To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizi...To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring.展开更多
Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement trans...Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement transformation coefficient(DTC)of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process,and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view(FFOV).To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands,a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV.First,an image coordinate system,a pixel measurement coordinate system,and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM.In addition,marker spots in the FFOV are selected,and the DTCs at the marker spots are obtained from calibration experiments.Also,a fitting method based on locally weighted scatterplot smoothing(LOWESS)is selected,and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots.Finally,the calibrated distribution functions of the DTCs are applied to the LVDMM,and experiments conducted to verify the displacement measurement accuracies are reported.The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than±15μm and±19μm,respectively,and that for oblique displacement is better than±24μm.Compared with the traditional calibration method,the displacement measurement error in the FFOV is now 90%smaller.This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV,and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.展开更多
Three dimensional(3D) displacements, which can be translated further into 3D strain, are key parameters tor design, manufacturing and quality control. Using different optical setups, phase-shift methods, and algorit...Three dimensional(3D) displacements, which can be translated further into 3D strain, are key parameters tor design, manufacturing and quality control. Using different optical setups, phase-shift methods, and algorithms, several different 3D electronic speckle pattern interferometry(ESPl) systems for displacement and strain measurements have been achieved and commercialized. This paper provides a review of the recent developments in ESPI systems for 3D displacement and strain measurement. After an overview of the fundamentals of ESP! theory, temporal phase-shift, and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI system, which is suited well for static measurement, and by the spatial phase-shift ESPI system, which is particularly useful for dynamic measurement, are discussed. For each method, the basic theory, a brief derivation and different optical layouts are presented. The state of art application, potential and limitation of the ESPI systems are shown and demonstrated.展开更多
A new method for measuring 3-D rigid body displacements is proposed,in which two perpendicular beams are emitted onto two sensitive planes of PSDs being perpendicular to each other.The method can be used to measure 1-...A new method for measuring 3-D rigid body displacements is proposed,in which two perpendicular beams are emitted onto two sensitive planes of PSDs being perpendicular to each other.The method can be used to measure 1-D or 2-D displacements when required.Moreover,the experimental results are presented,which demonstrate that the new method has high accuracy,fast processing speed,high reliability,and easily being realized.展开更多
A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright ...A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright spot is pegged on the object to be measured and imaged to the target of CCD camera through a telescopic lens. The CCD target converts the optical signal to equivalent electric signal. The video frequency signal is digitized to an array of 512×512 pixels by the analog to digital converter (ADC), then transmitted to the computer. The computer controls the data acquisition, conducts image processing and detects the location of the target spot. Comparing the current position with the original position of the spot, the displacement of object is obtained. With the aid of analysis software, the system can achieve the resolution of 0 01 mm in the 6 m distance from the object to the point of observation. To meet the need of practice, the measuring distance can be extended to 100 m or even farther.展开更多
Based on the development of the non-contact measurement system of free-formsurface, NURBS reconstruction of measurement points of freeform surface is effectively realized bymodifying the objective function and recursi...Based on the development of the non-contact measurement system of free-formsurface, NURBS reconstruction of measurement points of freeform surface is effectively realized bymodifying the objective function and recursive procedure and calculating the optimum number ofcontrol points. The reconstruction precision is evaluated through Ja-cobi's transformation method.The feasibility of the measurement system and effectiveness of the reconstruction algorithm aboveare proved by experiment.展开更多
