The detection of obstacles in a dynamic environment is a hot and difficult problem.A method of autonomously detecting obstacles based on laser radar is proposed as a safety auxiliary structure of tram.The nearest neig...The detection of obstacles in a dynamic environment is a hot and difficult problem.A method of autonomously detecting obstacles based on laser radar is proposed as a safety auxiliary structure of tram.The nearest neighbor method is used for spatial obstacles clustering from laser radar data.By analyzing the characteristics of obstacles,the types of obstacles are determined by time correlation.Experiments were carried out on the developed unmanned aerial vehicle(UAV),and the experimental results verify the effectiveness of the proposed method.展开更多
To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathem...To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.展开更多
Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the ...Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.展开更多
This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles a...This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed.展开更多
An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision,...An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, using a multilevel search scheme, the coarse matching is processed in typical disparity space image, while the fine matching is processed in disparity-offset space image. In the upper level, GCPs are obtained by enhanced volumetric iterative algorithm enforcing the mutual constraint and the threshold constraint. Under the supervision of the highly reliable GCPs, bidirectional dynamic programming framework is employed to solve the inconsistency in the optimization path. In the lower level, to reduce running time, disparity-offset space is proposed to efficiently achieve the dense disparity image. In addition, an adaptive dual support-weight strategy is presented to aggregate matching cost, which considers photometric and geometric information. Further, post-processing algorithm can ameliorate disparity results in areas with depth discontinuities and related by occlusions using dual threshold algorithm, where missing stereo information is substituted from surrounding regions. To demonstrate the effectiveness of the algorithm, we present the two groups of experimental results for four widely used standard stereo data sets, including discussion on performance and comparison with other methods, which show that the algorithm has not only a fast speed, but also significantly improves the efficiency of holistic optimization.展开更多
This work proposes an online collaborative hunting strategy for multi-robot systems based on obstacle-avoiding Voronoi cells in a complex dynamic environment. This involves firstly designing the construction method us...This work proposes an online collaborative hunting strategy for multi-robot systems based on obstacle-avoiding Voronoi cells in a complex dynamic environment. This involves firstly designing the construction method using a support vector machine(SVM) based on the definition of buffered Voronoi cells(BVCs). Based on the safe collision-free region of the robots, the boundary weights between the robots and the obstacles are dynamically updated such that the robots are tangent to the buffered Voronoi safety areas without intersecting with the obstacles. Then, the robots are controlled to move within their own buffered Voronoi safety area to achieve collision-avoidance with other robots and obstacles. The next step involves proposing a hunting method that optimizes collaboration between the pursuers and evaders. Some hunting points are generated and distributed evenly around a circle. Next, the pursuers are assigned to match the optimal points based on the Hungarian algorithm.Then, a hunting controller is designed to improve the containment capability and minimize containment time based on collision risk. Finally, simulation results have demonstrated that the proposed cooperative hunting method is more competitive in terms of time and travel distance.展开更多
Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Fir...Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.展开更多
A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-...A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-bar linkages lock the docking ring,which is used for connecting the satellite and the rocket. The mathematical model of capture mechanism and capture space is built by the Denavit-Hartenberg(D-H)method,and the torque of each joint is analyzed by the Lagrange dynamic equation. Besides,the capture condition and the torque of every joint under different capture conditions are analyzed by simulation in MSC. Adams. The results indicate that the mechanism can capture the non-cooperative target satellite in a wide range. During the process of capture,the passive compliant mechanism at the bottom can increase capture space,thereby reducing the difficulty and enhance stability of the capture.展开更多
A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by t...A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by the presence of unexpected,dynamic obstacles.They require areas to be revisited periodically to maintain an accurate coverage map,as well as reactive obstacle avoidance.This paper proposes a novel swarmbased control algorithm for multi-robot exploration and repeated coverage in environments with unknown,dynamic obstacles.The algorithm combines two elements:frontier-led swarming for driving exploration by a group of robots,and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles.We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments.We measure both repeated coverage performance and obstacle avoidance ability.Through a series of comparison experiments,we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.展开更多
