Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals...Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals besides in the sequestration of CO_(2).About 20 Indian coals having complexly distributed moderate to high ash contents were sequentially treated with various alkali–acid such as NaOH-HCl,HF,HCl,HCl-HF,and NaOH-HCl-HF leaching.This aimed to establish and design the best stepwise sequential process for the highest degree of demineralisation through a chemical leaching process.Kinetics and process intensification studies were carried out.More than 80%demineralisation of Madhaipur and Neemcha coals was observed using the best sequential treatment designed presently.The repeated stepwise treatment of the alkali and the acid was also studied,which was found to significantly enhance the degree of demineralisation of coals.The integrated process of alkali–acid leaching followed by solvent extraction(Organo-refining)and vice versa of the treated coal was also studied for producing cleaner coals.展开更多
In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the...In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion.展开更多
The capillary process coexists with gravity flow within leaching heap due to the dual-porosity structure. Capillary rise is responsible for the mineral dissolution in fine particle zones and interior coarse rock. The ...The capillary process coexists with gravity flow within leaching heap due to the dual-porosity structure. Capillary rise is responsible for the mineral dissolution in fine particle zones and interior coarse rock. The effect of particle size and heap porosity on the capillary process was investigated through a series of column tests. Macropore of the ore heap was identified, and its capillary rise theory analysis was put forward. Two groups of ore particles, mono-size and non-uniform, were selected for the capillary rise test. The result shows that particle size has an inverse effect on the capillary ultimate height, and smaller particles exhibit higher capillary rise. Meanwhile, the poorly graded group exhibits small rise height and velocity, while the capillary rise in the well-graded particles is much greater. The relationship between porosity and fitting parameters of capillary rise was obtained. Low porosity and high surface tension lead to higher capillary height of the fine gradation. Moisture content increases with the capillary rise level going up, the relationship between capillary height and moisture content was obtained.展开更多
To provide a theoretical basis for a suitable process to extract gold from refractory gold concentrates, process mineralogy on the acid leaching residue of gold calcine was studied by chemical composition, X-ray diffr...To provide a theoretical basis for a suitable process to extract gold from refractory gold concentrates, process mineralogy on the acid leaching residue of gold calcine was studied by chemical composition, X-ray diffraction, scanning electron microscopy-energy spectrum, and mineral dissociation analysis. The results showed that the acid leaching residue contained Au 68.22 g/t, Ag 92.71 g/t, Fe 0.44%, As 0.10%, and S 0.55%. Gold and silver minerals existed as native gold, argentite, and proustite. Quartz, the main gangue mineral, accounted for 78.33 wt/%. The dissociation degree analysis showed that the proportions of monomer and exposed gold in acid leaching residue were 96.66 wt%. The cyanidation results showed that the cyanide gold leaching rate of acid leaching residues was close to 100 wt%. However, the maximum cyanide gold leaching rate of gold calcine was only 85.31 wt%. This suggests that acid leaching can increase the gold dissolution rate in the cyanide process.展开更多
Leaching mechanism of acid roasted ore in the spodumene sulphuric acid process was investigated. Experimental results of leaching rates along with variations of leaching temperature in the acidized and neutral leachin...Leaching mechanism of acid roasted ore in the spodumene sulphuric acid process was investigated. Experimental results of leaching rates along with variations of leaching temperature in the acidized and neutral leaching processes were reported. Applying ion exchange mechanism in acidized roasting and absorption entrainment mechanism at high temperature, leaching mechanism was discussed. A better explanation of experimental results was given.展开更多
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ...A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.展开更多
