As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile...As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.展开更多
The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structur...The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structure,thermal and mechanical properties,and crystallization behavior changes were investigated by nuclear magnetic resonance spectrometer,Fourier-transform infrared spectro-photometer,X-ray diffractometer,differential scanning calorimetry and field emission scanning electron microscope measurements.The change of Q^(n)in glass structures reveals the glass network connectivity decreases due to the increasing content of Fe_(2)O_(3)addition,resulting in the increasing of non-bridging number in glass structure.The glass densities slightly rise from 2.644 to 2.681 g/cm^(3),while Vickers’s hardness increases at first,from 6.469 to 6.901 GPa,then slightly drops to 6.745 GPa,with Fe_(2)O_(3)content increase.There is almost no thermal expansion coefficient change from different Fe_(2)O_(3)content.The glass transmittance in visible range gradually decreases with higher Fe_(2)O_(3)content,resulting from the strong absorption of Fe^(2+)and Fe^(3+)ions.The calculated activation energy from thermal analysis results first decreases from 282.70 to 231.18 kJ/mol,and then increases to 244.02 kJ/mol,with the Fe_(2)O_(3)content increasing from 0.10wt%to 1.30wt%.Meanwhile,the maximum Avrami constant of 2.33 means the CAS glasses exhibit two-dimensional crystallization.All of the CAS glass-ceramics samples contain main crystal phase of anorthite,the microstructure appears lamellar and columnar crystals.展开更多
Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmissi...Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmission electron microscopy(TEM) due to their inherent instability under electron beam irradiation. Here, we employ cryo-electron microscopy(cryoEM) to capture images of MOF ZIF-8, revealing inverted-space structural information at a resolution of up to about 1.7A and enhancing its critical electron dose to around 20 e^(-)/A^(2). In addition, it is confirmed by electron-beam irradiation experiments that the high voltage could effectively mitigate the radiolysis, and the structure of ZIF-8 is more stable along the [100] direction under electron beam irradiation. Meanwhile, since the high-resolution electron microscope images are modulated by contrast transfer function(CTF) and it is difficult to determine the positions corresponding to the atomic columns directly from the images. We employ image deconvolution to eliminate the impact of CTF and obtain the structural images of ZIF-8. As a result, the heavy atom Zn and the organic imidazole ring within the organic framework can be distinguished from structural images.展开更多
A novel compound(H_(2)L)SCN(5⁃methyl⁃3⁃phenyl⁃2H⁃pyrazol⁃1⁃ium thiocyanate)has been obtained by the reaction of thiosemicarbazide with benzoylacetone in ethanol.Two zinccomplexes[Zn(HL)_(2)(NCS)(CH_(3)COO)](1)and[Zn_(...A novel compound(H_(2)L)SCN(5⁃methyl⁃3⁃phenyl⁃2H⁃pyrazol⁃1⁃ium thiocyanate)has been obtained by the reaction of thiosemicarbazide with benzoylacetone in ethanol.Two zinccomplexes[Zn(HL)_(2)(NCS)(CH_(3)COO)](1)and[Zn_(2)(L)_(2)(HL)_(2)(NCS)_(2)]_(2)·2CH_(3)OH(2)have been synthesized by the coordination reactions of Zn(OAc)_(2)·2H_(2)O or ZnCl_(2)with(H_(2)L)SCN under reflux conditions.Elemental analyses and single⁃crystal X⁃ray diffraction have con⁃firmed the structures of the synthesized compounds.The(H_(2)L)SCN ligand and complex 1 pertain to the triclinic sys⁃tem with space group P1,while complex 2 belongs to the monoclinic system with space group P2_(1)/n.Additionally,the antibacterial activities of the compounds were evaluated in vitro using the agar diffusion method against the bac⁃terial strains(Candida albicans,Staphylococcus aureus,and Escherichia coli).The results showed that the ligand exhibited relatively good antibacterial activities against the bacteria,and the complexes possessed stronger antibac⁃terial activities against the same bacteria than the free ligand.CCDC:2190252,(H2L)SCN;2190253,1;2190256,2.展开更多
Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of ...Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of achieving high thermal conductivity(k),desirable dielectric performance,and robust thermomechanical properties simultaneously.Liquid crystal epoxy(LCE)emerges as a unique epoxy,exhibiting inherently high k achieved through the self-assembly of mesogenic units into ordered structures.This characteristic enables liquid crystal epoxy to retain all the beneficial physical properties of pristine epoxy,while demonstrating a prominently enhanced k.As such,liquid crystal epoxy materials represent a promising solution for thermal management,with potential to tackle the critical issues and technical bottlenecks impeding the increasing miniaturization of microelectronic devices and electrical equipment.This article provides a comprehensive review on recent advances in liquid crystal epoxy,emphasizing the correlation between liquid crystal epoxy’s microscopic arrangement,organized mesoscopic domain,k,and relevant physical properties.The impacts of LC units and curing agents on the development of ordered structure are discussed,alongside the consequent effects on the k,dielectric,thermal,and other properties.External processing factors such as temperature and pressure and their influence on the formation and organization of structured domains are also evaluated.Finally,potential applications that could benefit from the emergence of liquid crystal epoxy are reviewed.展开更多
Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmeth...Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmethyl)butane(bib)by a hydrothermal method,respectively.X⁃ray crystallography reveals a 2D network constructed by six⁃coordinated Ni(Ⅱ)centers,bib,and Hpdc2-ligands in complex 1,while a 2D network is built by Ni(Ⅱ)and bib ligands in 2.Furthermore,the quantum⁃chemical calculations have been performed on‘molecular fragments’extracted from the crystal structure of 1 using the PBE0/LANL2DZ method in Gaussian 16 and the VASP program.CCDC:2343794,1;2343798,2.展开更多
Two Cu(Ⅰ)complexes[Cu(Bphen)(dppBz)]ClO_(4)·2CH_(3)OH(1)and[Cu_(2)(Bphen)_(2)(dpppda)]BF_(4)(2){Bphen=4,7-diphenyl-1,10-phenanthroline,dppBz=1,2-Bis(diphenylphosphino)benzene,dpppda=N1,N1,N4,N4-tetrakis[(dipheny...Two Cu(Ⅰ)complexes[Cu(Bphen)(dppBz)]ClO_(4)·2CH_(3)OH(1)and[Cu_(2)(Bphen)_(2)(dpppda)]BF_(4)(2){Bphen=4,7-diphenyl-1,10-phenanthroline,dppBz=1,2-Bis(diphenylphosphino)benzene,dpppda=N1,N1,N4,N4-tetrakis[(diphenylphosphino)methyl]-1,4-benzenediamin}were synthesized using a one-pot method.X-ray crystallography was used to elucidate their crystal structures and photophysical properties.A series of characterization tests including elemental analysis,NMR,FT-IR,UV-Vis absorption spectroscopy,fluorescence spectroscopy,thermal gravimetric analysis and terahertz time-domain spectroscopy(THz-TDS)were used to further investigate their properties.The results show that complex 1 structure is mononuclear containing two solvent molecules per unit cell,while complex 2 structure is binuclear containing two metal centers per unit cell.According to photophysical properties and density functional theory(DFT)calculations,their luminescence properties can be attributed to metal-to-ligand charge transfer(MLCT).Both complexes have a unique stability,which is confirmed by thermal gravimetric analysis.展开更多
Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent ma...Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.展开更多
The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The...The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75</sub>Co0.75</sub>Mn0.5</sub>O6−δ</sub>, with potential implications for its applications in various technological and scientific domains.展开更多
In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfoni...In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfonic acid. Traditional methods need to consume a lot of fuming sulfuric acid or concentrated sulfuric acid, resulting in high industrial large-scale production cost, more waste, and posing a serious environmental pollution risk. In this thesis, three different sulfonation reagents were used for the sulfonation reaction of m-phenylenediamine, and the reaction mechanisms and crystal structures of the three pathways were investigated. The three routes are: 1) one-step synthesis of monosulfonated compound 1 from raw material and sulfur trioxide (SO<sub>3</sub>);2) rapid reaction of raw material and chlorosulfonic acid to synthesize bisulfonated compound 2;3) direct eutectic crystallization of raw material and ordinary sulfuric acid to obtain compound 3. The crystal structure of the compounds synthesized by three paths was analyzed by X-ray single crystal diffraction, and compound 1 was characterized by NMR, Fourier infrared spectra, UV-visible spectrum and Mass spectrometry. The one-step synthesis of SO<sub>3</sub> as a sulfonation reagent has the advantages of mild reaction conditions, simple operation and low cost.展开更多
The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and m...The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and motion of a dendrite during solidification was simulated by a combination of the lattice Boltzmann method and the phase field method.The simulation results indicated that enough shear flow helped homogenize the concentration fields,rotate crystals and altere microstructures from dendritic to non-dendritic.The interaction of grains was also discussed.A fragmentation criterion was established based on partial remelting of dendrite arms;fragmentation was enhanced by a strong shear flow and larger inclined angles.The simulation results were verified experimentally.展开更多