A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predict...A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.展开更多
The leakage of hazardous gases poses a significant threat to public security and causes environmental damage.The effective and accurate source term estimation(STE)is necessary when a leakage accident occurs.However,mo...The leakage of hazardous gases poses a significant threat to public security and causes environmental damage.The effective and accurate source term estimation(STE)is necessary when a leakage accident occurs.However,most research generally assumes that no obstacles exist near the leak source,which is inappropriate in practical applications.To solve this problem,we propose two different frameworks to emphasize STE with obstacles based on artificial neural network(ANN)and convolutional neural network(CNN).Firstly,we build a CFD model to simulate the gas diffusion in obstacle scenarios and construct a benchmark dataset.Secondly,we define the structure of ANN by searching,then predict the concentration distribution of gas using the searched model,and optimize source term parameters by particle swarm optimization(PSO)with well-performed cost functions.Thirdly,we propose a one-step STE method based on CNN,which establishes a link between the concentration distribution and the location of obstacles.Finally,we propose a novel data processing method to process sensor data,which maps the concentration information into feature channels.The comprehensive experiments illustrate the performance and efficiency of the proposed methods.展开更多
Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Opti...Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Optimization(MOMVO)algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles.Such a path planning task is formulated as a multicriteria optimization problem under operational constraints.The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles.The vehicle moves to the next position from its current one such that the line joining minimizes the total path length and allows aligning its direction towards the goal.To choose the best compromise solution among all the non-dominated Pareto ones obtained for compromise objectives,the modified Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)is investigated.A set of homologous metaheuristics such as Multiobjective Salp Swarm Algorithm(MSSA),Multi-Objective Grey Wolf Optimizer(MOGWO),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-Dominated Genetic Algorithm II(NSGAII)is used as a basis for the performance comparison.Demonstrative results and statistical analyses show the superiority and effectiveness of the proposed MOMVO-based planning method.The obtained results are satisfactory and encouraging for future practical implementation of the path planning strategy.展开更多
A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS sea...A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS search efficiency is enhanced by adopting a 16-direction 24-neighborhood search way,a safety grid search way,and an elite hybrid strategy to accelerate global convergence.Quadratic planning is performed using the moving average(MA)method.The fusion algorithm incorporates a dynamic window approach(DWA)to deal with the local path planning,sets a retracement mechanism,and adjusts the evaluation function accordingly.Experimental results in two environments demonstrate that the improved ant colony system(IACS)achieves superior planning efficiency.Additionally,the optimized dynamic window approach(ODWA)demonstrates its ability to handle multiple dynamic situations.Overall,the fusion optimization algorithm can accomplish the mixed path planning effectively.展开更多
Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path pl...Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path planning algorithm incorporating improved IB-RRT∗and deep reinforce-ment learning(DRL)is proposed.Firstly,an improved IB-RRT∗algorithm is proposed for global path planning by combining double elliptic subset sampling and probabilistic central circle target bi-as.Then,to tackle the slow response to dynamic obstacles and inadequate obstacle avoidance of tra-ditional local path planning algorithms,deep reinforcement learning is utilized to predict the move-ment trend of dynamic obstacles,leading to a dynamic fusion path planning.Finally,the simulation and experiment results demonstrate that the proposed improved IB-RRT∗algorithm has higher con-vergence speed and search efficiency compared with traditional Bi-RRT∗,Informed-RRT∗,and IB-RRT∗algorithms.Furthermore,the proposed fusion algorithm can effectively perform real-time obsta-cle avoidance and navigation tasks for mobile robots in unstructured environments.展开更多
In this paper,a cooperative region reconnaissance problem is investigated where a group of agents are required to fly across and detect events occur in an environment with static obstacles until an effective coverage ...In this paper,a cooperative region reconnaissance problem is investigated where a group of agents are required to fly across and detect events occur in an environment with static obstacles until an effective coverage is achieved.First,the region reconnaissance is formulated as a non-convex optimization problem.A coverage performance index with additional collision and obstacle avoidance constraints is given.Since the optimization index is an implicit function of state variables and cannot be used to compute gradients on state variables directly,an approximate optimization index is selected.Then,a non-convex optimization-based coverage algorithm is proposed to find the optimal reconnaissance location for each agent and guarantee no collisions trajectories among agents and obstacles.Finally,simulation experiments are performed to verify the effectiveness of the proposed approach.展开更多
