Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units....Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.展开更多
The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in po...The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in pore structure,permeability,and mechanical strength of cap rocks under cyclic loads may impact the rock sealing integrity during the injection and recovery phases of UGS.In this work,the mechanical deformation and failure tests of rocks,as well as rock damage tests under alternating loads,are conducted to analyze the changes in the strength and permeability of rocks under multiple-cycle intense injection and recovery of UGS.Additionally,this study proposes an evaluation method for the dynamic sealing performance of UGS cap rocks under multi-cycle alternating loads.The findings suggest that the failure strength(70%)can be used as the critical value for rock failure,thus providing theoretical support for determining the upper limit of operating pressure and the number of injection-recovery cycles for the safe operation of a UGS system.展开更多
In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the m...In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics(CFD),dynamic mesh and user defined function(UDF),the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out.The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity.When the projectile is launched at 5munder water,the shock wave before and after the projectile has impact on the box body up to 100 MPa,therefore the sealing device must be strong enough.The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.展开更多
The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the...The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.展开更多
Finger seal is a new technology developed for gas path sealing in gas turbine engine.It has been paid attention to its good sealing performance and lower manufacture cost.The vibration behavior of finger seal is not b...Finger seal is a new technology developed for gas path sealing in gas turbine engine.It has been paid attention to its good sealing performance and lower manufacture cost.The vibration behavior of finger seal is not be considered in performance analysis for the contact finger seal with compliant geometric configuration,then this will influence the reliability of the performance analysis and the parametric design of a finger seal.According to the dynamic character of finger seal,the harmonic vibration and free vibration models of a repetitive section of a two-layer finger seal that contains one high and one low finger seal are established separately.The dynamic behavior of finger seal in different working conditions is obtained based on the dynamic response analysis of finger's vibrations.The dynamic low hysteresis and low wear terms based on the equivalent dynamic model of finger seal are put forward,which can be used to predict the dynamic behavior of finger seal.As an example,the dynamic behaviors of an 8-layer finger seal and a 10-layer finger seal were predicted,and the validity of the prediction was demonstrated by the leakage test results of these two finger seals.The work presented here not only could make the dynamic analysis of finger seal with complicated structure simple and easy especially for multi-layer finger seal system,but also suggest a useful method for designing the finger seal with good dynamic behavior by means of different seal layers assembly.展开更多
Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. Th...Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. The present study introduces the fractal theory into the dynamic research of gas face seals under face?contacting conditions. Structure?Function method is adopted to handle the surface profiles of typical carbon?graphite rings, proving the fractal con?tact model can be used in the field of gas face seals. Using a numerical model established for the dynamic analyses of a spiral groove gas face seal with a flexibly mounted stator, a comparison of dynamic performance between the Majumdar?Bhushan(MB) fractal model and the Chang?Etsion?Bogy(CEB) statistical model is performed. The result shows that the two approaches induce differences in terms of the occurrence and the level of face contact. Although the approach distinctions in film thickness and leakage rate can be tiny, the distinctions in contact mechanism and end face damage are obvious. An investigation of fractal parameters D and G shows that a proper D(nearly 1.5) and a small G are helpful in raising the proportion of elastic deformation to weaken the adhesive wear in the sealing dynamic performance. The proposed research provides a fractal approach to design gas face seals.展开更多
The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face se...The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.展开更多
With the continuous development of deep oil and gas,minerals,geothermal resources,and other resources,there are increasingly more stringent requirements for equipment.In particular,the ultra-highpressure dynamic seals...With the continuous development of deep oil and gas,minerals,geothermal resources,and other resources,there are increasingly more stringent requirements for equipment.In particular,the ultra-highpressure dynamic seals of deep mining device need to be developed.Therefore,considering the use of dynamic seals in unique deep mining environments,an ultra-high-pressure rotating combined dynamic seal was designed and developed and its sealing performance was experimentally measured and analyzed.The results show that the experimental device can operate stably under a pressure of up to150 MPa and a rotating speed of 76 r/min,and can also operate normally under a rotating speed of up to 140 r/min and a sealing pressure of 120 MPa.During the operation of the ultra-high-pressure rotating combined dynamic seal,the sealing ring does not show obvious damage,which vouches for its sealing performance.No leakage of flow and pressure was detected in the all seal structures within the sealing pressure range of 0-150 MPa.Therefore,the dynamic sealing performance of the device is intact under ultra-high-pressure conditions and can be applied in deep mining environments at a certain depth.The research and development of this device can aid future deep energy exploration and exploitation.展开更多
Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated bas...Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated based on the theory of hydrodynamic lubrication.N-S equation,energy equation,viscosity-temperature equation and vapor transport equation were solved with the finite volume method by using Fluent software,which was performed to analyze the influence of the viscosity-temperature and cavitation effect on hydrodynamic lubrication failure of the film.The research demonstrates that it will lead to the significant difference of the temperature field by considering the coupling of temperature and viscosity.When the film thickness decreases and the rotating speed rises,cavitation regions and viscous friction heat increases,the opening force of the film is also enhanced.However,the growth rate is restricted to the cavitation regions and viscous friction heat,and the opening force begins to decline to a certain extent,and thereby being insufficient to open the surfaces of the seals and leading to the failure of automatic adjustment function and severe wear,lubrication failure occurrs.Through comprehensive research on the influences of viscosity-temperature and cavitation effect on hydrodynamic lubrication performance,the theories of failure and design of upstream pumping mechanical seal are further developed.展开更多
Non-contact sensing can be a rapid and convenient alternative for determining structure response compared to conventional instrumentation.Computer vision has been broadly implemented to enable accurate non-contact dyn...Non-contact sensing can be a rapid and convenient alternative for determining structure response compared to conventional instrumentation.Computer vision has been broadly implemented to enable accurate non-contact dynamic response measurements for structures.This study has analyzed the effect of non-contact sensors,including type,frame rate,and data collection platform,on the performance of a novel motion detection technique.Video recordings of a cantilever column were collected using a high-speed camera mounted on a tripod and an unmanned aerial system(UAS)equipped with visual and thermal sensors.The test specimen was subjected to an initial deformation and released.Specimen acceleration data were collected using an accelerometer installed on the cantilever end.The displacement from each non-contact sensor and the acceleration from the contact sensor were analyzed to measure the specimen′s natural frequency and damping ratio.The specimen′s first fundamental frequency and damping ratio results were validated by analyzing acceleration data from the top of the specimen and a finite element model.展开更多
In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the l...In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the leakage flow rate can be obtained by finite element method, computational fluid dynamics method and experimental measurement method. However, it will take much time to carry out the above measurements and calculations. In this paper, the approximate model of parallel grooves based on the narrow groove theory is used to establish the dynamic equations of the gas film for the purpose of obtaining the dynamic parameters of gas film. The nonlinear differential equations of gas film model are solved by Runge-Kutta method and shooting method. The numerical values of the pressure profiles, leakage flux and opening force on the seal surface are integrated, and then compared to experimental data for the reliability of the numerical simulation. The results show that the numerical simulation curves are in good agreement with experimental values. Furthermore, the opening force and the leakage flux are proved to be strongly correlated with the operating parameters. Then, the function-coupling method is introduced to analyze the numerical results to obtain the correlation formulae of the opening force and leakage flux respectively with the operating parameters, i.e., the inlet pressure and the rotating speed. This study intends to provide an effective way to predict the aerodynamic performance for designing and optimizing the groove styles in dry gas seal rapidly and accurately.展开更多
An accurate seal forces model is the foundation to analyze the rotor-seal systems. In this paper, the Navier-Stokes equation and energy equation are solved to simulate the interior flow field in the labyrinth seal gap...An accurate seal forces model is the foundation to analyze the rotor-seal systems. In this paper, the Navier-Stokes equation and energy equation are solved to simulate the interior flow field in the labyrinth seal gap. The leakage rate is compared with the experimental results in the literatures. The :4maximum error is 4% , which proves that the method of employing CFD to simulate the interior flow field of labyrinth seal gap is reliable. Based on this, the interior flow field and fluid exciting force of stage teeth labyrinth seal are studied. By coupling with the Muszynska model, the method of defining the experience loss parameters in Muszynska model is proposed. The results indicate that the experience parameters obtained by the proposed method can depict the nonlinear exciting force of labyrinth seal better.展开更多
Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are...Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are based on the traditional quasi-steady method. In this work, an improved quasi-steady method along with the transient method was presented to compute the rotordynamic coefficients of a long seal. By comparisons with experimental data, the shortcomings of quasi-steady methods have been identified. Then, the effects of non-uniform incoming flow on seal dynamic coefficients were studied by transient simulations. Results indicate that the long seal has large cross stiffness k and direct mass M which are not good for rotor stability, while the transient method is more suitable for the long seal for its excellent performance in predicting M. When the incoming flow is non-uniform, the stiffness coefficients vary with the eccentric directions. Based on the rotordynamic coefficients under uniform incoming flow, the linearized fluid force formulas, which can consider the effects of non-uniform incoming flow, have been presented and can well explain the varying-stiffness phenomenon.展开更多
One of the important problems to be tackled in turbo machines is the leakage dynamics characteristics of labyrinth seals. In this paper we analyzed the effect of labyrinth seal structure and the change in fluid flow p...One of the important problems to be tackled in turbo machines is the leakage dynamics characteristics of labyrinth seals. In this paper we analyzed the effect of labyrinth seal structure and the change in fluid flow pressure on the leakage characteristics of seal. Computational fluid dynamics (CFD) model for 3D labyrinth seal was built which provides a basis for reducing steam flow excitation. The streamline pattern and the pressure drop characteristics for leakage of steam through a labyrinth seal was investigated. Simulations of internal flow and leakage characteristics had been performed by CFD software and Black-Child model. The results showed that the amount of leakage is directly proportional to the tooth gap and inlet pressure and inversely proportional to the cavity depth and outlet pressure. The proposed CFD model provides a feasible method to predict the leakage characteristics of labyrinth seal in response to the structure of seal and the change in inlet-outlet pressures.展开更多
It is a difficult task to root the cause of the failure of a gas face seal because different causes may result in similar observations.In the work being presented,the discrimination of multiple types of abnormities in...It is a difficult task to root the cause of the failure of a gas face seal because different causes may result in similar observations.In the work being presented,the discrimination of multiple types of abnormities in a spiral groove gas face seal is studied.A dynamic model is employed to analyze groups of cases in order to uncover the dynamic behaviors when the face contact is induced by different mixtures of abnormities,whose discriminative features when motion and contact are monitored are studied and uncovered.A circumferential-pattern-related oscillation phenomenon is discovered,which is extracted from contact information and implies the relative magnitude of the moment on stator and the rotor tilt.The experimental observation shows consistent results.It means that the grooves(or other circumferential patterns)generate useful informative features for monitoring.These results provide guidance for designing a monitored gas face seal system.展开更多
Non-contact atomic force microscopy(nc-AFM) atomic-scale imaging process of monocrystalline silicon surface using capped single-wall carbon nanotube tip is simulated by molecular dynamic method. The simulation resuh...Non-contact atomic force microscopy(nc-AFM) atomic-scale imaging process of monocrystalline silicon surface using capped single-wall carbon nanotube tip is simulated by molecular dynamic method. The simulation resuhs show that the nc-AFM imaging force mainly comes from the C-Si and C-C chemical covalent bonding forces, especially the former, the nonbonding Van der Waals force change is small during the range of stable imaging height. When the tip-surface distance is smaller than the stable imaging height, several neighboring carbon atoms at the tip apex are attracted, and some of them jump onto the sample surface. Finally the tip apex configuration is destroyed with the tip indenting further.展开更多
Less leakage is a benefit of parallel grooved liquid seals(labyrinth seals).But researches show that the liquid seal with parallel grooves on the rotor harms the rotor stability.The seal with helical grooves on stator...Less leakage is a benefit of parallel grooved liquid seals(labyrinth seals).But researches show that the liquid seal with parallel grooves on the rotor harms the rotor stability.The seal with helical grooves on stator performs well in terms of rotordynamics,and its leakage is sensitive to the rotating speed.To make use of the advantages of both seals and improve seal stability,based on the Smooth-stator/Parallel Grooved-rotor(SPG)liquid seal,a Helical Grooved-stator/Parallel Grooved-rotor(HGPG)liquid seal is designed.To evaluate two liquid seals'leakage,rotordynamic characteristics and drag power loss,a transient computational fluid dynamics-based method is employed.This method is based on the multi-frequency elliptical-orbit rotor whirling model and the mesh deformation technique.The published experimental data of the leakage and rotordynamic force coefficients for an SPG liquid seal are used to validate the accuracy and dependability of the current method.Seal leakage and force coefficients are presented and compared for the SPG liquid seal and the HGPG liquid seal at various pressure drops.The influences of parallel groove depth on the leakage and rotordynamic properties for the HGPG liquid seals at two rotational speeds(2000,6000 r/min)are analyzed.The numerical findings demonstrate that the novel HGPG liquid seal has a lower leakage flow rate(by$22.3%)than the traditional SPG liquid seal.There is an optimal parallel groove depth that minimizes leakage.The presented novel HGPG liquid seal significantly improves rotordynamic stability,due to the similar effective stiffness and the obviously larger positive effective damping.Reducing parallel groove depth can increase the positive effective damping.In terms of leakage and rotordynamic characteristics,the novel HGPG liquid seal is a better seal design for liquid turbomachinery.展开更多
