In this note, we consider a holomorphic mapping f from the unit disk C in C to p-ball B^p = {z∈C^n;i=1∑n|zi|p〈1,1〈p〈+∞. It is proved that for such f,| | |f||(z)|≤1-||f(z)||^2/1-|z|^2,z∈D. Th...In this note, we consider a holomorphic mapping f from the unit disk C in C to p-ball B^p = {z∈C^n;i=1∑n|zi|p〈1,1〈p〈+∞. It is proved that for such f,| | |f||(z)|≤1-||f(z)||^2/1-|z|^2,z∈D. The extremal problem is also discussed when p is an even number. This result extends some related results on Schwarz lemma.展开更多
In this paper we prove a Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk into the unit ball. This result extends some related results.
In this paper,we derive some∂∂^(-)-Bochner formulas for holomorphic maps between Hermitian manifolds.As applications,we prove some Schwarz lemma type estimates,and some rigidity and degeneracy theorems.For instance,we...In this paper,we derive some∂∂^(-)-Bochner formulas for holomorphic maps between Hermitian manifolds.As applications,we prove some Schwarz lemma type estimates,and some rigidity and degeneracy theorems.For instance,we show that there is no non-constant holomorphic map from a compact Hermitian manifold with positive(resp.non-negative)ℓ-second Ricci curvature to a Hermitian manifold with non-positive(resp.negative)real bisectional curvature.These theorems generalize the results[5,6]proved recently by L.Ni on Kähler manifolds to Hermitian manifolds.We also derive an integral inequality for a holomorphic map between Hermitian manifolds.展开更多
This note addresses monotonic growths and logarithmic convexities of the weighted ((1-t2)αdt2, -∞〈α〈∞, 0〈t〈1) integral means Aα,β( f ,·) and Lα,β( f ,·) of the mixed area (πr2)-βA( f...This note addresses monotonic growths and logarithmic convexities of the weighted ((1-t2)αdt2, -∞〈α〈∞, 0〈t〈1) integral means Aα,β( f ,·) and Lα,β( f ,·) of the mixed area (πr2)-βA( f ,r) and the mixed length (2πr)-βL( f ,r) (0≤β≤1 and 0〈r〈1) of f (rD) and?f (rD) under a holomorphic map f from the unit disk D into the finite complex plane C.展开更多
This article proves the existence of Julia directions of value distribution of holomorphic mapping f from the unit disk into the n-dimensional complex projective spacePn(C) under the assumption limsupT(r,f)/log 1/...This article proves the existence of Julia directions of value distribution of holomorphic mapping f from the unit disk into the n-dimensional complex projective spacePn(C) under the assumption limsupT(r,f)/log 1/1-r = +∞ for hypersurfaces in general position. A heuristic principle concerning the existence of Julia directions of holomorphic mappings from the unit disk into Pn(C) is given also.展开更多
This article gives a normal criterion for families of holomorphic mappings of several complex variables into P N(C)for moving hypersurfaces in pointwise general position,related to an Eremenko’s theorem.
Let/(z) be a holomorph.self-map on C.-G-(0) with essential singularities 0 and It is proved that f(z) has a completdy invariant domain.D.F(f),then D is doubly connected and D contains all the singularities of the inv...Let/(z) be a holomorph.self-map on C.-G-(0) with essential singularities 0 and It is proved that f(z) has a completdy invariant domain.D.F(f),then D is doubly connected and D contains all the singularities of the inverse of f(z),moreover,if f is of the finite type, then D=F(f). This result implies that f(z) has at most one completely invariant domain in F(f).展开更多
In [1],they generalized R.Nevanlinna’s results to Y,where Y is a parabolic Riemann Surface.In this paper,following their method,we develop some further results for holomorphic maps on Y,including the maps into Pn(C),...In [1],they generalized R.Nevanlinna’s results to Y,where Y is a parabolic Riemann Surface.In this paper,following their method,we develop some further results for holomorphic maps on Y,including the maps into Pn(C),the complex projective varieties,and Abelian varieties.展开更多
In this note we deal with a class of holomorphic maps with generalized positive real part on Hilbert space. The distortion theorem and Pick Julia type theorem for these maps are obtained.