The effectiveness of monitoring and early-warning systems for ground deformation phenomena,such as sinkholes,depends on their ability to accurately resolve the ongoing ground displacement and detect the subtle deforma...The effectiveness of monitoring and early-warning systems for ground deformation phenomena,such as sinkholes,depends on their ability to accurately resolve the ongoing ground displacement and detect the subtle deformation preceding catastrophic failures.Sagging sinkholes with a slow subsidence rate and diffuse edges pose a significant challenge for subsidence monitoring due to the low deformation rates and limited lateral strain gradients.In this work,we satisfactorily illustrate the practicality of the Brillouin optical time domain analysis(BOTDA)to measure the spatial-temporal patterns of the vertical displacement in such challenging slow-moving sagging sinkholes.To assess the performance of the approach,we compare the strain recorded by the distributed optical fiber sensor with the vertical displacement measured by high-precision leveling.The results show a good spatial correlation with the ability to identify the maximum subsidence point.There is also a good temporal correlation with the detection of an acceleration phase in the subsidence associated with a flood event.展开更多
A new method for measuring nano-displacement is discussed. Theresolution of shift is as far as 1 nm. The principle of quantumtunneling effects was used to design the instrument. With the tunnelbetween the sample and t...A new method for measuring nano-displacement is discussed. Theresolution of shift is as far as 1 nm. The principle of quantumtunneling effects was used to design the instrument. With the tunnelbetween the sample and the needlepoint and under the control ofclosed loop system, the instrument works at constant current mode, sothat the high precision displacement can be got.展开更多
Non-contact measurements of machining temperatures were performed with optical pyrometer when drilling particle(B4C) reinforced metal matrix composites(MMCs) with different drills. The effect of particle content, ...Non-contact measurements of machining temperatures were performed with optical pyrometer when drilling particle(B4C) reinforced metal matrix composites(MMCs) with different drills. The effect of particle content, cutting speed, feed rate and tool material on the maximum drilling temperature was investigated. The drilling parameters were optimized based on multiple performance characteristics in terms of the maximum cutting temperature and tool wear. According to the results, the most influential control factors on the cutting temperatures are found to be particle fraction, feed rate and interaction between the cutting speed and particle content, respectively. The influences of the cutting speed and drill material on the drilling temperature are found to be relatively lower for the used range of parameters. Minimum cutting temperatures are obtained with lower particle fraction and cutting speed, with relatively higher feed rates and carbide tools. The results reveal that optimal combination of the drilling parameters can be used to obtain both minimum cutting temperature and tool wear.展开更多
This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its ev...This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its eventual displacements on direction parallel to the construction axis. For the purpose of the experiment, geodetic measurement techniques and 2D DIC (digital image correlation) method (utilizing photographs of the object recorded with digital camera) were compared with regard to credibility, efficiency and accuracy. The vertical and horizontal displacements were monitored by tachometers measurements. The deformations in x-axis and y-axis on the wall surface was monitored by 2D DIC. It has been noticed that 2D DIC method is a surface method, continuous--not discreet. It allows for continuous observations of surface deformations, which is not possible in case of tachemetric measurements. Despite many advantages, the 2D DIC method lacks unambiguous evaluation of precision and relevance of designated displacements, which is rather significant for possibilities of utilization in technical control of large engineered objects. It should be also marked that the tachometric method is more reliable but is more laborious. Research of this type might comprise additional element for the assessment of the influence of dynamic loads, such as activating turbine water flow, onto the overall condition of the surveyed structure.展开更多
The slug rivet is widely used in wing assembly due to its longer fatigue life and better sealing performance compared with other connection technologies.As a countersink with dual-angle is widely adopted for this type...The slug rivet is widely used in wing assembly due to its longer fatigue life and better sealing performance compared with other connection technologies.As a countersink with dual-angle is widely adopted for this type of connection,the countersink diameter and depth are key factors that affect assembly quality.Therefore,it is of great importance to efficiently inspect the countersink quality to ensure high accuracy.However,contact measurements are susceptible to the loss of accuracy due to cutting debris and lube build-up,while the hole-scanning method using laser profilometry is time consuming and complex.In this paper,a non-contact method for countersink diameter and depth measurement based on a machine vision system is proposed.The countersink diameter can be directly measured by the machine vision system,while the countersink depth is determined through the countersink diameter indirectly.First,by means of image processing technology together with an improved edge detection algorithm,the countersink diameter can be obtained.Then,a 3D microscope is employed to measure the countersink depth,which helps to model the countersink.As a result,once the countersink diameter is measured,so is the depth.The experimentation demonstrated that this method has strong feasibility and enables time saving,which is conducive to improve the riveting efficiency.展开更多
