Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the la...Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the lack of the way to characterize the main factors of influence on the leakage, most of the early researches were based on the assumptions that the seal faces topography and the frictional conditions were invariant. In the early built models, the effect of the surface topography change of the seal face on the leakage rate was neglected. Based on the fractal theory, the contact of end faces of the rotary and stationary rings was simplified to be the contact of a rough surface and an ideal rigid smooth surface, and the contact interface's cavity size-distribution function as well as the fractal characteristic of the cavity profile curve was discussed. By analyzing the influence of abrasion on the seal face topography and the leakage channel, the time-correlation leakage prediction model of mechanical seals based on the fractal theory was established and the method for predicting the leakage rate of mechanical seals with parallel plane was proposed. The values of the leakage rate predicted theoretically are similar to the measured values of the leakage rate in the model test and in situ test. The experimental results indicate that the leakage rate of mechanical seals is a transient value. The surface topography of the end faces of the seal tings and its change during the frictional wear of mechanical seals can be accurately characterized by the fractal parameters. Under the work conditions of changeless frictional mechanism, the fractal parameters measured or calculated based on the accelerated testing equation can be used to predict the leakage rate of mechanical seal in service. The proposed research provides the basis for determining the leakage state and predicting working life of mechanical seal.展开更多
Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry a...Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry and vaporize the sealing fluid, resulting in friction of boundary lubrication. These effects on face seals usually lead to excessive leakage and ultimately ren der the seal inoperable. In order to maintain the reliability of seals, high fri ction and unwanted wear must be avoided. Using the laser-texturing process to produce regular micro-surface structures is a fast and convenient technique compared to some more conventional etching or erosion technique currently used by the seal industry for various grooved face seals. Indeed, by using a pulse laser, better control is obtained on the geometr y, size and pore ratio of seal rings made of metallic or ceramic materials. In t his study, seal rings are made of silicon carbide and carbon. Mating faces of th e rings are polished and only silicon carbide rings are laser-textured. The las er texturing can be controlled to produce spherical pores at selected diameters, depths and pore ratio. The textured rings are then super-polished to remove th e bulges formed on the pores rims. After this process the average pore diameter, pore depth and pore ratio reach the predetermined parameter. Some untextured ri ngs are also treated to the same surface roughness and served as a reference for comparison of the textured rings. A special test rig is used to simulate a mech anical seal system and to measure the effect of the laser texturing on friction and seal performance. Tests are performed at various rotational speeds and vario us axial loads. Compared with the conventional mechanical seals, temperature rise, friction torq ue and friction coefficient of mechanical seals with laser-textured seal faces are much lower. These preliminary results show the potential of improving fricti on performance and increasing seal life with laser-textured seal faces.展开更多
Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are ...Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.展开更多
The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leak...The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals.展开更多
Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is present...Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is presented. By analyzing the static metal sealing mechanism, the critical condition of the sealing performance is established for this connector and the formulation method of the contact pressure on the sealing surface is created. By the method the minimum mean contact pressure of the 8.625 inch connector is calculated as 361 MPa, which is the constraint condition in the optimum design of connector.The finite element model is created in ANSYS Parametric Design Language(APDL) and the structure is optimized by the zero-order method, with variance of contact pressure as the objective function, and mean contact pressures and plastic strains as constraint variables. The optimization shows that variances of contact pressure on two sealing surfaces decrease by 72.41% and 89.33%, respectively, and mean contact pressures increase by 31.18% and 52.84%, respectively. The comparison of the optimal connectors and non-optimal connectors in the water pressure experiments and bending experiments shows that the sealing ability of optimized connectors is much higher than the rated pressure of 4.5 MPa, and the optimal connectors don’t leak under the bending moment of 52.2 kN·m.This research provides the formulation to solve contact pressure on the sealing surface and a structure optimization method to design the connectors with various dimensions.展开更多
The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to...The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability.展开更多
Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated bas...Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated based on the theory of hydrodynamic lubrication.N-S equation,energy equation,viscosity-temperature equation and vapor transport equation were solved with the finite volume method by using Fluent software,which was performed to analyze the influence of the viscosity-temperature and cavitation effect on hydrodynamic lubrication failure of the film.The research demonstrates that it will lead to the significant difference of the temperature field by considering the coupling of temperature and viscosity.When the film thickness decreases and the rotating speed rises,cavitation regions and viscous friction heat increases,the opening force of the film is also enhanced.However,the growth rate is restricted to the cavitation regions and viscous friction heat,and the opening force begins to decline to a certain extent,and thereby being insufficient to open the surfaces of the seals and leading to the failure of automatic adjustment function and severe wear,lubrication failure occurrs.Through comprehensive research on the influences of viscosity-temperature and cavitation effect on hydrodynamic lubrication performance,the theories of failure and design of upstream pumping mechanical seal are further developed.展开更多
In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate...In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.展开更多
The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dim...The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dimpled annular area of mechanical gas seal considering the″interaction effect″between adjacent dimples is developed based on the Reynolds equation.Different multi-row columns are chosen and the dimensionless pressure in radial and circumferential directions is calculated.The results indicate that the″interaction effect″is more obvious in the circumferential direction than in the radial direction,even when the area and depth of the dimples are same.Moreover,for the 5×5column,the dimensionless average pressure considering the″interaction effect″increases by45.41% compared with the 1×5column.Further analysis demonstrates that the model with the 5×5column can be more reasonable with the consideration of reducing the calculation error caused by boundary conditions to investigate the hydrodynamic effect for dimpled mechanical gas seal.展开更多
In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and exper...In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and experimenting technology in respects, such as seals' dimensions, reasonable amounts of compression, sealability, life, resistance to pressure, etc. Through life detecting test of the seal, found the longest life seal ring under the same conditions, and through the reciprocating test of the hydraulic support, found the most appropriate amount of interference between the groove and the seal ring, thus, to decrease the leakage and extend the life span of the hydraulic support.展开更多
Recently a new grout material called water inflow sealing(WIS) was invented for sealing water inflow in tunneling and underground constructions. In this study, a special experimental method called intubated counter gr...Recently a new grout material called water inflow sealing(WIS) was invented for sealing water inflow in tunneling and underground constructions. In this study, a special experimental method called intubated counter grouting(ICG) was proposed to investigate the influence of water dispersion on the rheological properties of the grout during the grouting process, and to testify the sealing performance of the grout,such as instant gelling ability(IGA) and anti-dispersion ability(ADA). In the experiment, dispersion was restricted in the downstream of the channel with a high turbulence intensity. The influences of ADA and IGA were therefore decoupled and evaluated separately. Experimental results revealed two distinctive sealing mechanisms of WIS. For a low initial velocity of water, WIS turned the shear flow of water into an overall movement of a plug by absorbing water into the particles. For a high initial velocity and the situation that the particles reached the outlet before sufficiently expanding, WIS modified the rheology of the water in the channel and reduced its velocity till the static state. The distinctive feature of WIS brings a reformation on the sealing mechanism and provides an effective way to control water inflow with high pressure and velocity.展开更多
The erosion wear behaviour and mechanism of several middle temperature seal coatings were investigated by a CMS 100 self made vacuum sand erosion machine. The results show that the relationship between the erosion mas...The erosion wear behaviour and mechanism of several middle temperature seal coatings were investigated by a CMS 100 self made vacuum sand erosion machine. The results show that the relationship between the erosion mass loss and the erosion time is linear, the coatings hold a maximum erosion rate at 60° impact angle, and the relationship between the erosion rate and the impact speed is an exponential function. The speed exponent increases with the increase of the impact angle. At 90° impact, indentations and extruded lips were generated on the coating surface subjected to impact. With repetitive impact by the abrasive particles, the extruded lips were work hardened and peeled off, while flattened metal phase grains were impacted repeatedly, loosed and debonded. At 30° impact, the erosion wear of the coating is characterized by micro cutting, plowing and tunneling via pores and non metal phase. The model of the erosion mechanism is advanced on the basis of the above mentioned erosion wear behaviour.展开更多
Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atm...Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability.展开更多
The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stre...The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.展开更多