This article proves the existence of singular directions of value distribution theory for some transcendental holomorphic curves in the n-dimensional complex projective space P^n(C).. An example is given to compleme...This article proves the existence of singular directions of value distribution theory for some transcendental holomorphic curves in the n-dimensional complex projective space P^n(C).. An example is given to complement these results.展开更多
In this article, we establish distortion theorems for some various subfamilies of Bloch mappings defined in the unit polydisc Dn with critical points, which extend the results of Liu and Minda to higher dimensions. We...In this article, we establish distortion theorems for some various subfamilies of Bloch mappings defined in the unit polydisc Dn with critical points, which extend the results of Liu and Minda to higher dimensions. We obtain lower bounds of | det(f'(z))|and Rdet(f'(z)) for Bloch mapping f. As an application, some lower and upper bounds of Bloch constants for the subfamilies of holomorphic mappings are given.展开更多
In this paper,we prove that a proper μ holomorphic mapping f:D 1→D 2 between bounded domains with some convexity,such that f satisfies some growth condition,extends smoothly to bD 1-{z:U(z)=0}.
Let F be a family of holomorphic curves of a domain D in C into a closed subset X in ■~N(C). Let Q_1(z),…, Q_(2t+1)(z) be moving hypersurfaces in ■~N(C) located in pointwise t-subgeneral position with respect to X....Let F be a family of holomorphic curves of a domain D in C into a closed subset X in ■~N(C). Let Q_1(z),…, Q_(2t+1)(z) be moving hypersurfaces in ■~N(C) located in pointwise t-subgeneral position with respect to X. If each pair of curves f and g in F share the set {Q_1(z),…, Q_(2t+1)(z)}, then F is normal on D. This result greatly extend some earlier theorems related to Montel's criterion.展开更多
In this paper we present the most important definitions and results of the theory of parabolic-like mappings, and we will give an example. The proofs of the results can be found in [2,4] and [3].
In this paper,we extend the concept of holomorphic curves sharing hyperplanes and introduce definitions of restricted hyperplanes and partial shared hypersurfaces.Then,we prove several normal criteria of the family of...In this paper,we extend the concept of holomorphic curves sharing hyperplanes and introduce definitions of restricted hyperplanes and partial shared hypersurfaces.Then,we prove several normal criteria of the family of holomorphic curves and holomorphic mappings that concern restricted hyperplanes and partial shared hypersurfaces.These results generalize the Montel-type normal criterion of holomorphic curves.展开更多
In this paper,we study a family of Hartogs domains fibred over Hermitian symmetric manifolds being a unit ball in C^(m).The aim of the present study is to establish the rigidity results about proper holomorphic mappin...In this paper,we study a family of Hartogs domains fibred over Hermitian symmetric manifolds being a unit ball in C^(m).The aim of the present study is to establish the rigidity results about proper holomorphic mappings between two equidimensional Hartogs domains over Hermitian symmetric manifolds.In particular,we can fully determine its biholomorphic equivalence and automorphism group.展开更多
In this paper,the growth theorem for convex maps on the Banach space is given, this is: ‖f(x)‖≤‖x‖/(1-‖x‖),x∈B the estimate is best possible for Hilbert space.