The leaching characteristics and the element concentration in soil solution of red soils derived from sandstone,granite,Quaternary red clay and basalt have been studied in the Red Earth Ecological Experimental Station...The leaching characteristics and the element concentration in soil solution of red soils derived from sandstone,granite,Quaternary red clay and basalt have been studied in the Red Earth Ecological Experimental Station,Academia Sinica,using 12 lysimeters.Results obtained show that the element leaching process of red soils occurs mainly from January to the beginning of July annually.The elements with higher concentration in leaching solution of red soils are Si,Ca,Na,K,Mg,and N.The desilication and the leaching process of base cations occur simultaneously in the red soils.Using the first order differential equation and measured parameters of Si leaching,the leaching models of Si for red soils derived from different parent materials are constructed.The leaching process of Si is simulated with the models.Both the absolute and relative ages of red soils derived from different parent materials are discussed based on the simulation result.On the basis of element leaching,composition of soil solution and thermodynamics,the current soil-forming process is discussed.According to the phase diagram,the kaolinization is prevailing in the current formation of different red soils.展开更多
Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial was...Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial waste water containing HF. The results show that HF can effectively destabilize the Cr(VI)-bearing minerals, resulting in the mobilization of Cr(VI) from COPR into the leachate. Particle size significantly influences the leaching of acid-soluble Cr(VI) from COPR, followed by leaching time, whereas the effects of HF concentration and leaching temperature are slight and the influence of stirring rate is negligible. The leaching process of acid-soluble Cr(VI) from COPR is controlled by the diffusion through the product layer. The apparent activation energy is 8.696 kJ/mol and the reaction orders with respect to HF concentration and particle size is 0.493 8 and -2.013 3, respectively.展开更多
Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key...Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [展开更多
In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coa...In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coating on Mg alloy AZ91D, the process of copper transition coating plated in the cyanides bath can be replaced. A new bath composed of NiSO4 was established by orthogonal test. The results show that zinc transition coating can increase the adhesion and protect the Mg alloy substrate from the bath corrosion. The optimal plating bath composition is NiSO4·6H2O 20 g/L, NaH2PO2·H2O20g/L and C6H8O7·H2O 2.5 g/L, and optimal bath acidity and optimal plating temperature are pH 4.0 and 95℃, respectively. The present process flow is composed of ultrasonic cleaning→alkaline cleaning→acid pickling→activation→double immersing zinc→electroplating zinc→electroless nickel plating→passivation treatment. The present non-cyanide process of electroless nickel plating is harmless to our surroundings and Ni-P coating on Mg alloy AZ91D produced by present process possesses good adhesion and corrosion resistance.展开更多
A thermodynamic analysis on the acid leaching process of germanium oxide dust and discussion on the behaviors of main substances of the dust in the leaching process were carried out. The effects of temperature, acid c...A thermodynamic analysis on the acid leaching process of germanium oxide dust and discussion on the behaviors of main substances of the dust in the leaching process were carried out. The effects of temperature, acid concentration, leaching time and stirring speed on the leaching rate of germanium were investigated. Based on the characteristic of the dust, the kinetics and reactive mechanism of acid leaching were studied. The results show that the leaching of the dust by acid belonged to "the unreacted core shrinking model" of producing solid outgrowth layer. The chemical reaction was controlled by inner diffusion process. The apparent activation energy of leaching process was 12.60 kJ/mol. The leaching reaction of germanium was determined to be mainly second order reaction. The optimum conditions were the reaction temperature of 363 K, the leaching time of 2.5 h, the stirring speed of 120 r/min, the solid-to-liquid ratio of 1/8 and the acid concentration of 120 g/L. Under these conditions, the leaching rate of germanium can come up to more than 87%.展开更多
The leaching kinetics of niobium from a low-grade niobium-tantalum ore by concentrated KOH solu-tion under atmospheric pressure has been studied. Significant effects of reaction temperature, KOH concentration, stirrin...The leaching kinetics of niobium from a low-grade niobium-tantalum ore by concentrated KOH solu-tion under atmospheric pressure has been studied. Significant effects of reaction temperature, KOH concentration, stirring speed, particle size and inass ratio of alkali-to-ore on the dissolution rate of niobium were examined. The experimental data of the leaching rates and the observed effects of the relevant operating variables were well in-terpreted with a shrinking core model under diffusion control. By using the Arrhenius expression, the apparent activation energy for the dissolution of niobium was evaluated. Finally, on the base of the shrinking core model, the rate equation was established.展开更多