A novel multi-laser beams measuring system (MLBM) for high precision detection on displacement of flow fields based on laser backscatter was designed and studied. MLBM has many advantages, such as simple structure, ...A novel multi-laser beams measuring system (MLBM) for high precision detection on displacement of flow fields based on laser backscatter was designed and studied. MLBM has many advantages, such as simple structure, high stability, and no limitation of the monochromaticity of laser. By circumventing the strong influence of atmospheric backscattering on the high sensitivity of target echo detection, high precision detection on backscatter density of laser by signal processing was achieved. Furthermore, the signal densities of various distances were extracted by time sampling and precise frequency control of digital circuit. Finally, the MLBM system including devices integrated of emitting and reviving equipments and program was obtained. Detection experiments showed that our system has high precision and the measurement error could be controlled within 5% to 10%.展开更多
The Earth is an elastic body,and the surface mass loading changes will lead to elastic loading deformation on the surface of the Earth.In this study,we investigated the surface seasonal mass changes and vertical crust...The Earth is an elastic body,and the surface mass loading changes will lead to elastic loading deformation on the surface of the Earth.In this study,we investigated the surface seasonal mass changes and vertical crustal deformation in North China using the data obtained by the techniques of the Global Positioning System(GPS),Gravity Recovery and Climate Experiment(GRACE)and Surface Loading Models(SLMs).The seasonal annual signal and semi-annual signal obtained by the three techniques show strong correlations.The average value of the weighted root-mean-square(WRMS)of the all 30 sites is 58%after deducting the GRACE-obtained vertical deformation from the GPS-derived vertical deformation.However,the consistency of results between GPS and SLMs is not so good,with a 31%mean WRMS reduction,due to the fact that the global SLMs perform not well in North China.The GRACEmeasured long-term trend is deducted from the GPS-obtained vertical rates to reveal the crustal displacement caused by the underground factors such as tectonic movement and groundwater in North China.The results show that the rates of stations HECX and TJBH are very large,more than 10 mm/yr,which suggests that the surface subsidence is caused by excessive exploitation of groundwater.展开更多
Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then ...Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, ll tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 ram. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.展开更多
The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic d...The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.展开更多
The present study is aimed to investigate the ability of different intensity measures (IMs), including response spectral acceleration at the fundamental period of the structure, Sa(T1), as a common scalar IM and t...The present study is aimed to investigate the ability of different intensity measures (IMs), including response spectral acceleration at the fundamental period of the structure, Sa(T1), as a common scalar IM and twelve vector-valued IMs for seismic collapse assessment of structures. The vector-valued IMs consist of two components, with S(T1) as the first component and different parameters that are ratios of scalar IMs, as well as the spectral shape proxies εSa and N, as the second component. After investigating the properties of an optimal IM, a new vector-valued IM that includes the ratio of Sa(T1) to the displacement spectrum intensity (DSI) as the second component is proposed. The new IM is more efficient than other IMs for predicting the collapse capacity of structures. It is also sufficient with respect to magnitude, source-to-site distance, and scale factor for collapse capacity prediction of structures. To satisfy the predictability criterion, a ground motion prediction equation (GMPE) is determined for Sa(T1)/DSI by using the existing GMPEs. Furthermore, an empirical equation is proposed for obtaining the correlation between the components of the proposed IM. The results of this study show that using the new vector-valued IM leads to a more reliable seismic collapse assessment of structures.展开更多
A landslide displacement (DLL) attenuation model has been developed using spectral intensity and a ratio of critical acceleration coefficient to ground acceleration coefficient. In the development of the model,a New Z...A landslide displacement (DLL) attenuation model has been developed using spectral intensity and a ratio of critical acceleration coefficient to ground acceleration coefficient. In the development of the model,a New Zealand earthquake record data set with magnitudes ranging from 5.0 to 7.2 within a source distance of 175 km is used. The model can be used to carry out deterministic landslide displacement analysis,and readily extended to carry out probabilistic seismic landslide displacement analysis. DLL attenuation models have also been developed by using earthquake source terms,such as magnitude and source distance,that account for the effects of earthquake faulttype,source type,and site conditions. Sensitivity analyses show that the predicted DLL values from the new models are close to those from the Romeo model that was developed from an Italian earthquake record data set. The proposed models are also applied to an analysis of landslide displacements in the Wenchuan earthquake,and a comparison between the predicted and the observed results shows that the proposed models are reliable,and can be confidently used in mapping landslide potential.展开更多
