high-current density.Here,to solve these issues,this work demonstrate a new and facile strategy for synergistically enhancing their cyclic stability by combining the advantages of Ni doping and the fabrication of hollow nanosphere.Specifically,the incorporation of Ni^(2+)ions into the tetragonal rutile-type SnO_(2)shellsimproves the charge transfer kinetics effectively,leading to an excellent cycling stability.In addition,the growth of surface grains on the hollow nanospheres are restrained after Ni doping,which also reduces theunexpected polarization of negative electrodes.As a result,the as-prepared Ni doped electrode delivers a remarkable reversible capacity of 712 mAh g^(-1)at 0.1 A g^(-1)and exhibits outstanding capacity of 340 mAh g^(-1)at 1.6 A g^(-1),about 2.58 times higher than that of the pure SnO_(2)hollow sample.展开更多
文摘Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with other materials,carbon materials are abundant,low-cost,and environmentally friendly,and have excellent electrochemical properties,which make them especially suitable for negative electrode materials of SIBs and PIBs.Compared with traditional carbon materials,modifications of the morphology and size of nanomaterials represent effective strategies to improve the quality of electrode materials.Different nanostructures make different contributions toward improving the electrochemical performance of electrode materials,so the synthesis of nanomaterials is promising for controlling the morphology and size of electrode materials.This paper reviews the progress made and challenges in the use of carbon materials as negative electrode materials for SIBs and PIBs in recent years.The differences in Na+and K+storage mechanisms among different types of carbon materials are emphasized.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574011 and 51761145025)the Key Program of the National Natural Science Foundation of China(Grant No.No.61731019)the Natural Science Foundation of Beijing,China(Grant Nos.4182015 and 4182014)。
文摘In recent years,low-dimensional materials have received extensive attention in the field of electronics and optoelectronics.Among them,photoelectric devices based on photoconductive effect in low-dimensional materials have a broad development space.In contrast to positive photoconductivity,negative photoconductivity(NPC)refers to a phenomenon that the conductivity decreases under illumination.It has novel application prospects in the field of optoelectronics,memory,and gas detection,etc.In this paper,we review reports about the NPC effect in low-dimensional materials and systematically summarize the mechanisms to form the NPC effect in existing low-dimensional materials.
文摘Materials with function of producing negative ions effection,containing valency-variable rare earth elements and semiconductor oxide,were fabricated.Free radicals produced by the materials were tested.The result shows that the materials can produce quite a few free radicals as·O^-_2 no matter whether they are under illumination of ultraviolet radiation or under visible light radiation,or under no light radiation, demonstrating semiconductor oxide can be catalysed under the visible light radiation.At the same time the result shows there is direct relation between the number of free radicals and of the negative ion produced by the materials,which meant that during photo-catalyzed and redox process of valency-variable rare earth elements free radicals translate into negative ions. A circular model is presented involving circulating change of valency-variable rare earth elements and water and oxygen absorbed on the surface of materials under the condition of photocatalysis.
基金This project is financially supported by the National Natural Science Foundation of China (No. 50002001) the Natural Science Foundation of Yunnan Province (No. 2000E0006Q)
文摘The oxide ZrW_2O_8 displays unusual property of isotropic negative thermalexpansion in a large wide temperature range, which makes it have a number of important potentialapplications. The cubic Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) were synthesized bystandard solid state reaction technique. The high and low temperature X-ray diffraction analysisindicate that the substitution of the Hf^(4+) for Zr^(4+) only leads to reducing the latticeconstants, and the changes of negative thermal expansion coefficients are not obvious. The linearexpansion coefficients of Zr_(1-x)Hf_xW_2O_8 (x velence 0,0.3, 0.5, 0.7, and 1.0) are about -6 X 10^(-6) K^(-1) in the temperature range of 298 to 973 K, while that of Zr_(0.5)Hf_(0.5)W_2O_8 is -9.6X 10^(-6) K_(-1) from 83 to 298 K. The phase transition temperatures from alpha-ZrW_2O_8 tobeta-ZrW_2O_8 structure were also determined by X-ray diffraction method. Thermogravimetric analysis(TGA) exhibits that Zr_(1-x)Hf_xW_2O_8 is not hygroscopic in air.