The thermodynamic equilibria and kinetic aspect of gold dissolution in iodine-iodide leaching were studied with emphasis on the effects of pH value and temperature on the system.The results of thermodynamic analysis o...The thermodynamic equilibria and kinetic aspect of gold dissolution in iodine-iodide leaching were studied with emphasis on the effects of pH value and temperature on the system.The results of thermodynamic analysis of iodine in aqueous solution were given and numerous forms of iodine exist mainly in the acid region of pH values.An increase of the potential of the system results in an increase of iodine speciation.The oxidizing potential of the system will increase by the addition of element iodine.The IO^(3-)anions are stable in the potential range from-2.0 to-0.75 V and at pH value greater than 12.1.An increase of the temperature shifts boundaries of existence of various iodine species in the acid region of pH values.Some of them become unstable.The determined values of the diffusion coefficients and the thickness of the diffusion boundary layer,as well as the solvent concentration on the disc surface(14 mg/L) indicate that the process proceeds in the external diffusion region.Thus,while choosing the conditions of leaching from gold-containing materials of different origins of iodide solvents,it is necessary to carry out the process within the acidic region of pH values,where I^-,I_3^- and IO_4^- ions are capable to form complex compounds with metals.展开更多
Phosphogypsum(PG) desulfurization slag is a calcium-rich residue from reductive decomposition of PG using sulfur as the reductant. We proposed a technology of preparation light calcium carbonate with PG desulfurizatio...Phosphogypsum(PG) desulfurization slag is a calcium-rich residue from reductive decomposition of PG using sulfur as the reductant. We proposed a technology of preparation light calcium carbonate with PG desulfurization slag, which mainly contains two steps: leaching and carbonizing. In this work, we concentrated on the former, in which ammonium chloride aqueous solution was utilized as leaching agent to extract calcium from the slag, and conducted thermodynamics and kinetics study on it. Fact Sage software was employed to do thermodynamic and phase equilibrium diagram calculations. The influence of leaching conditions including agitation speed, initial concentration of leaching solution, reaction temperature, and liquid/solid ratio on the calcium leaching rate was discussed in detail by means of experiment optimal design. A kinetic model developed from the shrinking core model was given to describe the leaching process. The apparent kinetic activation energy(Ea) of the leaching reaction was calculated to be 10.58 kJ·mol^-1.展开更多
A process of biooxidation followed by thiosulfate leaching of gold from refractory gold concentrate was investigated.Mineralogical studies on the concentrate showed that very fine gold grains(<10μm)were encapsulat...A process of biooxidation followed by thiosulfate leaching of gold from refractory gold concentrate was investigated.Mineralogical studies on the concentrate showed that very fine gold grains(<10μm)were encapsulated in pyrite and arsenopyrite,while the proportion of monomer gold was only 21%.The gold-bearing sample was identified as a high-sulfur fine-sized wrapped-type refractory gold concentrate.The gold leaching efficiency obtained by direct cyanidation was only 59.86%.After biooxidation pretreatment,the sulfide minerals were almost completely decomposed,92 wt%of the mineral particles of the biooxidation residue were decreased to<38μm,and the proportion of monomer gold in the biooxidation residue was over 86%.Meanwhile,the gold content in the biooxidation residue was enriched to 55.60 g/t,and the S,Fe,and As contents were reduced to approximately 19.8 wt%,6.97 wt%,and 0.13 wt%,respectively.Ammoniacal thiosulfate was used for gold extraction from the biooxidation residue of the refractory gold concentrate.The results showed that the optimal reagent conditions were 0.18 M thiosulfate,0.02 M copper(II),1.0 M ammonia,and 0.24 M sulfite.Under these conditions,a maximum gold leaching efficiency of 85.05%was obtained.展开更多
Two-dimensional images of the granular ore media with different grain sizes were obtained from the X-ray computed tomography.Combined with the digital image processing and finite element techniques,the original graysc...Two-dimensional images of the granular ore media with different grain sizes were obtained from the X-ray computed tomography.Combined with the digital image processing and finite element techniques,the original grayscale images were transformed into the finite element models directly.By using these models,the simulations of pore scale fluid flow among particles were conducted with the COMSOL Multiphysics,and the distribution characteristics of fluid flow velocity and pressure were analyzed.The simulation results show that there exist obvious preferential flow and leaching blind zone in each granular medium.The flow velocity at pore throat is larger than that of pore body and the largest velocity reaches 0.22 m/s.The velocity decreases gradually from the center of pore throat and body to the surface of particles.The flow paths of granular media with larger grain size distribute equally,while the fluid flow velocities in most of areas of granular media with smaller grain size are lower,and some of them approach to zero,so the permeability is very low.There exist some pore clusters with different pressures,which is the basic reason for the uneven flow velocity distribution.展开更多