Aiming at the shortcomings of traditional contact measurement methods such as low measurement efficiency,high cost and low accuracy,a non-contact optical measurement method based on the laser displacement sensor is pr...Aiming at the shortcomings of traditional contact measurement methods such as low measurement efficiency,high cost and low accuracy,a non-contact optical measurement method based on the laser displacement sensor is proposed.According to the relevant regulations of the coaxiality error evaluation standard and the structural characteristics of the compound gear shaft,we have designed and built a set of supporting software system as well as a hardware test platform.In this paper,the distance difference threshold and scale threshold methods are used to eliminate outlier data.The least squares circle is selected to calculate the center of the circle and the minimum containment cylinder axis method is used as the reference axis of the composite gear shaft.Compensated by the standard step shaft calibration,the coaxiality error of the composite gear shaft can be measured to be within 0.01 mm in less than two minutes.The range value of the multi-section measurement test is 0.065 mm.The average coaxiality error is∅0.476 mm.展开更多
文摘To enhance the applicability and measurement accuracy of phase-based optical flow method using complex steerable pyramids in structural displacement measurement engineering applications, an improved method of optimizing parameter settings is proposed. The optimized parameters include the best measurement points of the Region of Interest (ROI) and the levels of pyramid filters. Additionally, to address the issue of updating reference frames in practical applications due to the difficulty in estimating the maximum effective measurement value, a mechanism for dynamically updating reference frames is introduced. Experimental results demonstrate that compared to representative image gradient-based displacement measurement methods, the proposed method exhibits higher measurement accuracy in engineering applications. This provides reliable data support for structural damage identification research based on vibration signals and is expected to broaden the engineering application prospects for structural health monitoring.
基金supported financially by the National Natural Science Foundation of China (NSFC) (Grant No.51775378)the Key Projects in Tianjin Science&Technology Support Program (Grant No.19YFZC GX00890).
文摘Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement transformation coefficient(DTC)of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process,and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view(FFOV).To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands,a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV.First,an image coordinate system,a pixel measurement coordinate system,and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM.In addition,marker spots in the FFOV are selected,and the DTCs at the marker spots are obtained from calibration experiments.Also,a fitting method based on locally weighted scatterplot smoothing(LOWESS)is selected,and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots.Finally,the calibrated distribution functions of the DTCs are applied to the LVDMM,and experiments conducted to verify the displacement measurement accuracies are reported.The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than±15μm and±19μm,respectively,and that for oblique displacement is better than±24μm.Compared with the traditional calibration method,the displacement measurement error in the FFOV is now 90%smaller.This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV,and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.
基金supported by National Natural Science Foundation of China(Grant Nos.51275054,51075116)
文摘Three dimensional(3D) displacements, which can be translated further into 3D strain, are key parameters tor design, manufacturing and quality control. Using different optical setups, phase-shift methods, and algorithms, several different 3D electronic speckle pattern interferometry(ESPl) systems for displacement and strain measurements have been achieved and commercialized. This paper provides a review of the recent developments in ESPI systems for 3D displacement and strain measurement. After an overview of the fundamentals of ESP! theory, temporal phase-shift, and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI system, which is suited well for static measurement, and by the spatial phase-shift ESPI system, which is particularly useful for dynamic measurement, are discussed. For each method, the basic theory, a brief derivation and different optical layouts are presented. The state of art application, potential and limitation of the ESPI systems are shown and demonstrated.
文摘A new method for measuring 3-D rigid body displacements is proposed,in which two perpendicular beams are emitted onto two sensitive planes of PSDs being perpendicular to each other.The method can be used to measure 1-D or 2-D displacements when required.Moreover,the experimental results are presented,which demonstrate that the new method has high accuracy,fast processing speed,high reliability,and easily being realized.