文摘Introduction: Diabetic ulcers are one of the main causes of morbidity and hospitalisation and thereby affecting the quality of life of persons suffering from the condition. The aim of the study was to assess the level of satisfaction of persons who underwent treatment for diabetic ulcers using negative pressure produced from locally available materials. Materials and Methods: Creating negative pressure using locally available materials such as sterilized foam, tubes with diameter between 0.5 and 0.8 cm, transparent adhesive plaster and a suction machine. Results: Thirty-seven patients were enrolled in the current study;70.3% (n = 26) were known diabetic patients on regular treatment while 29.7% (n = 11) were diagnosed when they presented for the first time with ulcers. Patients were made to grade their level of satisfaction with therapy involving these locally used materials. Out of the 37 patients, 35 (94.6%) stated their therapy was excellent while 1 (2.7%) said the therapy was good;therapy was discontinued in one patient (2.7%) who had some complication. Conclusion: Desirable outcomes were obtained when patients were treated using negative pressure wound therapy (NPWT) produced using locally manufactured materials. Patients were able to pay for the therapy since the cost was reasonably low.
文摘Negative refraction performance of Au nanowires arrays-based metamaterials was explored by means of finite difference and time domain (FDTD) algorithm for the purpose of providing flexible design freedom of the negative index metamaterials (NIMs) working in visible regime from nanofabrication point of view. Tuning performance of the nanowires for negative refraction was analyzed by use of varying refractive index of filling materials among the metallic nanowires. Computational numerical simulation and analyses were carried out. The performance of negative refraction was compared by optimization of the structures. By optimizing the nanowires radius, E-field intensity was calculated in the case that the refractive index of filling material is changeable. The calculated refraction angles illustrate a relationship between the refraction angle and the index of filling material. Our computational results demonstrate that effective value of the negative refractive index strongly depends on the refractive index of the filling material when other parameters are fixed.
基金Project partially supported by the National Basic Research Program of China(Grant No2004CB719802)an additional support from the Science and Technology Department of Zhejiang Province,China
文摘Since the complete correction of all five monochromatic Seidel aberrations for a singlet lens with random shape or a two-thin-lens system is unprocurable merely by using the conventional positive-index materials both in theory and practice, this paper proposes that when one or both of the two lenses is/are made from negative-index materials, an imaging system composed of a pair of spherical thin lenses is possible to form a real image, in air, free from all five monochromatic Seidel aberrations. The calculated numerical solutions to the structural parameters of such lens systems possessing superior performance are provided and examples of them are illustrated for the given combinations of the two lenses' refractive indices, including an ultimately-remote imaging system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50772120 and 60977004)Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant No. KJCXZYW.NANO.06)+1 种基金Shanghai Rising StarTracking Program (Grant No. 10QH1402700)UNAM-DGAPA Mexico IN120406-3
文摘We present a detailed theoretical analysis on the possibilities and conditions for negative permeability and negative refraction occuring in the magnetic materials with both pronounced magnetic and dielectric responses to electromagnetic waves. The results indicate that the permeability is always positive for 5 = (2q +0.5)π (5 is the initial phase difference of magnetic components hx and hy of incident electromagnetic wave, q is integer), which means that it is difficult to realize negative refraction. However, for 5 = 2qπ, 5 = (2q + 1)π, or 5 = (2q - 0.5)π, the negative permeability occurs at some range of free procession frequency, which means that the refraction can become negative under certain conditions. Further analysis reveals that for general positive permittivity there are various opportunities for realizing the negative refraction provided that some requirements are met. One concludes also that the refractive index for δ = 2qπ case is similar to 5 = (2q + 1)π The only difference between two cases of δ = 2qπ and 5 = (2q + 1)π is that the x-direction for δ = 2qπ corresponds to the y-direction for 5 = (2q + 1)π and the y-direction for 5 = 2qπ corresponds to the x-direction for δ = (2q + 1)π. The results are valuable for designing and analysing the complex negative refraction of magnetic materials.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10604014 and 10874025the Shanghai Education Committee and the Shanghai Education Development Foundation ("Shu Guang" Project under Grant No. 05SG01)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, ChinaChinese National Key Basic Research Special Fund under Grant No. 2006CB921706