The regularities of anodic oxidation of thiosulfate ions on a gold electrode have been investigated using electrochemical methods in order to improve gold extraction. Effects of ammon, copper-ammon ions, pH and sulphi...The regularities of anodic oxidation of thiosulfate ions on a gold electrode have been investigated using electrochemical methods in order to improve gold extraction. Effects of ammon, copper-ammon ions, pH and sulphite on anodic oxidation of thiosulfate ions have been examined in details. Results show that the anodic oxidation of thiosulfate ions is an inreversible reaction whose oxidizing peak potential is 620 mV/SCE in the absence of ammon. Oxidation rate increases with concentration of thiosulfate ions, but not in linear relation. It is also shown that ammon has significant effects on the oxidation of thiosulfate ions by causing great decrease in oxidation rate and negative shift of peak potential. The degrees of the rate decrease and negative shift increase with ammon concentration. When ammon concentration is increased to 1. 0 mol/L, the oxidation rate decreases to one fourth of that without ammon and the peak potential shifts from 620 mV/SCE to 350 mV/SCE.展开更多
Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carb...Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carbon dioxide utilization and sequestration,but it also alleviates the environmental burden.However,significant challenges exist in assessment of CO_(2)footprint and water-rock interactions,due to complex geochemical processes.Herein this study conducts a three-dimensional,multicomponent reactive transport model(RTM)of a field-scale CO_(2)and O_(2)ISL process at a typical sandstone-hosted uranium deposit in Songliao Basin,China.Numerical simulations are performed to provide new insight into quantitative interpretation of the greenhouse gas(CO_(2))footprint and environmental impact(SO_(4)^(2–))of the CO_(2)and O_(2)ISL,considering the potential chemical reaction network for uranium recovery at the field scale.RTM results demonstrate that the fate of the CO_(2)could be summarized as injected CO_(2)dissolution,dissolved CO_(2)mineralization and storage of CO_(2)as a gas phase during the CO_(2)and O_(2)ISL process.Furthermore,compared to acid ISL,CO_(2)and O_(2)ISL has a potentially smaller environmental footprint,with 20%of SO_(4)^(2–)concentration in the aquifer.The findings improve our fundamental understanding of carbon utilization in a long-term CO_(2)and O_(2)ISL system and provide important environmental implications when considering complex geochemical processes.展开更多
Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nic...Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nickel from laterite.The limonitic laterite is a kind of rich nickel-cobalt-scandium resource.At present,there are few reviews on the extraction of limonitic laterite.This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements.The mineralogical characteristics are analyzed,and the typical mineral compositions are summarized.The main hydrometallurgical processes are compared and discussed,including reduction roasting-ammonia leaching,sulfuric acid pressure leaching,nitric acid pressure leaching,and the atmospheric nitric acid leaching(DNi process).The methods of recovering nickel,cobalt,scandium,and iron are emphatically outlined.Finally,reasonable suggestions are proposed for comprehensive utilization.This study can provide a reference for industrial development and diversified applications.展开更多
文摘Chemical leaching of coals would be required to produce cleaner coals for some special applications where physical benefi-ciation may not be effective enough.This would also help in recovering Li and rare earth metals besides in the sequestration of CO_(2).About 20 Indian coals having complexly distributed moderate to high ash contents were sequentially treated with various alkali–acid such as NaOH-HCl,HF,HCl,HCl-HF,and NaOH-HCl-HF leaching.This aimed to establish and design the best stepwise sequential process for the highest degree of demineralisation through a chemical leaching process.Kinetics and process intensification studies were carried out.More than 80%demineralisation of Madhaipur and Neemcha coals was observed using the best sequential treatment designed presently.The repeated stepwise treatment of the alkali and the acid was also studied,which was found to significantly enhance the degree of demineralisation of coals.The integrated process of alkali–acid leaching followed by solvent extraction(Organo-refining)and vice versa of the treated coal was also studied for producing cleaner coals.