Carbonic composite materials and ceramics appear to be excellent structural materials for parts subjected to very high temperatures in molten salt reactors(MSRs), in which the reactor core outlet temperature is normal...Carbonic composite materials and ceramics appear to be excellent structural materials for parts subjected to very high temperatures in molten salt reactors(MSRs), in which the reactor core outlet temperature is normally above 700℃. Because of the high temperature,there are major challenges in the sealing of flanged connections for tubes made of alloys and nonmetallic materials. In this study, an improved method for sealing bolted flange connections for tubes made of dissimilar materials at high temperature is analyzed. The study focuses on the compensation mechanism for the difference in thermal expansion between the bolts and the flanges. An angle is introduced for the sealing surface in the flanged connection to provide effective sealing. The arctangent of the angle is the ratio of the thickness between the theoretical core of the sealing surface and the outside end face of the flange to the distances between the axis of the flanged joint and the theoretical core of the sealing surface of the flange; the sealing surface of the flange, which is made of the same material as the fastening assemblies, faces the fastening assemblies. To ensure effective sealing, the frictional coefficient between the two sealing surfaces should not exceed the tangent of the angle. This result does not agree well with the solution given by previous researchers. Further, in the modified flanged connection, the compression of each bolt in the clamped condition is increased to maintain the compaction force unchanged without increasing the number of bolts on the flanged joint.展开更多
Recent studies on staggered labyrinth seals have focused on the effects of different parameters,such as the pressure ratio and rotational speed on the leakage flow rate.However,few investigations pay sufficient attent...Recent studies on staggered labyrinth seals have focused on the effects of different parameters,such as the pressure ratio and rotational speed on the leakage flow rate.However,few investigations pay sufficient attention to flow details and the sealing mechanism,which would be of practical importance in designing seals having higher performance.This paper establishes a theoretical model to study the seal mechanism,thus revealing that leakage is determined by the pressure ratio and geometric structure.Numerical simulation is implemented to illustrate details of the flow field within the seal structure.Viscous dissipation is used to quantitatively investigate the contribution that each location makes to the seal performance,revealing that orifices and stagnation points are the most important positions in the seal structure,generating the most dissipation.The orifice is carefully studied by using the theoretical model.Experiments for different pressure ratios are conducted and the results match well with those of the theoretical model and numerical simulation,verifying the theoretical model and analysis of the seal mechanism.Three new designs,based on a good understanding of the seal mechanism,are presented,with one reducing leakage by 24.5%.展开更多
Many structures and materials in nature and physiology have important "meso-scale" structures at the micron lengthscale whose tensile responses have proven difficult to characterize mechanically. Although techniques...Many structures and materials in nature and physiology have important "meso-scale" structures at the micron lengthscale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.展开更多
Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pre...Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.展开更多
Based on the elastoplastic model of cement sheath considering the influence of three-dimensional principal stress and the stress field model of interface crack,a mechanical performance design method of cement sheath i...Based on the elastoplastic model of cement sheath considering the influence of three-dimensional principal stress and the stress field model of interface crack,a mechanical performance design method of cement sheath is established to meet the wellbore sealing requirements during fracturing.This method takes the failure types of the cement sheath,such as tensile failure,plastic yield,interface crack propagation along interface and zigzag propagation into account.Meanwhile,the elasticity modulus and Poisson's ratio quantitative design charts of cement sheath are constructed based on this method,and the safety and risk areas of wellbores are defined,which quantify the yield strength and tensile strength indexes of cement sheath.The results show that decreasing elasticity modulus,increasing yield strength and Poisson's ratio of cement sheath can avoid plastic deformation of cement sheath;increasing the tensile strength of cement sheath can prevent its tensile failure;increasing elasticity modulus and Poisson's ratio of cement sheath is good for shortening the length of the interface crack,but will increase the risk of interface cracks zigzagging into cement sheath.The model calculation and case verification has proved that the method in this paper can give accurate calculation results and is convenient for field application.展开更多
When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the ...When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the theoretical basis for the technology of hydro-jet fracturing. This paper analyzes the mechanism of generating pressure stagnation in water jet hole, and puts forward a new concept of hydroseal. Then, the distribution of pressure in the hole was simulated with the finite element method. The simulation results showed that the pressure in the hole was higher than that in the annulus. Also, the lower the annular pressure (confining pressure) and the higher the blasting pressure, the greater the pressure difference. An experiment indicated that the cement sample was lifted up under the pressure stagnation in the hole, which proved the finite element simulation results obviously.展开更多
