In this paper, the positive steady states of the epidemic model with non-monotonic incidence rate are considered. Firstly, it is proved that the unique positive constant steady state is stable for the ODE system and t...In this paper, the positive steady states of the epidemic model with non-monotonic incidence rate are considered. Firstly, it is proved that the unique positive constant steady state is stable for the ODE system and the PDE system. Secondly, a priori estimate of positive steady states is given, and the non-existence of non-constant positive steady states is established by using Poincare inequality and Young inequality. Finally,the existence and bifurcation of non-constant positive steady states are studied by using the degree theory and the global bifurcation theorem.展开更多
An eco-epidemiological model with an epidemic in the predator and with a Holling type Ⅱ function is considered.A system with diffusion under the homogeneous Neumann boundary condition is studied.The existence for a p...An eco-epidemiological model with an epidemic in the predator and with a Holling type Ⅱ function is considered.A system with diffusion under the homogeneous Neumann boundary condition is studied.The existence for a positive solution of the corresponding steady state problem is mainly discussed.First,a prior estimates(positive upper and lower bounds) of the positive steady states of the reaction-diffusion system is given by the maximum principle and the Harnack inequation.Then,the non-existence of non-constant positive steady states by using the energy method is given.Finally,the existence of non-constant positive steady states is obtained by using the topological degree.展开更多
One predator two prey system is a research topic which has both the theoretical and practical values. This paper provides a natural condition of the existence of stable positive steady-state solutions for the one pred...One predator two prey system is a research topic which has both the theoretical and practical values. This paper provides a natural condition of the existence of stable positive steady-state solutions for the one predator two prey system. Under this condition we study the existence of the positive steady-state solutions at vicinity of the triple eigenvalue by implicit function theorem, discuss the positive stable solution problem bifurcated from the semi-trivial solutions containing two positive components with the help of bifurcation and perturbation methods.展开更多
A strongly coupled elliptic system under the homogeneous Dirichlet boundary condition denoting the steady-state system of the Lotka-Volterra two-species competitive system with cross-diffusion effects is considered. B...A strongly coupled elliptic system under the homogeneous Dirichlet boundary condition denoting the steady-state system of the Lotka-Volterra two-species competitive system with cross-diffusion effects is considered. By using the implicit function theorem and the Lyapunov- Schmidt reduction method, the existence of the positive solutions bifurcating from the trivial solution is obtained. Furthermore, the stability of the bifurcating positive solutions is also investigated by analyzing the associated characteristic equation.展开更多
In this paper we deal with the positive steady states of a Competitor-Competitor-Mutualist modelwith diffusion and homogeneous Dirichlet boundary conditions.We first give the necessary conditions,and thenestablish the...In this paper we deal with the positive steady states of a Competitor-Competitor-Mutualist modelwith diffusion and homogeneous Dirichlet boundary conditions.We first give the necessary conditions,and thenestablish the sufficient conditions for the existence of positive steady states.展开更多
基金Supported by the Natural Science Foundation of China(11401356)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2015JM1008)the Foundation of Weinan Teachers University(No.13YKF004)
文摘In this paper, the positive steady states of the epidemic model with non-monotonic incidence rate are considered. Firstly, it is proved that the unique positive constant steady state is stable for the ODE system and the PDE system. Secondly, a priori estimate of positive steady states is given, and the non-existence of non-constant positive steady states is established by using Poincare inequality and Young inequality. Finally,the existence and bifurcation of non-constant positive steady states are studied by using the degree theory and the global bifurcation theorem.
基金The National Natural Science Foundation of China (No.10601011)
文摘An eco-epidemiological model with an epidemic in the predator and with a Holling type Ⅱ function is considered.A system with diffusion under the homogeneous Neumann boundary condition is studied.The existence for a positive solution of the corresponding steady state problem is mainly discussed.First,a prior estimates(positive upper and lower bounds) of the positive steady states of the reaction-diffusion system is given by the maximum principle and the Harnack inequation.Then,the non-existence of non-constant positive steady states by using the energy method is given.Finally,the existence of non-constant positive steady states is obtained by using the topological degree.
基金This work is supported by National Science Foundation of China and the Fundes of Institute of Math (opened) Academic Sinica.
文摘One predator two prey system is a research topic which has both the theoretical and practical values. This paper provides a natural condition of the existence of stable positive steady-state solutions for the one predator two prey system. Under this condition we study the existence of the positive steady-state solutions at vicinity of the triple eigenvalue by implicit function theorem, discuss the positive stable solution problem bifurcated from the semi-trivial solutions containing two positive components with the help of bifurcation and perturbation methods.
基金Supported by the National Natural Science Foundation of China (10961017)"Qinglan" Talent Programof Lanzhou Jiaotong University (QL-05-20A)
文摘A strongly coupled elliptic system under the homogeneous Dirichlet boundary condition denoting the steady-state system of the Lotka-Volterra two-species competitive system with cross-diffusion effects is considered. By using the implicit function theorem and the Lyapunov- Schmidt reduction method, the existence of the positive solutions bifurcating from the trivial solution is obtained. Furthermore, the stability of the bifurcating positive solutions is also investigated by analyzing the associated characteristic equation.
基金Supported by the National Natural Science Foundation of China (No.19831060)the"333"Project of JiangSu Province
文摘In this paper we deal with the positive steady states of a Competitor-Competitor-Mutualist modelwith diffusion and homogeneous Dirichlet boundary conditions.We first give the necessary conditions,and thenestablish the sufficient conditions for the existence of positive steady states.