基金Projects(51274152,41472071)supported by the National Natural Science Foundation of ChinaProject(T201506)supported by the Program for Excellent Young Scientific and Technological Innovation Team of Hubei Provincial Department of Education,China
文摘In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion.
基金Project(51374035)supported by the National Natural Science Foundation of ChinaProject(201351)supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NCET-13-0669)supported by Program for New Century Excellent Talents in University,China
文摘The capillary process coexists with gravity flow within leaching heap due to the dual-porosity structure. Capillary rise is responsible for the mineral dissolution in fine particle zones and interior coarse rock. The effect of particle size and heap porosity on the capillary process was investigated through a series of column tests. Macropore of the ore heap was identified, and its capillary rise theory analysis was put forward. Two groups of ore particles, mono-size and non-uniform, were selected for the capillary rise test. The result shows that particle size has an inverse effect on the capillary ultimate height, and smaller particles exhibit higher capillary rise. Meanwhile, the poorly graded group exhibits small rise height and velocity, while the capillary rise in the well-graded particles is much greater. The relationship between porosity and fitting parameters of capillary rise was obtained. Low porosity and high surface tension lead to higher capillary height of the fine gradation. Moisture content increases with the capillary rise level going up, the relationship between capillary height and moisture content was obtained.
基金supported by the funding project of Xinjiang high technology research and development program(No.201515108)funding project for Xinjiang autonomous region's strategic emerging industries(No.201552)
文摘To provide a theoretical basis for a suitable process to extract gold from refractory gold concentrates, process mineralogy on the acid leaching residue of gold calcine was studied by chemical composition, X-ray diffraction, scanning electron microscopy-energy spectrum, and mineral dissociation analysis. The results showed that the acid leaching residue contained Au 68.22 g/t, Ag 92.71 g/t, Fe 0.44%, As 0.10%, and S 0.55%. Gold and silver minerals existed as native gold, argentite, and proustite. Quartz, the main gangue mineral, accounted for 78.33 wt/%. The dissociation degree analysis showed that the proportions of monomer and exposed gold in acid leaching residue were 96.66 wt%. The cyanidation results showed that the cyanide gold leaching rate of acid leaching residues was close to 100 wt%. However, the maximum cyanide gold leaching rate of gold calcine was only 85.31 wt%. This suggests that acid leaching can increase the gold dissolution rate in the cyanide process.
文摘Leaching mechanism of acid roasted ore in the spodumene sulphuric acid process was investigated. Experimental results of leaching rates along with variations of leaching temperature in the acidized and neutral leaching processes were reported. Applying ion exchange mechanism in acidized roasting and absorption entrainment mechanism at high temperature, leaching mechanism was discussed. A better explanation of experimental results was given.
基金Project(2006AA060201) supported by the National High Technology Research and Development Program of China
文摘A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.
文摘The leaching characteristics and the element concentration in soil solution of red soils derived from sandstone,granite,Quaternary red clay and basalt have been studied in the Red Earth Ecological Experimental Station,Academia Sinica,using 12 lysimeters.Results obtained show that the element leaching process of red soils occurs mainly from January to the beginning of July annually.The elements with higher concentration in leaching solution of red soils are Si,Ca,Na,K,Mg,and N.The desilication and the leaching process of base cations occur simultaneously in the red soils.Using the first order differential equation and measured parameters of Si leaching,the leaching models of Si for red soils derived from different parent materials are constructed.The leaching process of Si is simulated with the models.Both the absolute and relative ages of red soils derived from different parent materials are discussed based on the simulation result.On the basis of element leaching,composition of soil solution and thermodynamics,the current soil-forming process is discussed.According to the phase diagram,the kaolinization is prevailing in the current formation of different red soils.