基金supported by China Postdoctoral Science Foundation (Grant No. 20070410323)Jiangsu Provincial Planned Projects for Postdoctoral Research Funds of China (Grant No. 0701001C)Jiangsu Provincial Planned Projects for Fostering Talents of Six Scientific Fields of China (Grant No. 07-D-027)
文摘Since the beginning of the 20th century, many researches on the sealing characteristic of mechanical seals were carried out broadly and in depth by various methods and some leakage models were built. But due to the lack of the way to characterize the main factors of influence on the leakage, most of the early researches were based on the assumptions that the seal faces topography and the frictional conditions were invariant. In the early built models, the effect of the surface topography change of the seal face on the leakage rate was neglected. Based on the fractal theory, the contact of end faces of the rotary and stationary rings was simplified to be the contact of a rough surface and an ideal rigid smooth surface, and the contact interface's cavity size-distribution function as well as the fractal characteristic of the cavity profile curve was discussed. By analyzing the influence of abrasion on the seal face topography and the leakage channel, the time-correlation leakage prediction model of mechanical seals based on the fractal theory was established and the method for predicting the leakage rate of mechanical seals with parallel plane was proposed. The values of the leakage rate predicted theoretically are similar to the measured values of the leakage rate in the model test and in situ test. The experimental results indicate that the leakage rate of mechanical seals is a transient value. The surface topography of the end faces of the seal tings and its change during the frictional wear of mechanical seals can be accurately characterized by the fractal parameters. Under the work conditions of changeless frictional mechanism, the fractal parameters measured or calculated based on the accelerated testing equation can be used to predict the leakage rate of mechanical seal in service. The proposed research provides the basis for determining the leakage state and predicting working life of mechanical seal.
文摘Heat generated by friction between faces of mechanica l seals is a major factor that causes deterioration of the seals and shortens th eir service life. Excessive temperature rise can greatly alter the seal geometry and vaporize the sealing fluid, resulting in friction of boundary lubrication. These effects on face seals usually lead to excessive leakage and ultimately ren der the seal inoperable. In order to maintain the reliability of seals, high fri ction and unwanted wear must be avoided. Using the laser-texturing process to produce regular micro-surface structures is a fast and convenient technique compared to some more conventional etching or erosion technique currently used by the seal industry for various grooved face seals. Indeed, by using a pulse laser, better control is obtained on the geometr y, size and pore ratio of seal rings made of metallic or ceramic materials. In t his study, seal rings are made of silicon carbide and carbon. Mating faces of th e rings are polished and only silicon carbide rings are laser-textured. The las er texturing can be controlled to produce spherical pores at selected diameters, depths and pore ratio. The textured rings are then super-polished to remove th e bulges formed on the pores rims. After this process the average pore diameter, pore depth and pore ratio reach the predetermined parameter. Some untextured ri ngs are also treated to the same surface roughness and served as a reference for comparison of the textured rings. A special test rig is used to simulate a mech anical seal system and to measure the effect of the laser texturing on friction and seal performance. Tests are performed at various rotational speeds and vario us axial loads. Compared with the conventional mechanical seals, temperature rise, friction torq ue and friction coefficient of mechanical seals with laser-textured seal faces are much lower. These preliminary results show the potential of improving fricti on performance and increasing seal life with laser-textured seal faces.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2009CB724304)National Key Technology R&D Program(Grant No.2011BAF09B05)National Natural Science Foundation of China(Grant No.50975157)
文摘Hydrostatic mechanical face seals for reactor coolant pumps are very important for the safety and reliability of pressurized-water reactor power plants.More accurate models on the operating mechanism of the seals are needed to help improve their performance.The thermal fluid–solid interaction(TFSI)mechanism of the hydrostatic seal is investigated in this study.Numerical models of the flow field and seal assembly are developed.Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface,an on-line numerical TFSI model for the hydrostatic mechanical seal is proposed using an iterative coupling method.Dynamic mesh technology is adopted to adapt to the changing boundary shape.Experiments were performed on a test rig using a full-size test seal to obtain the leakage rate as a function of the differential pressure.The effectiveness and accuracy of the TFSI model were verified by comparing the simulation results and experimental data.Using the TFSI model,the behavior of the seal is presented,including mechanical and thermal deformation,and the temperature field.The influences of the rotating speed and differential pressure of the sealing device on the temperature field,which occur widely in the actual use of the seal,are studied.This research proposes an on-line and assembly-based TFSI model for hydrostatic mechanical face seals,and the model is validated by full-sized experiments.