文摘A CCD position detecting system measuring the displacement and deformation of structure is presented. The measure method takes advantage of the position detecting technique based on digital image processing. A bright spot is pegged on the object to be measured and imaged to the target of CCD camera through a telescopic lens. The CCD target converts the optical signal to equivalent electric signal. The video frequency signal is digitized to an array of 512×512 pixels by the analog to digital converter (ADC), then transmitted to the computer. The computer controls the data acquisition, conducts image processing and detects the location of the target spot. Comparing the current position with the original position of the spot, the displacement of object is obtained. With the aid of analysis software, the system can achieve the resolution of 0 01 mm in the 6 m distance from the object to the point of observation. To meet the need of practice, the measuring distance can be extended to 100 m or even farther.
基金This project is supported by Provincial Natural Science Foundation of Zhejiang of China (No.599026).
文摘Based on the development of the non-contact measurement system of free-formsurface, NURBS reconstruction of measurement points of freeform surface is effectively realized bymodifying the objective function and recursive procedure and calculating the optimum number ofcontrol points. The reconstruction precision is evaluated through Ja-cobi's transformation method.The feasibility of the measurement system and effectiveness of the reconstruction algorithm aboveare proved by experiment.
基金This work has been supported by Ministerio de Ciencia e Innovacion,Gobierno de Espana(Grant Nos.CGL2017-85045-P,PID2021-123189NB-I00,DI-17-09169)Government of Aragon(Grant No.Reference Group T20_23R)Jorge Sevil has a predoctoral contract(Grant No.PRE2018-084240)co-financed by the Spanish Government and the European Social Fund(ESF).
文摘The effectiveness of monitoring and early-warning systems for ground deformation phenomena,such as sinkholes,depends on their ability to accurately resolve the ongoing ground displacement and detect the subtle deformation preceding catastrophic failures.Sagging sinkholes with a slow subsidence rate and diffuse edges pose a significant challenge for subsidence monitoring due to the low deformation rates and limited lateral strain gradients.In this work,we satisfactorily illustrate the practicality of the Brillouin optical time domain analysis(BOTDA)to measure the spatial-temporal patterns of the vertical displacement in such challenging slow-moving sagging sinkholes.To assess the performance of the approach,we compare the strain recorded by the distributed optical fiber sensor with the vertical displacement measured by high-precision leveling.The results show a good spatial correlation with the ability to identify the maximum subsidence point.There is also a good temporal correlation with the detection of an acceleration phase in the subsidence associated with a flood event.
基金Funded by State "863"Project Project (863-715-003-0040-2)
文摘A new method for measuring nano-displacement is discussed. Theresolution of shift is as far as 1 nm. The principle of quantumtunneling effects was used to design the instrument. With the tunnelbetween the sample and the needlepoint and under the control ofclosed loop system, the instrument works at constant current mode, sothat the high precision displacement can be got.
文摘Non-contact measurements of machining temperatures were performed with optical pyrometer when drilling particle(B4C) reinforced metal matrix composites(MMCs) with different drills. The effect of particle content, cutting speed, feed rate and tool material on the maximum drilling temperature was investigated. The drilling parameters were optimized based on multiple performance characteristics in terms of the maximum cutting temperature and tool wear. According to the results, the most influential control factors on the cutting temperatures are found to be particle fraction, feed rate and interaction between the cutting speed and particle content, respectively. The influences of the cutting speed and drill material on the drilling temperature are found to be relatively lower for the used range of parameters. Minimum cutting temperatures are obtained with lower particle fraction and cutting speed, with relatively higher feed rates and carbide tools. The results reveal that optimal combination of the drilling parameters can be used to obtain both minimum cutting temperature and tool wear.