基金Project(2009FJ1009) supported by Major Program of Hunan Provincial Science and Technology, ChinaProject(2005CB6237) supported by the National Basic Research Program of China
文摘Leaching kinetics of acid-soluble Cr(VI) in chromite ore processing residue (COPR) using hydrofluoric (HF) acid solution as a leaching agent was investigated for potential remediation of COPR with industrial waste water containing HF. The results show that HF can effectively destabilize the Cr(VI)-bearing minerals, resulting in the mobilization of Cr(VI) from COPR into the leachate. Particle size significantly influences the leaching of acid-soluble Cr(VI) from COPR, followed by leaching time, whereas the effects of HF concentration and leaching temperature are slight and the influence of stirring rate is negligible. The leaching process of acid-soluble Cr(VI) from COPR is controlled by the diffusion through the product layer. The apparent activation energy is 8.696 kJ/mol and the reaction orders with respect to HF concentration and particle size is 0.493 8 and -2.013 3, respectively.
文摘Leaching process is the first step in zinc hydrometallurgy, which involves the complex chemical reactions for dissolving zinc bearing material in dilute sulfuric acid. Ensuring the safe running of the process is a key point in the operation. An expert fault diagnosis system for the leaching process was proposed, which has been implemented in a nonferrous metals smeltery. The system architecture and the diagnosis procedure were presented, and the rule models with the certainty factor were constructed based on the empirical knowledge, empirical data and statistical results on past fault countermeasures, and an expert reasoning strategy was proposed which employs the rule models and Beyes presentation and combines forward chaining and backward chaining. [
文摘In this research we presented a non-cyanide plating process of Ni-P alloy coating on Mg alloy AZ91D. By applying a new process flow of electroless nickel plating in which zinc coating is used as transition of Ni-P coating on Mg alloy AZ91D, the process of copper transition coating plated in the cyanides bath can be replaced. A new bath composed of NiSO4 was established by orthogonal test. The results show that zinc transition coating can increase the adhesion and protect the Mg alloy substrate from the bath corrosion. The optimal plating bath composition is NiSO4·6H2O 20 g/L, NaH2PO2·H2O20g/L and C6H8O7·H2O 2.5 g/L, and optimal bath acidity and optimal plating temperature are pH 4.0 and 95℃, respectively. The present process flow is composed of ultrasonic cleaning→alkaline cleaning→acid pickling→activation→double immersing zinc→electroplating zinc→electroless nickel plating→passivation treatment. The present non-cyanide process of electroless nickel plating is harmless to our surroundings and Ni-P coating on Mg alloy AZ91D produced by present process possesses good adhesion and corrosion resistance.
基金financially supported by the Guizhou Prov-ince Nomarch Fund for Excellence Educationists, Scientists, and Technicians (No. 2005-363)the Natural Science Fund of Guizhou Provincial Education Department of China (No. 2007-078)
文摘A thermodynamic analysis on the acid leaching process of germanium oxide dust and discussion on the behaviors of main substances of the dust in the leaching process were carried out. The effects of temperature, acid concentration, leaching time and stirring speed on the leaching rate of germanium were investigated. Based on the characteristic of the dust, the kinetics and reactive mechanism of acid leaching were studied. The results show that the leaching of the dust by acid belonged to "the unreacted core shrinking model" of producing solid outgrowth layer. The chemical reaction was controlled by inner diffusion process. The apparent activation energy of leaching process was 12.60 kJ/mol. The leaching reaction of germanium was determined to be mainly second order reaction. The optimum conditions were the reaction temperature of 363 K, the leaching time of 2.5 h, the stirring speed of 120 r/min, the solid-to-liquid ratio of 1/8 and the acid concentration of 120 g/L. Under these conditions, the leaching rate of germanium can come up to more than 87%.
基金Supported by the National Natural Science Foundation of China (No. 50234040 and No. 20306031).
文摘The leaching kinetics of niobium from a low-grade niobium-tantalum ore by concentrated KOH solu-tion under atmospheric pressure has been studied. Significant effects of reaction temperature, KOH concentration, stirring speed, particle size and inass ratio of alkali-to-ore on the dissolution rate of niobium were examined. The experimental data of the leaching rates and the observed effects of the relevant operating variables were well in-terpreted with a shrinking core model under diffusion control. By using the Arrhenius expression, the apparent activation energy for the dissolution of niobium was evaluated. Finally, on the base of the shrinking core model, the rate equation was established.