基金This project is supported by Provincial Natural Science Foundation of Educa-tion Office of Jiangsu, China (No. 04KJD530090)Innovating Founda-tion for Doctoral Dissertation of Nanjing University of Technology, China (No. BSCX200510).
文摘The loads acting on the sealing elements of balanced mechanical seals are analyzed. When the balance factor approaches the back pressure factor, the spring pressure will become main part of the face pressure. The leakage model of balanced mechanical seals is established on the base of M-B model for rough surface. Several GY-70 type balanced mechanical seals are tested. The influences of the spring pressure both on the leakage rate and on the friction characteristic of balanced mechanical seals are investigated. The research results indicate that as spring pressure increases, both the clear-ance between two end faces and the leakage rate will decrease, and the friction will be more serious because lubrication medium between the rotating ring and the stationary ring reduces, though the increase of the spring pressure may not be enough to change the face friction state of mechanical seals. There exists an optimum spring pressure for mechanical seal operation. Under this spring pres-sure, not only leakage rate is small, but also the seal end surfaces have a fine friction characteristic. Under different operating conditions, identical type mechanical seals may possess different spring pressure. Appropriate selection of spring pressure is valuable to realize long-period and small leakage rate operating of balanced mechanical seals.
基金Supported by National Natural Science Foundation of China(Grant Nos.51279042,51105088)
文摘Researchers seldom study the optimum design of a mechanical connector for subsea oil-gas pipeline based upon the sealing performance. An optimal design method of a novel subsea pipeline mechanical connector is presented. By analyzing the static metal sealing mechanism, the critical condition of the sealing performance is established for this connector and the formulation method of the contact pressure on the sealing surface is created. By the method the minimum mean contact pressure of the 8.625 inch connector is calculated as 361 MPa, which is the constraint condition in the optimum design of connector.The finite element model is created in ANSYS Parametric Design Language(APDL) and the structure is optimized by the zero-order method, with variance of contact pressure as the objective function, and mean contact pressures and plastic strains as constraint variables. The optimization shows that variances of contact pressure on two sealing surfaces decrease by 72.41% and 89.33%, respectively, and mean contact pressures increase by 31.18% and 52.84%, respectively. The comparison of the optimal connectors and non-optimal connectors in the water pressure experiments and bending experiments shows that the sealing ability of optimized connectors is much higher than the rated pressure of 4.5 MPa, and the optimal connectors don’t leak under the bending moment of 52.2 kN·m.This research provides the formulation to solve contact pressure on the sealing surface and a structure optimization method to design the connectors with various dimensions.
文摘The coupling effect among the flow of fluid film, the frictional heat of fluid film and the thermal deformation of sealing rings is inherent in mechanical seals. The frictional heat transfer analysis was carded out to optimize the geometrical parameters of the sealing rings, such as the length, the inner radius and the outer radius. The geometrical parameters of spiral grooves, such as the spiral angle, the end radius, the groove depth, the ratio of the groove width to the weir width and the number of the grooves, were optimized by regarding the maximum bearing force of fluid film as the optimization objective with the coupling effect considered. The depth of spiral groove was designed to gradually increase from the end radius of spiral groove to the outer radius of end face in order to decrease the weakening effect of thermal deformation on the hydrodynamic effect of spiral grooves. The end faces of sealing rings were machined to form a divergent gap at inner radius, and a parallel gap will form to reduce the leakage rate when the thermal deformation takes place. The improved spiral groove mechanical seal possesses good heat transfer performance and sealing ability.
基金National Natural Science Foundation of China(Grant No.51279067)
文摘Considering the effect of viscosity-temperature relationship and cavitation of micro-scale film,the influencing factors on hydrodynamic lubrication performance of upstream pumping mechanical seal were investigated based on the theory of hydrodynamic lubrication.N-S equation,energy equation,viscosity-temperature equation and vapor transport equation were solved with the finite volume method by using Fluent software,which was performed to analyze the influence of the viscosity-temperature and cavitation effect on hydrodynamic lubrication failure of the film.The research demonstrates that it will lead to the significant difference of the temperature field by considering the coupling of temperature and viscosity.When the film thickness decreases and the rotating speed rises,cavitation regions and viscous friction heat increases,the opening force of the film is also enhanced.However,the growth rate is restricted to the cavitation regions and viscous friction heat,and the opening force begins to decline to a certain extent,and thereby being insufficient to open the surfaces of the seals and leading to the failure of automatic adjustment function and severe wear,lubrication failure occurrs.Through comprehensive research on the influences of viscosity-temperature and cavitation effect on hydrodynamic lubrication performance,the theories of failure and design of upstream pumping mechanical seal are further developed.