The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's abili...The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.展开更多
Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy ma...Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy mathematics is improved based on a previous study.First,the single-factor membership degree is determined using the dynamic clustering method,then a single-factor evaluation matrix is constructed using a continuous grading function,and finally,the probability distribution of the evaluation grade in a fuzzy evaluation matrix is analyzed.In this study,taking the F1 fault located in the northeastern Chepaizi Bulge as an example,the sealing properties of faults in different strata are quantitatively evaluated using both an improved and an un-improved comprehensive fuzzy mathematics quantitative evaluation method.Based on current oil and gas distribution,it is found that our evaluation results before and after improvement are significantly different.For faults in"best"and"poorest"intervals,our evaluation results are consistent with oil and gas distribution.However,for the faults in"good"or"poor"intervals,our evaluation is not completelyconsistent with oil and gas distribution.The improved evaluation results reflect the overall and local sealing properties of target zones and embody the nonuniformity of fault sealing,indicating the improved method is more suitable for evaluating fault sealing under complicated conditions.展开更多
The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt p...The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation.展开更多
基金the support of the National Natural Science Foundation of China(52372368)。
文摘Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.
文摘The static sealing of underground gas storage(UGS),including the integrity of cap rocks and the stability of faults,is analyzed from a macro perspective using a comprehensive geological evaluation method.Changes in pore structure,permeability,and mechanical strength of cap rocks under cyclic loads may impact the rock sealing integrity during the injection and recovery phases of UGS.In this work,the mechanical deformation and failure tests of rocks,as well as rock damage tests under alternating loads,are conducted to analyze the changes in the strength and permeability of rocks under multiple-cycle intense injection and recovery of UGS.Additionally,this study proposes an evaluation method for the dynamic sealing performance of UGS cap rocks under multi-cycle alternating loads.The findings suggest that the failure strength(70%)can be used as the critical value for rock failure,thus providing theoretical support for determining the upper limit of operating pressure and the number of injection-recovery cycles for the safe operation of a UGS system.
基金National Natural Science Foundation of China(No.51175481)
文摘In order to speed underwater launch of minor-caliber weapons,a sealing device can be set in front of underwater muzzle to separate water,preventing the muzzle from water immersion.By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics(CFD),dynamic mesh and user defined function(UDF),the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out.The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity.When the projectile is launched at 5munder water,the shock wave before and after the projectile has impact on the box body up to 100 MPa,therefore the sealing device must be strong enough.The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.
基金supported by Scientific Research Foundation for Returned Scholars,Ministry of Education of China
文摘The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal.
基金supported by National Natural Science Foundation of China (Grant No. 50575182)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060699021)Shaanxi Provincial Natural Science Foundation of China (Grant No. 2009JM7002)
文摘Finger seal is a new technology developed for gas path sealing in gas turbine engine.It has been paid attention to its good sealing performance and lower manufacture cost.The vibration behavior of finger seal is not be considered in performance analysis for the contact finger seal with compliant geometric configuration,then this will influence the reliability of the performance analysis and the parametric design of a finger seal.According to the dynamic character of finger seal,the harmonic vibration and free vibration models of a repetitive section of a two-layer finger seal that contains one high and one low finger seal are established separately.The dynamic behavior of finger seal in different working conditions is obtained based on the dynamic response analysis of finger's vibrations.The dynamic low hysteresis and low wear terms based on the equivalent dynamic model of finger seal are put forward,which can be used to predict the dynamic behavior of finger seal.As an example,the dynamic behaviors of an 8-layer finger seal and a 10-layer finger seal were predicted,and the validity of the prediction was demonstrated by the leakage test results of these two finger seals.The work presented here not only could make the dynamic analysis of finger seal with complicated structure simple and easy especially for multi-layer finger seal system,but also suggest a useful method for designing the finger seal with good dynamic behavior by means of different seal layers assembly.