In this paper, the authors establish distortion theorems for various subfamilies Hk(B) of holomorphic mappings defined in the unit ball in C^n with critical points, where k is any positive integer. In particular, th...In this paper, the authors establish distortion theorems for various subfamilies Hk(B) of holomorphic mappings defined in the unit ball in C^n with critical points, where k is any positive integer. In particular, the distortion theorem for locally biholomorphic mappings is obtained when k tends to -∞. These distortion theorems give lower bounds on [det f′(z)[ and Re det f′(z). As an application of these distortion theorems, the authors give lower and upper bounds of Bloch constants for the subfamilies βk(M) of holomorphic mappings. Moreover, these distortion theorems are sharp. When B is the unit disk in C, these theorems reduce to the results of Liu and Minda. A new distortion result of Re det f′(z) for locally biholomorphic mappings is also obtained.展开更多
基金supported by National Natural Science Foundations of China(11011373,11201199,11271333)Zhejiang Provincial Natural Science Foundation of China(LY14A010008)
文摘In this note, we consider a holomorphic mapping f from the unit disk C in C to p-ball B^p = {z∈C^n;i=1∑n|zi|p〈1,1〈p〈+∞. It is proved that for such f,| | |f||(z)|≤1-||f(z)||^2/1-|z|^2,z∈D. The extremal problem is also discussed when p is an even number. This result extends some related results on Schwarz lemma.
基金supported by the National Natural Science Foundation of China(11201199)the Scientific Research Foundation of Jinling Institute of Technology(Jit-b-201221)Qing Lan Project
文摘In this paper we prove a Schwarz-Pick lemma for the modulus of holomorphic mappings from the polydisk into the unit ball. This result extends some related results.
基金supported by National Natural Science Foundation of China(12001490)Natural Science Foundation of Zhejiang Province(LQ20A010005).
文摘In this paper,we derive some∂∂^(-)-Bochner formulas for holomorphic maps between Hermitian manifolds.As applications,we prove some Schwarz lemma type estimates,and some rigidity and degeneracy theorems.For instance,we show that there is no non-constant holomorphic map from a compact Hermitian manifold with positive(resp.non-negative)ℓ-second Ricci curvature to a Hermitian manifold with non-positive(resp.negative)real bisectional curvature.These theorems generalize the results[5,6]proved recently by L.Ni on Kähler manifolds to Hermitian manifolds.We also derive an integral inequality for a holomorphic map between Hermitian manifolds.
基金in part supported by NSERC of Canada and the Finnish Cultural Foundation
文摘This note addresses monotonic growths and logarithmic convexities of the weighted ((1-t2)αdt2, -∞〈α〈∞, 0〈t〈1) integral means Aα,β( f ,·) and Lα,β( f ,·) of the mixed area (πr2)-βA( f ,r) and the mixed length (2πr)-βL( f ,r) (0≤β≤1 and 0〈r〈1) of f (rD) and?f (rD) under a holomorphic map f from the unit disk D into the finite complex plane C.
基金project supported in part by the National Natural Science Foundation of China(10971156)
文摘This article proves the existence of Julia directions of value distribution of holomorphic mapping f from the unit disk into the n-dimensional complex projective spacePn(C) under the assumption limsupT(r,f)/log 1/1-r = +∞ for hypersurfaces in general position. A heuristic principle concerning the existence of Julia directions of holomorphic mappings from the unit disk into Pn(C) is given also.
基金supported in part by the National Natural Science Foundation of China(10371091)
文摘This article gives a normal criterion for families of holomorphic mappings of several complex variables into P N(C)for moving hypersurfaces in pointwise general position,related to an Eremenko’s theorem.
文摘Let/(z) be a holomorph.self-map on C.-G-(0) with essential singularities 0 and It is proved that f(z) has a completdy invariant domain.D.F(f),then D is doubly connected and D contains all the singularities of the inverse of f(z),moreover,if f is of the finite type, then D=F(f). This result implies that f(z) has at most one completely invariant domain in F(f).
文摘In [1],they generalized R.Nevanlinna’s results to Y,where Y is a parabolic Riemann Surface.In this paper,following their method,we develop some further results for holomorphic maps on Y,including the maps into Pn(C),the complex projective varieties,and Abelian varieties.
文摘In this note we deal with a class of holomorphic maps with generalized positive real part on Hilbert space. The distortion theorem and Pick Julia type theorem for these maps are obtained.