文摘In order to investigate the sealing performance variation resulted from the thermal deformation of the end faces, the equations to calculate the fluid film pressure distribution, the bearing force and the leakage rate are derived, for the fluid film both in parallel gap and in wedgy gap. The geometrical parameters of the sealing members are optimized by means of heat transfer analysis and complex method. The analysis results indicate that the shallow spiral grooves can generate hydrodynamic pressure while the rotating ring rotates and the bearing force of the fluid film in spiral groove end faces is much larger than that in the flat end faces. The deformation increases the bearing force of the fluid film in flat end faces, but it decreases the hydrodynamic pressure of the fluid film in spiral groove end faces. The gap dimensions which determine the characteristics of the fluid film is obtained by coupling analysis of the frictional heat and the thermal deformation in consideration of the equilibrium condition of the bearing force and the closing force. For different gap dimensions, the relation- ship between the closing force and the leakage rate is also investigated, based on which the leakage rate can be controlled by adjusting the closing force.
基金supported by the National Natural Science Foundation of China(No.51175246)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the NUAA Research Funding(No.NP2013306)
文摘The mechanical gas seal of aero engine has to face the problems of high wear rate and short lifetime.Surface texture has shown beneficial effects over the tribological characteristics.Here,a hydrodynamic model for dimpled annular area of mechanical gas seal considering the″interaction effect″between adjacent dimples is developed based on the Reynolds equation.Different multi-row columns are chosen and the dimensionless pressure in radial and circumferential directions is calculated.The results indicate that the″interaction effect″is more obvious in the circumferential direction than in the radial direction,even when the area and depth of the dimples are same.Moreover,for the 5×5column,the dimensionless average pressure considering the″interaction effect″increases by45.41% compared with the 1×5column.Further analysis demonstrates that the model with the 5×5column can be more reasonable with the consideration of reducing the calculation error caused by boundary conditions to investigate the hydrodynamic effect for dimpled mechanical gas seal.
文摘In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and experimenting technology in respects, such as seals' dimensions, reasonable amounts of compression, sealability, life, resistance to pressure, etc. Through life detecting test of the seal, found the longest life seal ring under the same conditions, and through the reciprocating test of the hydraulic support, found the most appropriate amount of interference between the groove and the seal ring, thus, to decrease the leakage and extend the life span of the hydraulic support.
基金financially supported by National Postdoctoral Program for Innovative Talent (No. BX20200200)Youth Fund of National Natural Science Foundation of China (No. 52109126)Joint Funds of the National Natural Science Foundation of China (No. U1706223)。
文摘Recently a new grout material called water inflow sealing(WIS) was invented for sealing water inflow in tunneling and underground constructions. In this study, a special experimental method called intubated counter grouting(ICG) was proposed to investigate the influence of water dispersion on the rheological properties of the grout during the grouting process, and to testify the sealing performance of the grout,such as instant gelling ability(IGA) and anti-dispersion ability(ADA). In the experiment, dispersion was restricted in the downstream of the channel with a high turbulence intensity. The influences of ADA and IGA were therefore decoupled and evaluated separately. Experimental results revealed two distinctive sealing mechanisms of WIS. For a low initial velocity of water, WIS turned the shear flow of water into an overall movement of a plug by absorbing water into the particles. For a high initial velocity and the situation that the particles reached the outlet before sufficiently expanding, WIS modified the rheology of the water in the channel and reduced its velocity till the static state. The distinctive feature of WIS brings a reformation on the sealing mechanism and provides an effective way to control water inflow with high pressure and velocity.
文摘The erosion wear behaviour and mechanism of several middle temperature seal coatings were investigated by a CMS 100 self made vacuum sand erosion machine. The results show that the relationship between the erosion mass loss and the erosion time is linear, the coatings hold a maximum erosion rate at 60° impact angle, and the relationship between the erosion rate and the impact speed is an exponential function. The speed exponent increases with the increase of the impact angle. At 90° impact, indentations and extruded lips were generated on the coating surface subjected to impact. With repetitive impact by the abrasive particles, the extruded lips were work hardened and peeled off, while flattened metal phase grains were impacted repeatedly, loosed and debonded. At 30° impact, the erosion wear of the coating is characterized by micro cutting, plowing and tunneling via pores and non metal phase. The model of the erosion mechanism is advanced on the basis of the above mentioned erosion wear behaviour.