基金Supported by China Postdoctoral Science Foundation(Grant No.2017M621458)National Science and Technology Support Plan Projects(Grant No.2015BAA08B02)National Natural Science Foundation of China(Grant No.11632011),National Natural Science Foundation of China(Grant No.11372183)
文摘Fractal theory provides scale?independent asperity contact loads and assumes variable curvature radii in the contact analyses of rough surfaces, the current research for which mainly focuses on the mechanism study. The present study introduces the fractal theory into the dynamic research of gas face seals under face?contacting conditions. Structure?Function method is adopted to handle the surface profiles of typical carbon?graphite rings, proving the fractal con?tact model can be used in the field of gas face seals. Using a numerical model established for the dynamic analyses of a spiral groove gas face seal with a flexibly mounted stator, a comparison of dynamic performance between the Majumdar?Bhushan(MB) fractal model and the Chang?Etsion?Bogy(CEB) statistical model is performed. The result shows that the two approaches induce differences in terms of the occurrence and the level of face contact. Although the approach distinctions in film thickness and leakage rate can be tiny, the distinctions in contact mechanism and end face damage are obvious. An investigation of fractal parameters D and G shows that a proper D(nearly 1.5) and a small G are helpful in raising the proportion of elastic deformation to weaken the adhesive wear in the sealing dynamic performance. The proposed research provides a fractal approach to design gas face seals.
基金Supported by National Key Basic Research Program of China(973Program,Grant No.2012CB026003)National Science and Technology Major Project of China(Grant No.ZX06901)
文摘The current research on secondary O-ring seals used in mechanical seals has begun to focus on their dynamic properties. However, detailed analysis of the dynamic properties of O-ring seals in spiral groove gas face seals is lacking. In particular a transient study and a difference analysis of steady-state and transient performance are imperative. In this paper, a case study is performed to gauge the effect of secondary O-ring seals on the dynamic behavior(steady-state performance and transient performance) of face seals. A numerical finite element method(FEM) model is developed for the dynamic analysis of spiral groove gas face seals with a flexibly mounted stator in the axial and angular modes. The rotor tilt angle, static stator tilt angle and O-ring damping are selected to investigate the effect of O-ring seals on face seals during stable running operation. The results show that the angular factor can be ignored to save time in the simulation under small damping or undamped conditions. However, large O-ring damping has an enormous effect on the angular phase difference of mated rings, affecting the steady-state performance of face seals and largely increasing the possibility of face contact that reduces the service life of face seals. A pressure drop fluctuation is carried out to analyze the effect of O-ring seals on the transient performance of face seals. The results show that face seals could remain stable without support stiffness and O-ring damping during normal stable operation but may enter a large-leakage state when confronting instantaneous fluctuations. The oscillation-amplitude shortening effect of O-ring damping on the axial mode is much greater than that on the angular modes and O-ring damping prefers to cater for axial motion at the cost of angular motion. This research proposes a detailed dynamic-property study of O-ring seals in spiral groove gas face seals, to assist in the design of face seals.
基金supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(Grant No.2019ZT08G315)the National Natural Science Foundation of China(Grant No.51827901)
文摘With the continuous development of deep oil and gas,minerals,geothermal resources,and other resources,there are increasingly more stringent requirements for equipment.In particular,the ultra-highpressure dynamic seals of deep mining device need to be developed.Therefore,considering the use of dynamic seals in unique deep mining environments,an ultra-high-pressure rotating combined dynamic seal was designed and developed and its sealing performance was experimentally measured and analyzed.The results show that the experimental device can operate stably under a pressure of up to150 MPa and a rotating speed of 76 r/min,and can also operate normally under a rotating speed of up to 140 r/min and a sealing pressure of 120 MPa.During the operation of the ultra-high-pressure rotating combined dynamic seal,the sealing ring does not show obvious damage,which vouches for its sealing performance.No leakage of flow and pressure was detected in the all seal structures within the sealing pressure range of 0-150 MPa.Therefore,the dynamic sealing performance of the device is intact under ultra-high-pressure conditions and can be applied in deep mining environments at a certain depth.The research and development of this device can aid future deep energy exploration and exploitation.