基金The project supported in part by the National Natural Science Foundation of China (10371091)
文摘This article proves the existence of singular directions of value distribution theory for some transcendental holomorphic curves in the n-dimensional complex projective space P^n(C).. An example is given to complement these results.
基金partly supported by the National Natural Science Foundation of China(10826083,10971063)NSF of Zhejiang Province (D7080080, Y606197,Y6090694)Scientific Research Fund of Zhejiang Provincial Education Department (Y200805520)
文摘In this article, we establish distortion theorems for some various subfamilies of Bloch mappings defined in the unit polydisc Dn with critical points, which extend the results of Liu and Minda to higher dimensions. We obtain lower bounds of | det(f'(z))|and Rdet(f'(z)) for Bloch mapping f. As an application, some lower and upper bounds of Bloch constants for the subfamilies of holomorphic mappings are given.
文摘In this paper,we prove that a proper μ holomorphic mapping f:D 1→D 2 between bounded domains with some convexity,such that f satisfies some growth condition,extends smoothly to bD 1-{z:U(z)=0}.
基金The NSF(11701006,11471163) of Chinathe NSF(1808085QA02) of Anhui Province
文摘Let F be a family of holomorphic curves of a domain D in C into a closed subset X in ■~N(C). Let Q_1(z),…, Q_(2t+1)(z) be moving hypersurfaces in ■~N(C) located in pointwise t-subgeneral position with respect to X. If each pair of curves f and g in F share the set {Q_1(z),…, Q_(2t+1)(z)}, then F is normal on D. This result greatly extend some earlier theorems related to Montel's criterion.
文摘In this paper we present the most important definitions and results of the theory of parabolic-like mappings, and we will give an example. The proofs of the results can be found in [2,4] and [3].
基金The second author was supported by the National Natural Science Foundation of China(11501127)Foundation for Distinguished Young Talents in Higher Education of Guangdong Province(2014KQNCX068)The third author was supported by the Foundation of Guangzhou Civil Aviation College(18X0428).
文摘In this paper,we extend the concept of holomorphic curves sharing hyperplanes and introduce definitions of restricted hyperplanes and partial shared hypersurfaces.Then,we prove several normal criteria of the family of holomorphic curves and holomorphic mappings that concern restricted hyperplanes and partial shared hypersurfaces.These results generalize the Montel-type normal criterion of holomorphic curves.
基金Supported by the National Natural Science Foundation of China(Grant Nos.12271411,11901327)。
文摘In this paper,we study a family of Hartogs domains fibred over Hermitian symmetric manifolds being a unit ball in C^(m).The aim of the present study is to establish the rigidity results about proper holomorphic mappings between two equidimensional Hartogs domains over Hermitian symmetric manifolds.In particular,we can fully determine its biholomorphic equivalence and automorphism group.
文摘In this paper,the growth theorem for convex maps on the Banach space is given, this is: ‖f(x)‖≤‖x‖/(1-‖x‖),x∈B the estimate is best possible for Hilbert space.
基金Project supported by the National Natural Science Foundation of China(No.10571164)Specialized Research Fund for the Doctoral Program of Higher Education(No.20050358052)the Zhejiang Provincial Natural Science Foundation of China(No.Y606197).
文摘In this paper, the authors establish distortion theorems for various subfamilies Hk(B) of holomorphic mappings defined in the unit ball in C^n with critical points, where k is any positive integer. In particular, the distortion theorem for locally biholomorphic mappings is obtained when k tends to -∞. These distortion theorems give lower bounds on [det f′(z)[ and Re det f′(z). As an application of these distortion theorems, the authors give lower and upper bounds of Bloch constants for the subfamilies βk(M) of holomorphic mappings. Moreover, these distortion theorems are sharp. When B is the unit disk in C, these theorems reduce to the results of Liu and Minda. A new distortion result of Re det f′(z) for locally biholomorphic mappings is also obtained.