文摘This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its eventual displacements on direction parallel to the construction axis. For the purpose of the experiment, geodetic measurement techniques and 2D DIC (digital image correlation) method (utilizing photographs of the object recorded with digital camera) were compared with regard to credibility, efficiency and accuracy. The vertical and horizontal displacements were monitored by tachometers measurements. The deformations in x-axis and y-axis on the wall surface was monitored by 2D DIC. It has been noticed that 2D DIC method is a surface method, continuous--not discreet. It allows for continuous observations of surface deformations, which is not possible in case of tachemetric measurements. Despite many advantages, the 2D DIC method lacks unambiguous evaluation of precision and relevance of designated displacements, which is rather significant for possibilities of utilization in technical control of large engineered objects. It should be also marked that the tachometric method is more reliable but is more laborious. Research of this type might comprise additional element for the assessment of the influence of dynamic loads, such as activating turbine water flow, onto the overall condition of the surveyed structure.
文摘The slug rivet is widely used in wing assembly due to its longer fatigue life and better sealing performance compared with other connection technologies.As a countersink with dual-angle is widely adopted for this type of connection,the countersink diameter and depth are key factors that affect assembly quality.Therefore,it is of great importance to efficiently inspect the countersink quality to ensure high accuracy.However,contact measurements are susceptible to the loss of accuracy due to cutting debris and lube build-up,while the hole-scanning method using laser profilometry is time consuming and complex.In this paper,a non-contact method for countersink diameter and depth measurement based on a machine vision system is proposed.The countersink diameter can be directly measured by the machine vision system,while the countersink depth is determined through the countersink diameter indirectly.First,by means of image processing technology together with an improved edge detection algorithm,the countersink diameter can be obtained.Then,a 3D microscope is employed to measure the countersink depth,which helps to model the countersink.As a result,once the countersink diameter is measured,so is the depth.The experimentation demonstrated that this method has strong feasibility and enables time saving,which is conducive to improve the riveting efficiency.
基金supported by National Natural Science Foundation of China under Grant No.60425101-1Fund for Innovative Research Groups of NSFC under Grant No.60721001
文摘A novel multi-laser beams measuring system (MLBM) for high precision detection on displacement of flow fields based on laser backscatter was designed and studied. MLBM has many advantages, such as simple structure, high stability, and no limitation of the monochromaticity of laser. By circumventing the strong influence of atmospheric backscattering on the high sensitivity of target echo detection, high precision detection on backscatter density of laser by signal processing was achieved. Furthermore, the signal densities of various distances were extracted by time sampling and precise frequency control of digital circuit. Finally, the MLBM system including devices integrated of emitting and reviving equipments and program was obtained. Detection experiments showed that our system has high precision and the measurement error could be controlled within 5% to 10%.
基金funded by the NSFC(grant Nos.91638203,41631072,41774024,41721003,41774020,41429401)China Postdoctoral Science Foundation(No.2018M630879)Guangxi Key Laboratory of Spatial Information and Geomatics,China(No.16-380-25-32).
文摘The Earth is an elastic body,and the surface mass loading changes will lead to elastic loading deformation on the surface of the Earth.In this study,we investigated the surface seasonal mass changes and vertical crustal deformation in North China using the data obtained by the techniques of the Global Positioning System(GPS),Gravity Recovery and Climate Experiment(GRACE)and Surface Loading Models(SLMs).The seasonal annual signal and semi-annual signal obtained by the three techniques show strong correlations.The average value of the weighted root-mean-square(WRMS)of the all 30 sites is 58%after deducting the GRACE-obtained vertical deformation from the GPS-derived vertical deformation.However,the consistency of results between GPS and SLMs is not so good,with a 31%mean WRMS reduction,due to the fact that the global SLMs perform not well in North China.The GRACEmeasured long-term trend is deducted from the GPS-obtained vertical rates to reveal the crustal displacement caused by the underground factors such as tectonic movement and groundwater in North China.The results show that the rates of stations HECX and TJBH are very large,more than 10 mm/yr,which suggests that the surface subsidence is caused by excessive exploitation of groundwater.