基金National Natural Science Foundation of China(Grant No.51279067)
文摘Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated based on the theory of hydrodynamic lubrication.N-S equation,energy equation,viscosity-temperature equation and vapor transport equation were solved with the finite volume method by using Fluent software,which was performed to analyze the influence of the viscosity-temperature and cavitation effect on hydrodynamic lubrication failure of the film.The research demonstrates that it will lead to the significant difference of the temperature field by considering the coupling of temperature and viscosity.When the film thickness decreases and the rotating speed rises,cavitation regions and viscous friction heat increases,the opening force of the film is also enhanced.However,the growth rate is restricted to the cavitation regions and viscous friction heat,and the opening force begins to decline to a certain extent,and thereby being insufficient to open the surfaces of the seals and leading to the failure of automatic adjustment function and severe wear,lubrication failure occurrs.Through comprehensive research on the influences of viscosity-temperature and cavitation effect on hydrodynamic lubrication performance,the theories of failure and design of upstream pumping mechanical seal are further developed.
文摘Non-contact sensing can be a rapid and convenient alternative for determining structure response compared to conventional instrumentation.Computer vision has been broadly implemented to enable accurate non-contact dynamic response measurements for structures.This study has analyzed the effect of non-contact sensors,including type,frame rate,and data collection platform,on the performance of a novel motion detection technique.Video recordings of a cantilever column were collected using a high-speed camera mounted on a tripod and an unmanned aerial system(UAS)equipped with visual and thermal sensors.The test specimen was subjected to an initial deformation and released.Specimen acceleration data were collected using an accelerometer installed on the cantilever end.The displacement from each non-contact sensor and the acceleration from the contact sensor were analyzed to measure the specimen′s natural frequency and damping ratio.The specimen′s first fundamental frequency and damping ratio results were validated by analyzing acceleration data from the top of the specimen and a finite element model.
基金Supported by National Natural Science Foundation of China(Grant No.51276125)National Key Basic Research Development Program of China(973 Program,Grant No.2012CB720101)
文摘In working state, the dynamic performance of dry gas seal, generated by the rotating end face with spiral grooves, is determined by the open force of gas film and leakage flow rate. Generally, the open force and the leakage flow rate can be obtained by finite element method, computational fluid dynamics method and experimental measurement method. However, it will take much time to carry out the above measurements and calculations. In this paper, the approximate model of parallel grooves based on the narrow groove theory is used to establish the dynamic equations of the gas film for the purpose of obtaining the dynamic parameters of gas film. The nonlinear differential equations of gas film model are solved by Runge-Kutta method and shooting method. The numerical values of the pressure profiles, leakage flux and opening force on the seal surface are integrated, and then compared to experimental data for the reliability of the numerical simulation. The results show that the numerical simulation curves are in good agreement with experimental values. Furthermore, the opening force and the leakage flux are proved to be strongly correlated with the operating parameters. Then, the function-coupling method is introduced to analyze the numerical results to obtain the correlation formulae of the opening force and leakage flux respectively with the operating parameters, i.e., the inlet pressure and the rotating speed. This study intends to provide an effective way to predict the aerodynamic performance for designing and optimizing the groove styles in dry gas seal rapidly and accurately.
基金the National Natural Science Foundation of China (Grant No. 10632040)
文摘An accurate seal forces model is the foundation to analyze the rotor-seal systems. In this paper, the Navier-Stokes equation and energy equation are solved to simulate the interior flow field in the labyrinth seal gap. The leakage rate is compared with the experimental results in the literatures. The :4maximum error is 4% , which proves that the method of employing CFD to simulate the interior flow field of labyrinth seal gap is reliable. Based on this, the interior flow field and fluid exciting force of stage teeth labyrinth seal are studied. By coupling with the Muszynska model, the method of defining the experience loss parameters in Muszynska model is proposed. The results indicate that the experience parameters obtained by the proposed method can depict the nonlinear exciting force of labyrinth seal better.