基金supported by Zhejiang Provincial Science and Technology Plan Project(Grant No.2022C01118).
文摘Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2012AA09A205)
文摘The metal sealing performance of subsea X-tree wellhead connectors is crucial for the safety and reliability of subsea X-trees. In order to establish the theoretical relation between metal sealing ring's contact stress and its structural parameters and working pressure, a mechanical analysis method for double-cone sealing of high pressure vessels is applied in analyzing the metal sealing ring under the condition of preload and operation. As a result, the formula of the unit sealing load for the metal sealing ring under operation with residual preload is shown in this paper, which ensures that the metal sealing ring has an excellent sealing effect and can prevent the metal sealing ring from yielding. Besides, while analyzing the sealing process of the metal sealing ring, the change rule of contact stress and working pressure is concluded here, putting forward that the structural parameters of the metal sealing ring are the major factors affecting the change rule. Finally, the analytical solution through theoretical analysis is compared with the simulation result through finite element analysis in a force feedback experiment, and both are consistent with each other, which fully verifies for the design and calculation theory on metal sealing ring's contact stress and its structural parameters and working pressure deduced in this paper. The proposed research will be treated as an applicable theory guiding the design of metal seal for subsea X-tree wellhead connectors.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)
文摘Carbonic composite materials and ceramics appear to be excellent structural materials for parts subjected to very high temperatures in molten salt reactors(MSRs), in which the reactor core outlet temperature is normally above 700℃. Because of the high temperature,there are major challenges in the sealing of flanged connections for tubes made of alloys and nonmetallic materials. In this study, an improved method for sealing bolted flange connections for tubes made of dissimilar materials at high temperature is analyzed. The study focuses on the compensation mechanism for the difference in thermal expansion between the bolts and the flanges. An angle is introduced for the sealing surface in the flanged connection to provide effective sealing. The arctangent of the angle is the ratio of the thickness between the theoretical core of the sealing surface and the outside end face of the flange to the distances between the axis of the flanged joint and the theoretical core of the sealing surface of the flange; the sealing surface of the flange, which is made of the same material as the fastening assemblies, faces the fastening assemblies. To ensure effective sealing, the frictional coefficient between the two sealing surfaces should not exceed the tangent of the angle. This result does not agree well with the solution given by previous researchers. Further, in the modified flanged connection, the compression of each bolt in the clamped condition is increased to maintain the compaction force unchanged without increasing the number of bolts on the flanged joint.
基金Supported by National Natural Science Foundation of China(Grant No.51136003)the support provided by Doctor HUANG Weifeng,Doctor LI Yongjian,and Professor WANG Yuming at Department,of Mechanical Engineering, Tsinghua University,China,in establishing the test rig for the labyrinth seal
文摘Recent studies on staggered labyrinth seals have focused on the effects of different parameters,such as the pressure ratio and rotational speed on the leakage flow rate.However,few investigations pay sufficient attention to flow details and the sealing mechanism,which would be of practical importance in designing seals having higher performance.This paper establishes a theoretical model to study the seal mechanism,thus revealing that leakage is determined by the pressure ratio and geometric structure.Numerical simulation is implemented to illustrate details of the flow field within the seal structure.Viscous dissipation is used to quantitatively investigate the contribution that each location makes to the seal performance,revealing that orifices and stagnation points are the most important positions in the seal structure,generating the most dissipation.The orifice is carefully studied by using the theoretical model.Experiments for different pressure ratios are conducted and the results match well with those of the theoretical model and numerical simulation,verifying the theoretical model and analysis of the seal mechanism.Three new designs,based on a good understanding of the seal mechanism,are presented,with one reducing leakage by 24.5%.