With the continuous development of robotics and artificial intelligence,robots are being increasingly used in various applications.For traditional navigation algorithms,such as Dijkstra and A*,many dynamic scenarios i...With the continuous development of robotics and artificial intelligence,robots are being increasingly used in various applications.For traditional navigation algorithms,such as Dijkstra and A*,many dynamic scenarios in life are difficult to cope with.To solve the navigation problem of complex dynamic scenes,we present an improved reinforcement-learning-based algorithm for local path planning that allows it to perform well even when more dynamic obstacles are present.The method applies the gmapping algorithm as the upper layer input and uses reinforcement learning methods as the output.The algorithm enhances the robots’ability to actively avoid obstacles while retaining the adaptability of traditional methods.展开更多
This paper focuses on autonomous motion control of a nonholonomic platform with a robotic arm, which is called mobile manipulator. It serves in transportation of loads in imperfectly known industrial environments with...This paper focuses on autonomous motion control of a nonholonomic platform with a robotic arm, which is called mobile manipulator. It serves in transportation of loads in imperfectly known industrial environments with unknown dynamic obstacles. A union of both procedures is used to solve the general problems of collision-free motion. The problem of collision-free motion for mobile manipulators has been approached from two directions, Planning and Reactive Control. The dynamic path planning can be used to solve the problem of locomotion of mobile platform, and reactive approaches can be employed to solve the motion planning of the arm. The execution can generate the commands for the servo-systems of the robot so as to follow a given nominal trajectory while reacting in real-time to unexpected events. The execution can be designed as an Adaptive Fuzzy Neural Controller. In real world systems, sensor-based motion control becomes essential to deal with model uncertainties and unexpected obstacles.展开更多
For safety reasons,in the automated dispensing medicines process,robots and humans cooperate to accomplish the task of drug sorting and distribution.In this dynamic unstructured environment,such as a humanrobot collab...For safety reasons,in the automated dispensing medicines process,robots and humans cooperate to accomplish the task of drug sorting and distribution.In this dynamic unstructured environment,such as a humanrobot collaboration scenario,the safety of human,robot,and equipment in the environment is paramount.In this work,a practical and effective robot motion planning method is proposed for dynamic unstructured environments.To figure out the problems of blind zones of single depth sensor and dynamic obstacle avoidance,we first propose a method for establishing offline mapping and online fusion of multi-sensor depth images and 3D grids of the robot workspace,which is used to determine the occupation states of the 3D grids occluded by robots and obstacles and to conduct real-time estimation of the minimum distance between the robot and obstacles.Then,based on the reactive control method,the attractive and repulsive forces are calculated and transformed into robot joint velocities to avoid obstacles in real time.Finally,the robot’s dynamic obstacle avoidance ability is evaluated on an experimental platform with a UR5 robot and two KinectV2 RGB-D sensors,and the effectiveness of the proposed method is verified.展开更多
Purpose-In response to these shortcomings,this paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature v...Purpose-In response to these shortcomings,this paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.Design/methodology/approach-The existing dynamic obstacle detection and tracking methods based on geometric features have a high false detection rate.The recognition methods based on the geometric features and motion status of dynamic obstacles are greatly affected by distance and scanning angle,and cannot meet the requirements of real traffic scene applications.Findings-First,based on the geometric features of dynamic obstacles,the obstacles are considered The echo pulse width feature is used to improve the accuracy of obstacle detection and tracking;second,the space-time feature vector is constructed based on the time dimension and space dimension information of the obstacle,and then the support vector machine method is used to realize the recognition of dynamic obstacles to improve the obstacle The accuracy of object recognition.Finally,the accuracy and effectiveness of the proposed method are verified by real vehicle tests.Originality/value-The paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.The accuracy and effectiveness of the proposed method are verified by real vehicle tests.展开更多
基金National Key R&D Program of China(No.2017YFB1201003-020)Science and Technology Project of Gansu Education Department(No.2015B-041)
文摘The detection of obstacles in a dynamic environment is a hot and difficult problem.A method of autonomously detecting obstacles based on laser radar is proposed as a safety auxiliary structure of tram.The nearest neighbor method is used for spatial obstacles clustering from laser radar data.By analyzing the characteristics of obstacles,the types of obstacles are determined by time correlation.Experiments were carried out on the developed unmanned aerial vehicle(UAV),and the experimental results verify the effectiveness of the proposed method.