基金Project(51276213)supported by the National Natural Science Foundation of ChinaProject(2013BAF01B00)supported by the National Science and Technology Support Program of China
文摘Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are based on the traditional quasi-steady method. In this work, an improved quasi-steady method along with the transient method was presented to compute the rotordynamic coefficients of a long seal. By comparisons with experimental data, the shortcomings of quasi-steady methods have been identified. Then, the effects of non-uniform incoming flow on seal dynamic coefficients were studied by transient simulations. Results indicate that the long seal has large cross stiffness k and direct mass M which are not good for rotor stability, while the transient method is more suitable for the long seal for its excellent performance in predicting M. When the incoming flow is non-uniform, the stiffness coefficients vary with the eccentric directions. Based on the rotordynamic coefficients under uniform incoming flow, the linearized fluid force formulas, which can consider the effects of non-uniform incoming flow, have been presented and can well explain the varying-stiffness phenomenon.
基金Sponsored by the National Natural Science Foundation of China (Grant No.10872054,10872055 and 50903082)
文摘One of the important problems to be tackled in turbo machines is the leakage dynamics characteristics of labyrinth seals. In this paper we analyzed the effect of labyrinth seal structure and the change in fluid flow pressure on the leakage characteristics of seal. Computational fluid dynamics (CFD) model for 3D labyrinth seal was built which provides a basis for reducing steam flow excitation. The streamline pattern and the pressure drop characteristics for leakage of steam through a labyrinth seal was investigated. Simulations of internal flow and leakage characteristics had been performed by CFD software and Black-Child model. The results showed that the amount of leakage is directly proportional to the tooth gap and inlet pressure and inversely proportional to the cavity depth and outlet pressure. The proposed CFD model provides a feasible method to predict the leakage characteristics of labyrinth seal in response to the structure of seal and the change in inlet-outlet pressures.
基金Supported by the National Key R&D Program of China(Grant No.2020YFB2010000)the National Natural Science Foundation of China(Grant No.U1737209).
文摘It is a difficult task to root the cause of the failure of a gas face seal because different causes may result in similar observations.In the work being presented,the discrimination of multiple types of abnormities in a spiral groove gas face seal is studied.A dynamic model is employed to analyze groups of cases in order to uncover the dynamic behaviors when the face contact is induced by different mixtures of abnormities,whose discriminative features when motion and contact are monitored are studied and uncovered.A circumferential-pattern-related oscillation phenomenon is discovered,which is extracted from contact information and implies the relative magnitude of the moment on stator and the rotor tilt.The experimental observation shows consistent results.It means that the grooves(or other circumferential patterns)generate useful informative features for monitoring.These results provide guidance for designing a monitored gas face seal system.
文摘Non-contact atomic force microscopy(nc-AFM) atomic-scale imaging process of monocrystalline silicon surface using capped single-wall carbon nanotube tip is simulated by molecular dynamic method. The simulation resuhs show that the nc-AFM imaging force mainly comes from the C-Si and C-C chemical covalent bonding forces, especially the former, the nonbonding Van der Waals force change is small during the range of stable imaging height. When the tip-surface distance is smaller than the stable imaging height, several neighboring carbon atoms at the tip apex are attracted, and some of them jump onto the sample surface. Finally the tip apex configuration is destroyed with the tip indenting further.
基金supported by the National Natural Science Foundation of China(Nos.52376029 and 52176042)。
文摘Less leakage is a benefit of parallel grooved liquid seals(labyrinth seals).But researches show that the liquid seal with parallel grooves on the rotor harms the rotor stability.The seal with helical grooves on stator performs well in terms of rotordynamics,and its leakage is sensitive to the rotating speed.To make use of the advantages of both seals and improve seal stability,based on the Smooth-stator/Parallel Grooved-rotor(SPG)liquid seal,a Helical Grooved-stator/Parallel Grooved-rotor(HGPG)liquid seal is designed.To evaluate two liquid seals'leakage,rotordynamic characteristics and drag power loss,a transient computational fluid dynamics-based method is employed.This method is based on the multi-frequency elliptical-orbit rotor whirling model and the mesh deformation technique.The published experimental data of the leakage and rotordynamic force coefficients for an SPG liquid seal are used to validate the accuracy and dependability of the current method.Seal leakage and force coefficients are presented and compared for the SPG liquid seal and the HGPG liquid seal at various pressure drops.The influences of parallel groove depth on the leakage and rotordynamic properties for the HGPG liquid seals at two rotational speeds(2000,6000 r/min)are analyzed.The numerical findings demonstrate that the novel HGPG liquid seal has a lower leakage flow rate(by$22.3%)than the traditional SPG liquid seal.There is an optimal parallel groove depth that minimizes leakage.The presented novel HGPG liquid seal significantly improves rotordynamic stability,due to the similar effective stiffness and the obviously larger positive effective damping.Reducing parallel groove depth can increase the positive effective damping.In terms of leakage and rotordynamic characteristics,the novel HGPG liquid seal is a better seal design for liquid turbomachinery.