文摘The thermodynamic equilibria and kinetic aspect of gold dissolution in iodine-iodide leaching were studied with emphasis on the effects of pH value and temperature on the system.The results of thermodynamic analysis of iodine in aqueous solution were given and numerous forms of iodine exist mainly in the acid region of pH values.An increase of the potential of the system results in an increase of iodine speciation.The oxidizing potential of the system will increase by the addition of element iodine.The IO^(3-)anions are stable in the potential range from-2.0 to-0.75 V and at pH value greater than 12.1.An increase of the temperature shifts boundaries of existence of various iodine species in the acid region of pH values.Some of them become unstable.The determined values of the diffusion coefficients and the thickness of the diffusion boundary layer,as well as the solvent concentration on the disc surface(14 mg/L) indicate that the process proceeds in the external diffusion region.Thus,while choosing the conditions of leaching from gold-containing materials of different origins of iodide solvents,it is necessary to carry out the process within the acidic region of pH values,where I^-,I_3^- and IO_4^- ions are capable to form complex compounds with metals.
基金Supported by Young Teachers Scientific Research Foundation Project of Sichuan University(2014SCU11020)National Key Research Project(2017YFB0307504)Sichuan Science and Technology Planning Project(2019YFH0149).
文摘Phosphogypsum(PG) desulfurization slag is a calcium-rich residue from reductive decomposition of PG using sulfur as the reductant. We proposed a technology of preparation light calcium carbonate with PG desulfurization slag, which mainly contains two steps: leaching and carbonizing. In this work, we concentrated on the former, in which ammonium chloride aqueous solution was utilized as leaching agent to extract calcium from the slag, and conducted thermodynamics and kinetics study on it. Fact Sage software was employed to do thermodynamic and phase equilibrium diagram calculations. The influence of leaching conditions including agitation speed, initial concentration of leaching solution, reaction temperature, and liquid/solid ratio on the calcium leaching rate was discussed in detail by means of experiment optimal design. A kinetic model developed from the shrinking core model was given to describe the leaching process. The apparent kinetic activation energy(Ea) of the leaching reaction was calculated to be 10.58 kJ·mol^-1.
基金financially supported by the Special Funds for the National Natural Science Foundation of China(No.U1608254)the Open Fund of State Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores(No.ZJKY2017(B)KFJJ01 and ZJKY2017(B)KFJJ02)。
文摘A process of biooxidation followed by thiosulfate leaching of gold from refractory gold concentrate was investigated.Mineralogical studies on the concentrate showed that very fine gold grains(<10μm)were encapsulated in pyrite and arsenopyrite,while the proportion of monomer gold was only 21%.The gold-bearing sample was identified as a high-sulfur fine-sized wrapped-type refractory gold concentrate.The gold leaching efficiency obtained by direct cyanidation was only 59.86%.After biooxidation pretreatment,the sulfide minerals were almost completely decomposed,92 wt%of the mineral particles of the biooxidation residue were decreased to<38μm,and the proportion of monomer gold in the biooxidation residue was over 86%.Meanwhile,the gold content in the biooxidation residue was enriched to 55.60 g/t,and the S,Fe,and As contents were reduced to approximately 19.8 wt%,6.97 wt%,and 0.13 wt%,respectively.Ammoniacal thiosulfate was used for gold extraction from the biooxidation residue of the refractory gold concentrate.The results showed that the optimal reagent conditions were 0.18 M thiosulfate,0.02 M copper(II),1.0 M ammonia,and 0.24 M sulfite.Under these conditions,a maximum gold leaching efficiency of 85.05%was obtained.