基金Project(60475035) supported by the National Natural Science Foundation of China
文摘To solve dynamic obstacle avoidance problems, a novel algorithm was put forward with the advantages of wireless sensor network (WSN). In view of moving velocity and direction of both the obstacles and robots, a mathematic model was built based on the exposure model, exposure direction and critical speeds of sensors. Ant colony optimization (ACO) algorithm based on bionic swarm intelligence was used for solution of the multi-objective optimization. Energy consumption and topology of the WSN were also discussed. A practical implementation with real WSN and real mobile robots were carried out. In environment with multiple obstacles, the convergence curve of the shortest path length shows that as iterative generation grows, the length of the shortest path decreases and finally reaches a stable and optimal value. Comparisons show that using sensor information fusion can greatly improve the accuracy in comparison with single sensor. The successful path of robots without collision validates the efficiency, stability and accuracy of the proposed algorithm, which is proved to be better than tradition genetic algorithm (GA) for dynamic obstacle avoidance in real time.
基金supported by the China Aerospace Science and Technology Corporation Eighth Research Institute Industry-University-Research Cooperation Fund(No.SAST 2020-019)。
文摘Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.
基金the National Natural Science Foundation of China(No.51577112,51575328)Science and Technology Commission of Shanghai Municipality Project(No.16511108600).
文摘This paper presents a novel dynamic A^*path finding algorithm and 3D lidar based local obstacle avoidance strategy for an autonomous vehicle.3D point cloud data is collected and analyzed in real time.Local obstacles are detected online and a 2D local obstacle grid map is constructed at 10 Hz/s.The A^*path finding algorithm is employed to generate a local path in this local obstacle grid map by considering both the target position and obstacles.The vehicle avoids obstacles under the guidance of the generated local path.Experiment results have shown the effectiveness of the obstacle avoidance navigation algorithm proposed.
基金supported by the National Natural Science Foundation of China (No.60605023,60775048)Specialized Research Fund for the Doctoral Program of Higher Education (No.20060141006)
文摘An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, using a multilevel search scheme, the coarse matching is processed in typical disparity space image, while the fine matching is processed in disparity-offset space image. In the upper level, GCPs are obtained by enhanced volumetric iterative algorithm enforcing the mutual constraint and the threshold constraint. Under the supervision of the highly reliable GCPs, bidirectional dynamic programming framework is employed to solve the inconsistency in the optimization path. In the lower level, to reduce running time, disparity-offset space is proposed to efficiently achieve the dense disparity image. In addition, an adaptive dual support-weight strategy is presented to aggregate matching cost, which considers photometric and geometric information. Further, post-processing algorithm can ameliorate disparity results in areas with depth discontinuities and related by occlusions using dual threshold algorithm, where missing stereo information is substituted from surrounding regions. To demonstrate the effectiveness of the algorithm, we present the two groups of experimental results for four widely used standard stereo data sets, including discussion on performance and comparison with other methods, which show that the algorithm has not only a fast speed, but also significantly improves the efficiency of holistic optimization.
基金supported by the National Natural Science Foundation of China (62273007,61973023)Project of Cultivation for Young Top-motch Talents of Beijing Municipal Institutions (BPHR202203032)。
文摘This work proposes an online collaborative hunting strategy for multi-robot systems based on obstacle-avoiding Voronoi cells in a complex dynamic environment. This involves firstly designing the construction method using a support vector machine(SVM) based on the definition of buffered Voronoi cells(BVCs). Based on the safe collision-free region of the robots, the boundary weights between the robots and the obstacles are dynamically updated such that the robots are tangent to the buffered Voronoi safety areas without intersecting with the obstacles. Then, the robots are controlled to move within their own buffered Voronoi safety area to achieve collision-avoidance with other robots and obstacles. The next step involves proposing a hunting method that optimizes collaboration between the pursuers and evaders. Some hunting points are generated and distributed evenly around a circle. Next, the pursuers are assigned to match the optimal points based on the Hungarian algorithm.Then, a hunting controller is designed to improve the containment capability and minimize containment time based on collision risk. Finally, simulation results have demonstrated that the proposed cooperative hunting method is more competitive in terms of time and travel distance.
