With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key techn...With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.展开更多
This paper investigates the robust relative pose control for spacecraft rendezvous and docking with constrained relative pose and saturated control inputs.A barrier Lyapunov function is used to ensure the constraints ...This paper investigates the robust relative pose control for spacecraft rendezvous and docking with constrained relative pose and saturated control inputs.A barrier Lyapunov function is used to ensure the constraints of states,so that the computational singularity of the inverse matrix in control command can be avoided,while a linear auxiliary system is introduced to handle with the adverse effect of actuator saturation.The tuning rules for designing parameters in control command and auxiliary system are derived based on the stability analysis of the closed-loop system.It is proved that all closed-loop signals always keep bounded,the prescribed constraints of relative pose tracking errors are never violated,and the pose tracking errors ultimately converge to small neighborhoods of zero.Simulation experiments validate the performance of the proposed robust saturated control strategy.展开更多
Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the ...Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.展开更多
At 1:36 am on November 3,China's Shenzhou 8 unmanned spaceship and Tiangong 1 space lab spacecraft accomplished the country's first space docking procedure and coupling in space at more than 343km above Earth&...At 1:36 am on November 3,China's Shenzhou 8 unmanned spaceship and Tiangong 1 space lab spacecraft accomplished the country's first space docking procedure and coupling in space at more than 343km above Earth's surface,marking a great leap in China's space program.展开更多
Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleopera...Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleoperation time delay is a rigorous problem,especially when the chaser is teleoperated on the ground.To eliminate the effect of time delay,a new approach for teleoperation RVD is studied.The characteristics of teleoperation RVD are analyzed by comparisons with the teleoperation robot and with manually controlled RVD;the relative motion of the chaser is predicted based on the C-W equation;and the processed measure information with time delay through the Kalman filter is utilized to correct the current prediction.Experimental results verify that the approach produces an 18% enhanced success rate of teleoperation RVD compared with direct visual feedback,and consumes less time and fuel.The developed approach also solves the time delay problem effectively.Teleoperation RVD using this method can be applied as a useful backup for autonomous RVD.展开更多
Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking(RVD) for an unmanned spacecraft when the autonomous system is failure or for guiding the chaser docking with an unco...Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking(RVD) for an unmanned spacecraft when the autonomous system is failure or for guiding the chaser docking with an uncooperative target.The theoretical model for analyzing the handling qualities in teleoperation RVD process is established based on the previous studies conducted by National Aeronautics and Space Administration(NASA).The predictive factor is introduced to describe the pilot's predictive ability in the teleoperation tasks with time delay,which interrelates with the skills of a pilot and the predictive assist approach used in the tasks such as the predictive display method.Based on the semi-physical simulation system in our laboratory,900 experiments at two levels of time delay are carried out by 18 volunteers for validating the established model.The experimental results demonstrate the correctness of the theoretical model and indicate that a skilled pilot has a predictive ability of approximately 0.9 in teleoperation RVD tasks.The theoretical analysis shows that the handling qualities are greatly affected by the time delay and the predictive factor,and it is impossible to achieve a teleoperation RVD task for the skilled pilot when the time delay is larger than 9.0 s.展开更多
This study focuses on the influence of the monitoring method and control complexity on the operator performance in manually controlled spacecraft rendezvous and docking (RVD). Two one-factor experiments were designe...This study focuses on the influence of the monitoring method and control complexity on the operator performance in manually controlled spacecraft rendezvous and docking (RVD). Two one-factor experiments were designed on a simulated RVD system. One examined the video guidance and periscope monitoring methods, and the other examined three control complexity levels using one-axis RVD control, two-axis RVD control, and three-axis RVD control. Eighteen male volunteers aged 22-35 participated in the experiments. The results show that the RVD operating time increases with control complexity. Based on the operators' findings, the two-axis control is the easiest. The monitoring method has no significant influence on failure rate with the low complexity using one-axis RVD control.展开更多
Subjective evaluation is one of the most important methods of assessing the fidelity of a virtual dynamic scene,whose results could be seen as a reference to improve a rendering method.In the present study,we apply a ...Subjective evaluation is one of the most important methods of assessing the fidelity of a virtual dynamic scene,whose results could be seen as a reference to improve a rendering method.In the present study,we apply a rendering method to the color rendezvous and docking(RVD) scene,where one shadow algorithm and three tone mapping operator algorithms are used to process the scene based on the distance between two spacecrafts.The grayscale RVD scene is transformed from the color RVD scene,and each RVD scene is desired to make comparisons with the real RVD-video recorded in SZ-10 mission.In addition,we perform an evaluation on 36 subjects to compare the results.The results show that shadow effects have important roles in RVD virtual scenes,where they enhance the sense of realism and immersion.Shadows,high brightness,contrast and luminance are highly correlated with the overall preference,and the grayscale scene receives better evaluations than the color scene.The analysis of these conclusions is vital for improving the algorithms used to render color virtual space scenes when virtual scenes for astronaut training in Chinese space station mission are prepared.展开更多
基金National Natural Science Foundation of China(U20B2054)。
文摘With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.