基金Supported by National Natural Science Foundation of China(Grant No.51575490)National Key Basic Research Program of China(973 Program,Grant No.2014CB046404)Natural Science Key Foundation of Zhejiang Province,China(Grant No.LZ15E050002)
文摘The dry gas seal(DGS) has been widely used in high parameters centrifugal compressor, but the intense vibrations of shafting, especially in high-speed condition, usually result in DGS's failure. So the DGS's ability of resisting outside interference has become a determining factor of the further development of centrifugal compressor. However, the systematic researches of which about gas film disturbance characteristics of high parameters DGS are very little. In order to study gas film disturbance characteristics of high-speed and high-pressure spiral groove dry gas seal(S-DGS) with a flexibly mounted stator, rotor axial runout and misalignment are taken into consideration, and the finite difference method and analytical method are used to analyze the influence of gas film thickness disturbance on sealing performance parameters, what's more, the effects of many key factors on gas film thickness disturbance are systematically investigated. The results show that, when sealed pressure is 10.1MPa and seal face average linear velocity is 107.3 m/s, gas film thickness disturbance has a significant effect on leakage rate, but has relatively litter effect on open force; Excessively large excitation amplitude or excessively high excitation frequency can lead to severe gas film thickness disturbance; And it is beneficial to assure a smaller gas film thickness disturbance when the stator material density is between 3.1 g/cm3 to 8.4 g/cm3; Ensuring sealing performance while minimizing support axial stiffness and support axial damping can help to improve dynamic tracking property of dry gas seal. The proposed research provides the instruction to optimize dynamic tracking property of the DGS.
基金supported by the Science and Technology Project of Universities and Colleges in Shandong Province ‘‘Investigation on diagenetic environment and transformation pattern of red-bed reservoirs in the rift basins’’ (No. J16LH52)
文摘Fuzzy mathematics is an important means to quantitatively evaluate the properties of fault sealing in petroleum reservoirs.To accurately study fault sealing,the comprehensive quantitative evaluation method of fuzzy mathematics is improved based on a previous study.First,the single-factor membership degree is determined using the dynamic clustering method,then a single-factor evaluation matrix is constructed using a continuous grading function,and finally,the probability distribution of the evaluation grade in a fuzzy evaluation matrix is analyzed.In this study,taking the F1 fault located in the northeastern Chepaizi Bulge as an example,the sealing properties of faults in different strata are quantitatively evaluated using both an improved and an un-improved comprehensive fuzzy mathematics quantitative evaluation method.Based on current oil and gas distribution,it is found that our evaluation results before and after improvement are significantly different.For faults in"best"and"poorest"intervals,our evaluation results are consistent with oil and gas distribution.However,for the faults in"good"or"poor"intervals,our evaluation is not completelyconsistent with oil and gas distribution.The improved evaluation results reflect the overall and local sealing properties of target zones and embody the nonuniformity of fault sealing,indicating the improved method is more suitable for evaluating fault sealing under complicated conditions.
基金the Strategic Pilot Technology Chinese Academy of Sciences(No.XDA02010500).
文摘The high-temperature molten salt pump is the core equipment in a molten salt reactor that drives the flow of the molten salt coolant.Rotor stability is key to the continuous and reliable operation of the molten salt pump,and the liquid seal at the wear ring can affect the dynamic characteristics of the rotor system.When the molten salt pump is operated in the hightemperature molten salt medium,thermal deformation of the submerged parts inevitably occurs,changing clearance between the stator and rotor,affecting the leakage and dynamic characteristics of the seal.In this study,the seal leakage,seal dynamic characteristics,and rotor system dynamic characteristics are simulated and analyzed using finite element simulation software based on two cases of considering the effect of seal thermal deformation effect or not.The results show a significant difference in the leakage characteristics and dynamic characteristics of the seal obtained by considering the effect of seal thermal deformation and neglecting the effect of thermal deformation.The leakage flow rate decreases,and the first-order critical speed of the seal-bearing-rotor system decrease after considering the seal’s thermal deformation.