文摘By using a first-principles approach, we investigate the pathway of electric displacement fields in shaped graded dielectric materials existing in the form of cloaks with various shapes. We reveal a type of apparently negative electric polarization (ANEP), which is due to a symmetric oscillation of the paired electric permittivities, satisfying a sum rule. The ANEP does not occur for a spherical cloak, but appears up to maximum as a/b (the ratio between the long and short principal axis of the spheroidal cloak) is about 5/2, and eventually disappears as a/b becomes large enough corresponding to a rod-like shape. Further, the cloaking efficiency is calculated for different geometrical shapes and demonstrated to closely relate to the ANEP. The possibility of experiments is discussed. This work has relevance to dielectric shielding based on shaped graded dielectric materials.
基金Supported by the National Natural Science Foundation of China under Grant No 51102007the Fund for Discipline Construction of Beijing University of Chemical Technology under Grant No XK1702
文摘The anti-resonant phenomenon of effective electromagnetic parameters of metamaterials has aroused controversy due to negative imaginary permittivity or permeability. It is experimentally found that the negative imaginary permittivity can occur for the natural passive materials near the Fabry Perot resonances. We reveal the nature of negative imaginary permittivity, which is correlated with the magnetoelectric coupling. The anti-resonance of permittivity is a non-inherent feature for passive materials, while it can be inherent for devices or metamaterials. Our finding validates that the negative imaginary part of effective permittivity does not contradict the second law of thermodynamics for metamaterials owing to the magnetoelectric coupling.
文摘Metamaterial structure based on split ring resonators (SRR) is proposed in order to produce a negative refractive index. For this structure we have used a new approach, instead of applying light perpendicularly incident. We apply horizontally incident input waves. A model of SRR is used to understand the behavior and its affects. We calculate the S-parameters using S-parameter analysis and the results for transmission, refractive index, permeability and permittivity of the structure is induced. The negative refractive index is found to be significantly dependent upon the width of the continuous wire as well as gap between resonators. Moreover, we study the effect of lattice constant on the electromagnetic response of the structure. It is expected that this work will provide useful information for design and fabrication of metamaterials with negative refractive index for in-plane applications.
文摘In this work, a waveguide structure consisting of a new artificial negative index material (NIM) surrounded by a nonlinear cover and a ferrite (YIG) substrate has been designed and investigated. We apply the boundary conditions and impose the condition of negative effective permeability of the ferrite slab to derive the dispersion relation related to the proposed structure. The NIM permittivity and permeability are not constant and depend on the operating frequency. The dispersion properties of the nonlinear electromagnetic surface waves (NEM) are analyzed and the associated propagation index is calculated. Results show that the dispersion could be tuned and controlled by selecting the NIM film thickness and the film-cover interface nonlinearity. The proposed structure is supporting unusual types of NEM surface waves having a non-reciprocal behavior widely used in designing optoelectronic devices.
文摘Metamaterial structure based on cascaded split ring resonators (CSRR) is proposed in order to produce a negative refractive index in terahertz regime at near-infrared range. We have incident light horizontally instead of incidenting it perpendicular. We have measured the negative refractive index, permeability and permittivity by using the S-parameter analysis. Furthermore, it is found out that negative refractive index, permeability and permittivity are dependent upon the width of the wire and the gap between resonators at near-infrared range. This work will be helpful for the fabrication and design of double negative metamaterials structure having negative permeability, permittivity and negative refractive index for in plane applications.