文摘Cooperative path planning is an important area in fixed-wing UAV swarm.However,avoiding multiple timevarying obstacles and avoiding local optimum are two challenges for existing approaches in a dynamic environment.Firstly,a normalized artificial potential field optimization is proposed by reconstructing a novel function with anisotropy in each dimension,which can make the flight speed of a fixed UAV swarm independent of the repulsive/attractive gain coefficient and avoid trapping into local optimization and local oscillation.Then,taking into account minimum velocity and turning angular velocity of fixed-wing UAV swarm,a strategy of decomposing target vector to avoid moving obstacles and pop-up threats is proposed.Finally,several simulations are carried out to illustrate superiority and effectiveness.
基金supported by the National Natural Science Foundation of China(No.51675264)
文摘A passive compliant non-cooperative target capture mechanism is designed to maintain the non-cooperative target on-orbit. When the relative position between capture mechanism and satellite is confirmed,a pair of four-bar linkages lock the docking ring,which is used for connecting the satellite and the rocket. The mathematical model of capture mechanism and capture space is built by the Denavit-Hartenberg(D-H)method,and the torque of each joint is analyzed by the Lagrange dynamic equation. Besides,the capture condition and the torque of every joint under different capture conditions are analyzed by simulation in MSC. Adams. The results indicate that the mechanism can capture the non-cooperative target satellite in a wide range. During the process of capture,the passive compliant mechanism at the bottom can increase capture space,thereby reducing the difficulty and enhance stability of the capture.
基金supported by the DEFENCE SCIENCE&TECHNOLOGY GROUP(DSTG)(9729)The Commonwealth of Australia supported this research through a Defence Science Partnerships agreement with the Australian Defence Science and Technology Group。
文摘A common assumption of coverage path planning research is a static environment.Such environments require only a single visit to each area to achieve coverage.However,some real-world environments are characterised by the presence of unexpected,dynamic obstacles.They require areas to be revisited periodically to maintain an accurate coverage map,as well as reactive obstacle avoidance.This paper proposes a novel swarmbased control algorithm for multi-robot exploration and repeated coverage in environments with unknown,dynamic obstacles.The algorithm combines two elements:frontier-led swarming for driving exploration by a group of robots,and pheromone-based stigmergy for controlling repeated coverage while avoiding obstacles.We tested the performance of our approach on heterogeneous and homogeneous groups of mobile robots in different environments.We measure both repeated coverage performance and obstacle avoidance ability.Through a series of comparison experiments,we demonstrate that our proposed strategy has superior performance to recently presented multi-robot repeated coverage methodologies.
文摘A new path planning method for mobile robots in globally unknown environment with moving obstacles is pre- sented. With an autoregressive (AR) model to predict the future positions of moving obstacles, and the predicted position taken as the next position of moving obstacles, a motion path in dynamic uncertain environment is planned by means of an on-line real-time path planning technique based on polar coordinates in which the desirable direction angle is taken into consideration as an optimization index. The effectiveness, feasibility, high stability, perfect performance of obstacle avoidance, real-time and optimization capability are demonstrated by simulation examples.
基金The work was supported by the National Natural Science Foundation of China(Basic Science Center Program:6198810121706069),Natural Science Foundation of Shanghai(17ZR1406800)National Science Fund for Distinguished Young Scholars(61725301).