基金Supported by National Natural Science Foundation of China(Grant No51305031)
文摘Tubes are used widely in aerospace vehicles, and their accurate assembly can directly affect the assembling reliability and the quality of products. It is important to measure the processed tube's endpoints and then fix any geometric errors correspondingly. However, the traditional tube inspection method is time-consuming and complex operations. Therefore, a new measurement method for a tube's endpoints based on machine vision is proposed. First, reflected light on tube's surface can be removed by using photometric linearization. Then, based on the optimization model for the tube's endpoint measurements and the principle of stereo matching, the global coordinates and the relative distance of the tube's endpoint are obtained. To confirm the feasibility, ll tubes are processed to remove the reflected light and then the endpoint's positions of tubes are measured. The experiment results show that the measurement repeatability accuracy is 0.167 mm, and the absolute accuracy is 0.328 ram. The measurement takes less than 1 min. The proposed method based on machine vision can measure the tube's endpoints without any surface treatment or any tools and can realize on line measurement.
基金supported by the Sinoprobe Deep Exploration in China(SinoProbe-07)research funds of the Institute of Geomechanics,Chinese Academy of Geological Sciences(Grant No.DZLXJK201105)National Basic Research Program of China(973 Program)(Grant No.2008CB425702)
文摘The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.
文摘The present study is aimed to investigate the ability of different intensity measures (IMs), including response spectral acceleration at the fundamental period of the structure, Sa(T1), as a common scalar IM and twelve vector-valued IMs for seismic collapse assessment of structures. The vector-valued IMs consist of two components, with S(T1) as the first component and different parameters that are ratios of scalar IMs, as well as the spectral shape proxies εSa and N, as the second component. After investigating the properties of an optimal IM, a new vector-valued IM that includes the ratio of Sa(T1) to the displacement spectrum intensity (DSI) as the second component is proposed. The new IM is more efficient than other IMs for predicting the collapse capacity of structures. It is also sufficient with respect to magnitude, source-to-site distance, and scale factor for collapse capacity prediction of structures. To satisfy the predictability criterion, a ground motion prediction equation (GMPE) is determined for Sa(T1)/DSI by using the existing GMPEs. Furthermore, an empirical equation is proposed for obtaining the correlation between the components of the proposed IM. The results of this study show that using the new vector-valued IM leads to a more reliable seismic collapse assessment of structures.
基金Foundation for Research and Science and Technology of New Zealand,No C05X0208 and C05X0301 Major Project of Chinese National Programs for Fundamental Research and Development (973 Program),No 2008CB425802
文摘A landslide displacement (DLL) attenuation model has been developed using spectral intensity and a ratio of critical acceleration coefficient to ground acceleration coefficient. In the development of the model,a New Zealand earthquake record data set with magnitudes ranging from 5.0 to 7.2 within a source distance of 175 km is used. The model can be used to carry out deterministic landslide displacement analysis,and readily extended to carry out probabilistic seismic landslide displacement analysis. DLL attenuation models have also been developed by using earthquake source terms,such as magnitude and source distance,that account for the effects of earthquake faulttype,source type,and site conditions. Sensitivity analyses show that the predicted DLL values from the new models are close to those from the Romeo model that was developed from an Italian earthquake record data set. The proposed models are also applied to an analysis of landslide displacements in the Wenchuan earthquake,and a comparison between the predicted and the observed results shows that the proposed models are reliable,and can be confidently used in mapping landslide potential.
基金supported by the National Natural Science Foundation of China(No.51975293)Aeronautical Science Foundation of China (No. 2019ZD052010)
文摘Aiming at the shortcomings of traditional contact measurement methods such as low measurement efficiency,high cost and low accuracy,a non-contact optical measurement method based on the laser displacement sensor is proposed.According to the relevant regulations of the coaxiality error evaluation standard and the structural characteristics of the compound gear shaft,we have designed and built a set of supporting software system as well as a hardware test platform.In this paper,the distance difference threshold and scale threshold methods are used to eliminate outlier data.The least squares circle is selected to calculate the center of the circle and the minimum containment cylinder axis method is used as the reference axis of the composite gear shaft.Compensated by the standard step shaft calibration,the coaxiality error of the composite gear shaft can be measured to be within 0.01 mm in less than two minutes.The range value of the multi-section measurement test is 0.065 mm.The average coaxiality error is∅0.476 mm.