基金Projects(50934002,51074013) supported by the National Natural Science Foundation of China
文摘Two-dimensional images of the granular ore media with different grain sizes were obtained from the X-ray computed tomography.Combined with the digital image processing and finite element techniques,the original grayscale images were transformed into the finite element models directly.By using these models,the simulations of pore scale fluid flow among particles were conducted with the COMSOL Multiphysics,and the distribution characteristics of fluid flow velocity and pressure were analyzed.The simulation results show that there exist obvious preferential flow and leaching blind zone in each granular medium.The flow velocity at pore throat is larger than that of pore body and the largest velocity reaches 0.22 m/s.The velocity decreases gradually from the center of pore throat and body to the surface of particles.The flow paths of granular media with larger grain size distribute equally,while the fluid flow velocities in most of areas of granular media with smaller grain size are lower,and some of them approach to zero,so the permeability is very low.There exist some pore clusters with different pressures,which is the basic reason for the uneven flow velocity distribution.
文摘The regularities of anodic oxidation of thiosulfate ions on a gold electrode have been investigated using electrochemical methods in order to improve gold extraction. Effects of ammon, copper-ammon ions, pH and sulphite on anodic oxidation of thiosulfate ions have been examined in details. Results show that the anodic oxidation of thiosulfate ions is an inreversible reaction whose oxidizing peak potential is 620 mV/SCE in the absence of ammon. Oxidation rate increases with concentration of thiosulfate ions, but not in linear relation. It is also shown that ammon has significant effects on the oxidation of thiosulfate ions by causing great decrease in oxidation rate and negative shift of peak potential. The degrees of the rate decrease and negative shift increase with ammon concentration. When ammon concentration is increased to 1. 0 mol/L, the oxidation rate decreases to one fourth of that without ammon and the peak potential shifts from 620 mV/SCE to 350 mV/SCE.
基金supported by the National Natural Science Foundation of China(Grant No.U2167212)。
文摘Under the new development philosophy of carbon peaking and carbon neutrality,CO_(2)and O_(2)in situ leaching(ISL)has been identified as a promising technique for uranium mining in China,not only because it solves carbon dioxide utilization and sequestration,but it also alleviates the environmental burden.However,significant challenges exist in assessment of CO_(2)footprint and water-rock interactions,due to complex geochemical processes.Herein this study conducts a three-dimensional,multicomponent reactive transport model(RTM)of a field-scale CO_(2)and O_(2)ISL process at a typical sandstone-hosted uranium deposit in Songliao Basin,China.Numerical simulations are performed to provide new insight into quantitative interpretation of the greenhouse gas(CO_(2))footprint and environmental impact(SO_(4)^(2–))of the CO_(2)and O_(2)ISL,considering the potential chemical reaction network for uranium recovery at the field scale.RTM results demonstrate that the fate of the CO_(2)could be summarized as injected CO_(2)dissolution,dissolved CO_(2)mineralization and storage of CO_(2)as a gas phase during the CO_(2)and O_(2)ISL process.Furthermore,compared to acid ISL,CO_(2)and O_(2)ISL has a potentially smaller environmental footprint,with 20%of SO_(4)^(2–)concentration in the aquifer.The findings improve our fundamental understanding of carbon utilization in a long-term CO_(2)and O_(2)ISL system and provide important environmental implications when considering complex geochemical processes.
基金supported by the National Natural Science Foundation of China(U2202254,51974025,52034002)the Fundamental Research Funds for the Central Universities(FRF-TT-19-001).
文摘Nickel is a strategic resource in social life and defense technology,playing an essential role in many fields,such as alloys and batteries.With the decrease in nickel sulfide,it is of great significance to extract nickel from laterite.The limonitic laterite is a kind of rich nickel-cobalt-scandium resource.At present,there are few reviews on the extraction of limonitic laterite.This study reviews the hydrometallurgical processes for limonitic laterite ores and the methods of recovering valuable elements.The mineralogical characteristics are analyzed,and the typical mineral compositions are summarized.The main hydrometallurgical processes are compared and discussed,including reduction roasting-ammonia leaching,sulfuric acid pressure leaching,nitric acid pressure leaching,and the atmospheric nitric acid leaching(DNi process).The methods of recovering nickel,cobalt,scandium,and iron are emphatically outlined.Finally,reasonable suggestions are proposed for comprehensive utilization.This study can provide a reference for industrial development and diversified applications.