基金partially supported by the National Natural Science Foundation of China(Grants 11532009,11372243,and 11522219)the China Postdoctoral Science Foundation(Grant 2016M602810)This project was also supported by the Initiative Postdocs Supporting Program(Grant BX201600121)
文摘Many structures and materials in nature and physiology have important "meso-scale" structures at the micron lengthscale whose tensile responses have proven difficult to characterize mechanically. Although techniques such as atomic force microscopy and micro- and nano-identation are mature for compression and indentation testing at the nano-scale, and standard uniaxial and shear rheometry techniques exist for the macroscale, few techniques are applicable for tensile-testing at the micrometre-scale, leaving a gap in our understanding of hierarchical biomaterials. Here, we present a novel magnetic mechanical testing (MMT) system that enables viscoelastic tensile testing at this critical length scale. The MMT system applies non-contact loading, avoiding gripping and surface interaction effects. We demonstrate application of the MMT system to the first analyses of the pure tensile responses of several native and engineered tissue systems at the mesoscale, showing the broad potential of the system for exploring micro- and meso-scale analysis of structured and hierarchical biological systems.
基金Supported by National Natural Science Foundation of China (Grant Nos.51175740,51275473)Ph D Programs Foundation of Ministry of Education of China (Grant No.20103317110002)National Key Basic Research Program of China (973 Program,Grant No.2014CB046404)
文摘Current researches show that mechanical deformation of seal ring face makes fluid film clearance decrease at high pressure side, thus a divergent clearance is formed and face wear occurs more seriously at the high pressure side than that on the low pressure side. However, there is still lack of published experimental works enough to prove the theoretical results. In this paper, a spiral groove dry gas seal at high pressures is experimentally investigated so as to prove the face wear happened at the high pressure side of seal faces due to the face mechanical deformation, and the wear behavior affected by seal ring structure is also studied. The experimental results show that face wear would occur at the high pressure side of seal faces due to the deformation, thus the leakage and face temperature increase, which all satisfies the theoretical predictions. When sealed pressure is not less than 5 MPa, the pressure can provide enough opening force to separate the seal faces. The seal ring sizes have obvious influence on face wear. Face wear, leakage and face temperature of a dry gas seal with the smaller cross sectional area of seal ring are less than that of a dry gas seal with bigger one, and the difference of leakage rate between these two sizes of seal face width is in the range of 24%–25%. Compared with the effect of seal ring sizes, the effect of secondary O-ring seal position on face deformation and face wear is less. The differences between these two types of dry gas seals with different secondary O-ring seal positions are less than 5.9% when the rotational speed varies from 0 to 600 r/min. By linking face wear and sealing performance changes to the shift in mechanical deformation of seal ring, this research presents an important experimental method to study face deformation of a dry gas seal at high pressures.
基金Supported by Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX040000)Sichuan Science and Technology Program(2020JDTD0019)+1 种基金National Natural Science Foundation of China(52004231)Research Project of Dagang Oilfield(NO.DGYT-2018-JS-244).
文摘Based on the elastoplastic model of cement sheath considering the influence of three-dimensional principal stress and the stress field model of interface crack,a mechanical performance design method of cement sheath is established to meet the wellbore sealing requirements during fracturing.This method takes the failure types of the cement sheath,such as tensile failure,plastic yield,interface crack propagation along interface and zigzag propagation into account.Meanwhile,the elasticity modulus and Poisson's ratio quantitative design charts of cement sheath are constructed based on this method,and the safety and risk areas of wellbores are defined,which quantify the yield strength and tensile strength indexes of cement sheath.The results show that decreasing elasticity modulus,increasing yield strength and Poisson's ratio of cement sheath can avoid plastic deformation of cement sheath;increasing the tensile strength of cement sheath can prevent its tensile failure;increasing elasticity modulus and Poisson's ratio of cement sheath is good for shortening the length of the interface crack,but will increase the risk of interface cracks zigzagging into cement sheath.The model calculation and case verification has proved that the method in this paper can give accurate calculation results and is convenient for field application.
文摘When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the theoretical basis for the technology of hydro-jet fracturing. This paper analyzes the mechanism of generating pressure stagnation in water jet hole, and puts forward a new concept of hydroseal. Then, the distribution of pressure in the hole was simulated with the finite element method. The simulation results showed that the pressure in the hole was higher than that in the annulus. Also, the lower the annular pressure (confining pressure) and the higher the blasting pressure, the greater the pressure difference. An experiment indicated that the cement sample was lifted up under the pressure stagnation in the hole, which proved the finite element simulation results obviously.