文摘The leakage of hazardous gases poses a significant threat to public security and causes environmental damage.The effective and accurate source term estimation(STE)is necessary when a leakage accident occurs.However,most research generally assumes that no obstacles exist near the leak source,which is inappropriate in practical applications.To solve this problem,we propose two different frameworks to emphasize STE with obstacles based on artificial neural network(ANN)and convolutional neural network(CNN).Firstly,we build a CFD model to simulate the gas diffusion in obstacle scenarios and construct a benchmark dataset.Secondly,we define the structure of ANN by searching,then predict the concentration distribution of gas using the searched model,and optimize source term parameters by particle swarm optimization(PSO)with well-performed cost functions.Thirdly,we propose a one-step STE method based on CNN,which establishes a link between the concentration distribution and the location of obstacles.Finally,we propose a novel data processing method to process sensor data,which maps the concentration information into feature channels.The comprehensive experiments illustrate the performance and efficiency of the proposed methods.
文摘Paths planning of Unmanned Aerial Vehicles(UAVs)in a dynamic environment is considered a challenging task in autonomous flight control design.In this work,an efficient method based on a Multi-Objective MultiVerse Optimization(MOMVO)algorithm is proposed and successfully applied to solve the path planning problem of quadrotors with moving obstacles.Such a path planning task is formulated as a multicriteria optimization problem under operational constraints.The proposed MOMVO-based planning approach aims to lead the drone to traverse the shortest path from the starting point and the target without collision with moving obstacles.The vehicle moves to the next position from its current one such that the line joining minimizes the total path length and allows aligning its direction towards the goal.To choose the best compromise solution among all the non-dominated Pareto ones obtained for compromise objectives,the modified Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)is investigated.A set of homologous metaheuristics such as Multiobjective Salp Swarm Algorithm(MSSA),Multi-Objective Grey Wolf Optimizer(MOGWO),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-Dominated Genetic Algorithm II(NSGAII)is used as a basis for the performance comparison.Demonstrative results and statistical analyses show the superiority and effectiveness of the proposed MOMVO-based planning method.The obtained results are satisfactory and encouraging for future practical implementation of the path planning strategy.
基金National Natural Science Foundation of China(No.62241503)Natural Science Foundation of Shanghai,China(No.22ZR1401400)。
文摘A fusion algorithm is proposed to enhance the search speed of an ant colony system(ACS)for the global path planning and overcome the challenges of the local path planning in an unmanned aerial vehicle(UAV).The ACS search efficiency is enhanced by adopting a 16-direction 24-neighborhood search way,a safety grid search way,and an elite hybrid strategy to accelerate global convergence.Quadratic planning is performed using the moving average(MA)method.The fusion algorithm incorporates a dynamic window approach(DWA)to deal with the local path planning,sets a retracement mechanism,and adjusts the evaluation function accordingly.Experimental results in two environments demonstrate that the improved ant colony system(IACS)achieves superior planning efficiency.Additionally,the optimized dynamic window approach(ODWA)demonstrates its ability to handle multiple dynamic situations.Overall,the fusion optimization algorithm can accomplish the mixed path planning effectively.
基金the National Natural Science Foundation of China(No.61973275)。
文摘Dynamic path planning is crucial for mobile robots to navigate successfully in unstructured envi-ronments.To achieve globally optimal path and real-time dynamic obstacle avoidance during the movement,a dynamic path planning algorithm incorporating improved IB-RRT∗and deep reinforce-ment learning(DRL)is proposed.Firstly,an improved IB-RRT∗algorithm is proposed for global path planning by combining double elliptic subset sampling and probabilistic central circle target bi-as.Then,to tackle the slow response to dynamic obstacles and inadequate obstacle avoidance of tra-ditional local path planning algorithms,deep reinforcement learning is utilized to predict the move-ment trend of dynamic obstacles,leading to a dynamic fusion path planning.Finally,the simulation and experiment results demonstrate that the proposed improved IB-RRT∗algorithm has higher con-vergence speed and search efficiency compared with traditional Bi-RRT∗,Informed-RRT∗,and IB-RRT∗algorithms.Furthermore,the proposed fusion algorithm can effectively perform real-time obsta-cle avoidance and navigation tasks for mobile robots in unstructured environments.
