In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium ap...In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium approach. The factor of safety relating to each trial slip surface is calculated using a simplified algorithm of the Morgenstern-Price method, which satisfies both the force and the moment equilibriums. General slip surface is considered non-circular in this study that is constituted by linking random straight lines.To explore the performance of the proposed algorithm, four benchmark test problems are analyzed. The results demonstrate that the present techniques can provide reliable, accurate and efficient solutions for locating the critical failure surface and relating FOS. Moreover, in contrast with previous studies the present algorithm could reach the lower value of FOS and reached more exact solutions.展开更多
Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of...Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.展开更多
This is an expand of the complex function method in solving the problem of interaction of plane.SH-waves and non-circular cavity surfaced with linig in anisotropic media.the use the method similar to that incorporated...This is an expand of the complex function method in solving the problem of interaction of plane.SH-waves and non-circular cavity surfaced with linig in anisotropic media.the use the method similar to that incorporated in [2] added with Savin's method for solving stress concentration of non-circular cavity surfaced with lining in elasticity.Anisotropic media can be used ic simulate the conditions of thegeology.The solving proceeding for this problem can be processed conveniently in the manner similar to that introduced in [2].In this paper.as illustrated in example numerical studies have been done for a square cavity surfaced with lining in anisotropic media.展开更多
The friction of road surface covered by snow or ice is very low and that results in reducing vehicle traction forces and potential traffic accidents. In general, to establish a master curve on a rubber-ice friction mo...The friction of road surface covered by snow or ice is very low and that results in reducing vehicle traction forces and potential traffic accidents. In general, to establish a master curve on a rubber-ice friction model is difficult because the ice surface, being not far removed from its melting point, reacts itself very sen-sitively to pressure, speed, and temperature changes. In this paper, an accepta-ble frictional interaction model was implemented to finite element method to rationally examine the frictional interaction behavior on ice between the tire and the road surface. The formula of friction characteristic according to tem-perature and sliding velocity on the ice surface was applied for tire traction analysis. Numerical results were verified by comparing the outdoor test data and it was confirmed to indicate similar correlation. It is found that the rub-ber-ice friction model will be useful for the improvement of the ice traction performance of tire.展开更多
文摘In this study, Imperialistic Competitive Algorithm(ICA) is utilized for locating the critical failure surface and computing the factor of safety(FOS) in a slope stability analysis based on the limit equilibrium approach. The factor of safety relating to each trial slip surface is calculated using a simplified algorithm of the Morgenstern-Price method, which satisfies both the force and the moment equilibriums. General slip surface is considered non-circular in this study that is constituted by linking random straight lines.To explore the performance of the proposed algorithm, four benchmark test problems are analyzed. The results demonstrate that the present techniques can provide reliable, accurate and efficient solutions for locating the critical failure surface and relating FOS. Moreover, in contrast with previous studies the present algorithm could reach the lower value of FOS and reached more exact solutions.
文摘Based on the slice method of the non-circular slip surface for the calculation of integral stability of slope, an improved genetic algorithm was proposed, which can freely search for the most dangerous slip surface of slope and the corresponding minimum safety factor without supposing the geometric shape of the most dangerous slip surface. This improved genetic algorithm can simulate the genetic evolution process of organisms and avoid the local minimum value compared with the classical methods. The results of engineering cases show that it is a global optimal algorithm and has many advantages, such as higher efficiency and shorter time than the simple genetic algorithm.
文摘This is an expand of the complex function method in solving the problem of interaction of plane.SH-waves and non-circular cavity surfaced with linig in anisotropic media.the use the method similar to that incorporated in [2] added with Savin's method for solving stress concentration of non-circular cavity surfaced with lining in elasticity.Anisotropic media can be used ic simulate the conditions of thegeology.The solving proceeding for this problem can be processed conveniently in the manner similar to that introduced in [2].In this paper.as illustrated in example numerical studies have been done for a square cavity surfaced with lining in anisotropic media.
文摘The friction of road surface covered by snow or ice is very low and that results in reducing vehicle traction forces and potential traffic accidents. In general, to establish a master curve on a rubber-ice friction model is difficult because the ice surface, being not far removed from its melting point, reacts itself very sen-sitively to pressure, speed, and temperature changes. In this paper, an accepta-ble frictional interaction model was implemented to finite element method to rationally examine the frictional interaction behavior on ice between the tire and the road surface. The formula of friction characteristic according to tem-perature and sliding velocity on the ice surface was applied for tire traction analysis. Numerical results were verified by comparing the outdoor test data and it was confirmed to indicate similar correlation. It is found that the rub-ber-ice friction model will be useful for the improvement of the ice traction performance of tire.