基金Funded by the National Natural Science Foundation of China (Nos.90605002, 90816025 and 10721062)the National Basic Research Programof China (No. 2006CB601205)
文摘An effective method to design structural Left-handed material(LHM) was proposed. A commercial finite element software HFSS and S-parameter retrieval method were used to determine the effective constitutive parameters of the metamaterials, and topology optimization technique was introduced to design the microstructure configurations of the materials with desired electromagnetic characteristics. The material considered was a periodic array of dielectric substrates attached with metal film pieces. By controlling the arrangements of the metal film pieces in the design domain, the potential microstructure with desired electromagnetic characteristics can be obtained finally. Two different LHMs were obtained with maximum bandwidth of negative refraction, and the experimental results show that negative refractive indices appear while the metamaterials have simultaneously negative permittivity and negative permeability. Topology optimization technique is found to be an effective tool for configuration design of LHMs.
基金Supported by the National Natural Science Foundation of China for Distinguished Young Scholar of China under Grant No 50025207, and the National Basic Research Programme of China under Grant No 2004CB719800.
文摘Stopband phenomena are reported in the passband of left-handed metamaterials. The samples with linear defect are designed by removing one layer of split ring resonators (SRRs). It is shown that the left-handed transmission peaks have a distinct transform with the relative deviation of the SRRs centre from the wire centre 8, from a single left-handed peak, double left-handed peaks with different magnitude to no transmission peak, i.e. left-handed properties of metamaterials disappear. Numerical simulation shows that the change of 8 makes the effective permeability shift at a frequency range, where stopband occurs. It is thought that the stopband in left-handed passband is due to the symmetry breaking between SRRs and wires in the metamaterials.
基金the financial support from the National Key Research and Development Program of China(No.2021YFF0500802)the National Natural Science Foundation of China(No.51890904,No.52022022,and No.52278247)the Scientific Research and Innovation Plan of Jiangsu Province(KYCX21_0090)。
文摘Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices.
基金financially supported by the Ministry of Science and Technology(MOST)NSF of China through the research projects(2018YFA03057001,11820101003)+2 种基金CAS Project for Young Scientists in Basic Research(YSBR-030)support of Beijing Nova program(2020133)the Youth Innovation Promotion Association of CAS(2020007).
文摘We report the study of magnetic and transport properties of polycrystalline and single crystal Na(Zn,Mn)Sb,a new member of“111”type of diluted magnetic materials.The material crystallizes into Cu2Sb-type structure which is isostructural to“111”type Fe-based superconductors.With suitable carrier and spin doping,the Na(Zn,Mn)Sb establishes spin-glass ordering with freezing temperature(Tf)below 15 K.Despite lack of long-range ferromagnetic ordering,Na(Zn,Mn)Sb single crystal still shows sizeable anomalous Hall effect below Tf.Carrier concentration determined by Hall effect measurements is over 1019 cm-3.More significantly,we observe colossal negative magnetoresistance(MR≡[ρ(H)−ρ(0)]/ρ(0))of-94%in the single crystal sample.
基金The authors would like to make an appreciation to the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds of the Central Universities(No.2021ZDPY0211)for financial support.