基金partially supported by the National Natural Science Foundation of China under Grant Nos.6147309961333001。
文摘In this paper,a cooperative region reconnaissance problem is investigated where a group of agents are required to fly across and detect events occur in an environment with static obstacles until an effective coverage is achieved.First,the region reconnaissance is formulated as a non-convex optimization problem.A coverage performance index with additional collision and obstacle avoidance constraints is given.Since the optimization index is an implicit function of state variables and cannot be used to compute gradients on state variables directly,an approximate optimization index is selected.Then,a non-convex optimization-based coverage algorithm is proposed to find the optimal reconnaissance location for each agent and guarantee no collisions trajectories among agents and obstacles.Finally,simulation experiments are performed to verify the effectiveness of the proposed approach.
基金supported in part by the National Key Research and Development Project of China(No.2019YFB2102500)the Natural Science Foundation of Hebei Province(No.F2018201115).
文摘With the continuous development of robotics and artificial intelligence,robots are being increasingly used in various applications.For traditional navigation algorithms,such as Dijkstra and A*,many dynamic scenarios in life are difficult to cope with.To solve the navigation problem of complex dynamic scenes,we present an improved reinforcement-learning-based algorithm for local path planning that allows it to perform well even when more dynamic obstacles are present.The method applies the gmapping algorithm as the upper layer input and uses reinforcement learning methods as the output.The algorithm enhances the robots’ability to actively avoid obstacles while retaining the adaptability of traditional methods.
文摘This paper focuses on autonomous motion control of a nonholonomic platform with a robotic arm, which is called mobile manipulator. It serves in transportation of loads in imperfectly known industrial environments with unknown dynamic obstacles. A union of both procedures is used to solve the general problems of collision-free motion. The problem of collision-free motion for mobile manipulators has been approached from two directions, Planning and Reactive Control. The dynamic path planning can be used to solve the problem of locomotion of mobile platform, and reactive approaches can be employed to solve the motion planning of the arm. The execution can generate the commands for the servo-systems of the robot so as to follow a given nominal trajectory while reacting in real-time to unexpected events. The execution can be designed as an Adaptive Fuzzy Neural Controller. In real world systems, sensor-based motion control becomes essential to deal with model uncertainties and unexpected obstacles.
基金the Interdisciplinary Program of Shanghai Jiao Tong University(No.YG2019QNA25)。
文摘For safety reasons,in the automated dispensing medicines process,robots and humans cooperate to accomplish the task of drug sorting and distribution.In this dynamic unstructured environment,such as a humanrobot collaboration scenario,the safety of human,robot,and equipment in the environment is paramount.In this work,a practical and effective robot motion planning method is proposed for dynamic unstructured environments.To figure out the problems of blind zones of single depth sensor and dynamic obstacle avoidance,we first propose a method for establishing offline mapping and online fusion of multi-sensor depth images and 3D grids of the robot workspace,which is used to determine the occupation states of the 3D grids occluded by robots and obstacles and to conduct real-time estimation of the minimum distance between the robot and obstacles.Then,based on the reactive control method,the attractive and repulsive forces are calculated and transformed into robot joint velocities to avoid obstacles in real time.Finally,the robot’s dynamic obstacle avoidance ability is evaluated on an experimental platform with a UR5 robot and two KinectV2 RGB-D sensors,and the effectiveness of the proposed method is verified.
文摘Purpose-In response to these shortcomings,this paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.Design/methodology/approach-The existing dynamic obstacle detection and tracking methods based on geometric features have a high false detection rate.The recognition methods based on the geometric features and motion status of dynamic obstacles are greatly affected by distance and scanning angle,and cannot meet the requirements of real traffic scene applications.Findings-First,based on the geometric features of dynamic obstacles,the obstacles are considered The echo pulse width feature is used to improve the accuracy of obstacle detection and tracking;second,the space-time feature vector is constructed based on the time dimension and space dimension information of the obstacle,and then the support vector machine method is used to realize the recognition of dynamic obstacles to improve the obstacle The accuracy of object recognition.Finally,the accuracy and effectiveness of the proposed method are verified by real vehicle tests.Originality/value-The paper proposes a dynamic obstacle detection and tracking method based on multi-feature fusion and a dynamic obstacle recognition method based on spatio-temporal feature vectors.The accuracy and effectiveness of the proposed method are verified by real vehicle tests.