基金supported in part by the National Natural Science Foundation of China(61903025)the Fundamenta Research Funds for the Central Universities(FRF-GF-18-028B)the China Scholarship Council(201906465028)
文摘This paper investigates the robust relative pose control for spacecraft rendezvous and docking with constrained relative pose and saturated control inputs.A barrier Lyapunov function is used to ensure the constraints of states,so that the computational singularity of the inverse matrix in control command can be avoided,while a linear auxiliary system is introduced to handle with the adverse effect of actuator saturation.The tuning rules for designing parameters in control command and auxiliary system are derived based on the stability analysis of the closed-loop system.It is proved that all closed-loop signals always keep bounded,the prescribed constraints of relative pose tracking errors are never violated,and the pose tracking errors ultimately converge to small neighborhoods of zero.Simulation experiments validate the performance of the proposed robust saturated control strategy.
基金supported by the China Aerospace Science and Technology Corporation Eighth Research Institute Industry-University-Research Cooperation Fund(No.SAST 2020-019)。
文摘Aiming at the problem of relative navigation for non-cooperative rendezvous of spacecraft,this paper proposes a new angles-only navigation architecture using non-linear dynamics method. This method does not solve the problem of poor observability of angles-only navigation through orbital or attitude maneuvering,but improves the observability of angles-only navigation through capturing the non-linearity of the system in the evolution of relative motion. First,three relative dynamics models and their corresponding line-of-sight(LoS)measurement equations are introduced,including the rectilinear state relative dynamics model,the curvilinear state relative dynamics model,and the relative orbital elements(ROE)state relative dynamics model. Then,an observability analysis theory based on the Gramian matrix is introduced to determine which relative dynamics model could maximize the observability of angles-only navigation. Next,an adaptive extended Kalman filtering scheme is proposed to solve the problem that the angles-only navigation filter using the non-linear dynamics method is sensitive to measurement noises. Finally,the performances of the proposed angles-only navigation architecture are tested by means of numerical simulations,which demonstrates that the angles-only navigation filtering scheme without orbital or attitude maneuvering is completely feasible through improving the modeling of the relative dynamics and LoS measurement equations.
文摘At 1:36 am on November 3,China's Shenzhou 8 unmanned spaceship and Tiangong 1 space lab spacecraft accomplished the country's first space docking procedure and coupling in space at more than 343km above Earth's surface,marking a great leap in China's space program.
文摘Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking (RVD) for an unmanned spacecraft or for guiding the chaser docking with an uncooperative target.The inherent teleoperation time delay is a rigorous problem,especially when the chaser is teleoperated on the ground.To eliminate the effect of time delay,a new approach for teleoperation RVD is studied.The characteristics of teleoperation RVD are analyzed by comparisons with the teleoperation robot and with manually controlled RVD;the relative motion of the chaser is predicted based on the C-W equation;and the processed measure information with time delay through the Kalman filter is utilized to correct the current prediction.Experimental results verify that the approach produces an 18% enhanced success rate of teleoperation RVD compared with direct visual feedback,and consumes less time and fuel.The developed approach also solves the time delay problem effectively.Teleoperation RVD using this method can be applied as a useful backup for autonomous RVD.
文摘Teleoperation rendezvous and docking can be used as a backup for autonomous rendezvous and docking(RVD) for an unmanned spacecraft when the autonomous system is failure or for guiding the chaser docking with an uncooperative target.The theoretical model for analyzing the handling qualities in teleoperation RVD process is established based on the previous studies conducted by National Aeronautics and Space Administration(NASA).The predictive factor is introduced to describe the pilot's predictive ability in the teleoperation tasks with time delay,which interrelates with the skills of a pilot and the predictive assist approach used in the tasks such as the predictive display method.Based on the semi-physical simulation system in our laboratory,900 experiments at two levels of time delay are carried out by 18 volunteers for validating the established model.The experimental results demonstrate the correctness of the theoretical model and indicate that a skilled pilot has a predictive ability of approximately 0.9 in teleoperation RVD tasks.The theoretical analysis shows that the handling qualities are greatly affected by the time delay and the predictive factor,and it is impossible to achieve a teleoperation RVD task for the skilled pilot when the time delay is larger than 9.0 s.
文摘This study focuses on the influence of the monitoring method and control complexity on the operator performance in manually controlled spacecraft rendezvous and docking (RVD). Two one-factor experiments were designed on a simulated RVD system. One examined the video guidance and periscope monitoring methods, and the other examined three control complexity levels using one-axis RVD control, two-axis RVD control, and three-axis RVD control. Eighteen male volunteers aged 22-35 participated in the experiments. The results show that the RVD operating time increases with control complexity. Based on the operators' findings, the two-axis control is the easiest. The monitoring method has no significant influence on failure rate with the low complexity using one-axis RVD control.
基金the department of aerospace flight simulator in China Astronaut Research and Training Centerfor providing experimental facility and fund
文摘Subjective evaluation is one of the most important methods of assessing the fidelity of a virtual dynamic scene,whose results could be seen as a reference to improve a rendering method.In the present study,we apply a rendering method to the color rendezvous and docking(RVD) scene,where one shadow algorithm and three tone mapping operator algorithms are used to process the scene based on the distance between two spacecrafts.The grayscale RVD scene is transformed from the color RVD scene,and each RVD scene is desired to make comparisons with the real RVD-video recorded in SZ-10 mission.In addition,we perform an evaluation on 36 subjects to compare the results.The results show that shadow effects have important roles in RVD virtual scenes,where they enhance the sense of realism and immersion.Shadows,high brightness,contrast and luminance are highly correlated with the overall preference,and the grayscale scene receives better evaluations than the color scene.The analysis of these conclusions is vital for improving the algorithms used to render color virtual space scenes when virtual scenes for astronaut training in Chinese space station mission are prepared.