文摘The environmental concerns resulting from coal-fired power generation that produces large amounts of CO_(2)and fly ash are of great interest.To mitigate,this study aims to develop a novel carbonated CO_(2)-fly ash-based backfill(CFBF)material under ambient conditions.The performance of CFBF was investigated for different fly ash-cement ratios and compared with non-CO_(2)reacted samples.The fresh CFBF slurry conformed to the Herschel-Bulkley model with shear thinning characteristics.After carbonation,the yield stress of the fresh slurry increased significantly by lowering fly ash ratio due to gel formation.The setting times were accelerated,resulting in approximately 40.6%of increased early strength.The final strength decreased when incorporating a lower fly ash ratio(50%and 60%),which was related to the existing heterogeneous pores caused by rapid fluid loss.The strength increased with fly ash content above 70%because additional C-S(A)-H and silica gels were characterized to precipitate on the grain surface,so the binding between particles increased.The C-S(A)-H gel was developed through the pozzolanic reaction,where CaCO_(3)was the prerequisite calcium source obtained in the CO_(2)-fly ash reaction.Furthermore,the maximum CO_(2)uptake efficiency was 1.39 mg-CO_(2)/g-CFBF.The CFBF material is feasible to co-dispose CO_(2)and fly ash in the mine goaf as negative carbon backfill materials,and simultaneously mitigates the strata movement and water lost in post-subsurface mining.
基金partially supported by Advanced Low Carbon Technology Research and Development Program(ALCA,16200610802)Joint Usage/Research Program on Zero-Emission Energy Research,Institute for Applied Ecology,Kyoto University(ZE29A-14,ZE30A-05,ZE30A-06)+1 种基金Japan Society for the Promotion of Science(JSPS)KAKENHI(Grant Number 17H03128,17K17888,16K05954)supported by "Advanced Characterization Nanotechnology Platform,Nanotechnology Platform Program of the Ministry of Education,Culture,Sports,Science and Technology(MEXT),Japan" at the Research Center for Ultra-High Voltage Electron Microscopy in Osaka University(A-17-OS-0020,A-18-S-0002)
文摘The degradation mechanism of an Sn_4P_3 electrode as Na-ion battery anode was investigated by using a transmission electron microscopic observation. At the first desodiation, we confirmed that Sn nanoparticles with 6 nm in size were dispersed in an amorphous-like P matrix.Compared to this, we observed aggregated Sn particles with sizes exceeding 50 nm after the drastic capacity fading. The capacity fading mechanism was for the first time confirmed to be Sn aggregation. To improve the capacity decay, we carried out the two kinds of chargeàdischarge cycling tests under the reduced volume changes of Sn particles and P matrix by limiting desodiation reactions of Nae Sn and Na3P, respectively. The Sn_4P_3 electrode exhibited an excellent cyclability with the discharge capacity of 500 mA hg^(-1) for 420 cycles under the limited desodiation, whereas the capacity decay was accelerated under the limited sodiation. The results suggest that the Sn aggregation can be improved by the reduced volume change of the P matrix, and that it is very effective for improving anode performance of Sn_4P_3 electrode.
基金financial support provided by the National Natural Science Foundation of China(Grant No:52164031)Yunnan Natural Science Foundation(No:202101AT070449,202101AU070048).
文摘To develop the urgent requirement for high-rate electrodes in next-generation lithium-ion batteries,SnO_(2)-based negative materials have been spotlighted as potential alternatives.However,the intrinsic problems,such as conspicuous volume variation and unremarkable conductivity,make the rate capability behave badly at a high-current density.Here,to solve these issues,this work demonstrate a new and facile strategy for synergistically enhancing their cyclic stability by combining the advantages of Ni doping and the fabrication of hollow nanosphere.Specifically,the incorporation of Ni^(2+)ions into the tetragonal rutile-type SnO_(2)shellsimproves the charge transfer kinetics effectively,leading to an excellent cycling stability.In addition,the growth of surface grains on the hollow nanospheres are restrained after Ni doping,which also reduces theunexpected polarization of negative electrodes.As a result,the as-prepared Ni doped electrode delivers a remarkable reversible capacity of 712 mAh g^(-1)at 0.1 A g^(-1)and exhibits outstanding capacity of 340 mAh g^(-1)at 1.6 A g^(-1),about 2.58 times higher than that of the pure SnO_(2)hollow sample.