Morphological evolution of non-dendritic microstructure during the solidification of succinonitrile-5%water(SCN-5%Wat) transparent alloy under mechanical stirring was experimentally investigated.The incubation time fo...Morphological evolution of non-dendritic microstructure during the solidification of succinonitrile-5%water(SCN-5%Wat) transparent alloy under mechanical stirring was experimentally investigated.The incubation time for the formation of non-dendritic microstructures decreased rapidly and the microstructure was gradually refined with the increase of stirring rate and cooling rate.When the stirring rate and cooling rate were low,the incubation time for the formation of non-dendritic microstructures decreased obviously with the increase of the melt undercooling.When the stirring rate was high,the effect of the melt undercooling on the incubation time for the formation of non-dendritic microstructures was weak.The morphology of primary microstructures had an important influence on the subsequent morphological evolution of these microstructures during the isothermal holding of the melt without stirring.It was found that when there were dendrites in the undercooled melt,the dendrites would be dissolved and the final microstructure would be replaced by the re-nucleated globular crystals if the stirring time was long enough.展开更多
Mg65Cu25Y10 bulk amorphous alloy specimens prepared by conventional copper mould method were heated at 200 °C for different time and the phase contents as well as microstructure were studied.The XRD results show ...Mg65Cu25Y10 bulk amorphous alloy specimens prepared by conventional copper mould method were heated at 200 °C for different time and the phase contents as well as microstructure were studied.The XRD results show that the crystallization of Mg65Cu25Y10 bulk amorphous alloy specimen becomes complete as the treating time increases and Mg2Cu,Mg24Y5 and HCP-Mg crystalline phases are found.Snowflake-like morphology is found in different specimens through SEM observation.The EDS patterns show that the composition of the snowflake-like structure is close to that of the as-cast alloy.Laminated structures are observed from the TEM images of the snowflake-like structure.From the electron diffraction patterns,it is seen that the snowflake-like structure is the combination of Mg24Y5 and amorphous matrix.The FCC-Mg phase in the matrix transforms into HCP-Mg during the heat-treating process.展开更多
New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH...New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.展开更多
Nanoscale Sb doped titanium dioxide thin films photocatalyst (Ti1-xSbO2) were obtained from dip-coating sol-gel method. The influence of dopant Sb density on the crystal structure and the phase transformation of the...Nanoscale Sb doped titanium dioxide thin films photocatalyst (Ti1-xSbO2) were obtained from dip-coating sol-gel method. The influence of dopant Sb density on the crystal structure and the phase transformation of the thin tilms were characterized by X-ray diffraction (XRD) and Raman spectra. The results of XRD showed that as prepared lilms were not only in anatase state but also in brookite. The crystalline size was estimated to be around 13.3-20 nm. Raman spectra indicated there coexisted other phases and a transformation from brookite to anatase in the samples doped with 0.2% Sb. After doping a proper amount of Sb, the cryst,allization rate and the content of the anatase Ti1-x, SbO2 in the thin films was clearly enhanced because Sb replaced part. of the Ti of TiO2 in the thin films. The anode current density (photocurrent density) and the first order reaction speed constant (k) of t.hin films doped with 0.2% Sb reached 42.49 μA/cm^2 and 0.171 h/cm^2 under 254 nm UV illumination, respectively, which is about 11 times and 2 times that of the non doped TiO2 anode prepared by the same method respectively.展开更多
A novel compound Cu(phen)(m-CBA)2 was synthesized with m-chlorobenzoic acid(m-CBA), 1,10-phenanthroline(phen) and Cu(OAc)2·H2O. It was characterized by IR, UV, elemental analyses and X-ray crystallograp...A novel compound Cu(phen)(m-CBA)2 was synthesized with m-chlorobenzoic acid(m-CBA), 1,10-phenanthroline(phen) and Cu(OAc)2·H2O. It was characterized by IR, UV, elemental analyses and X-ray crystallography. It crystallizes in the monoclinic crystal system with C2/c space group, a=2.9699(4) nm, b=1.15452(2) nm, c=1.5335(2) nm, β=111.118(2)°, V=4.905 1(1) nm3, Z=8, F(000)=2 328, R1=0.072 8, wR2=0.223 4 [I2σ(I)]. Structure analysis shows that the copper center coordinates with two nitrogen atoms from one 1,10-phenanthroline molecule, two oxygen atoms from two m-chlorobenzoic acid molecules, giving a distorted squared planar coordination geometry. This novel compound shows paramagnetic interactions between copper centers.展开更多
Antofloxacin free base is prepared from antofloxacin hydrochloride by removing hydrogen chloride. Its crystal is obtained by slow evaporation of an acetonitrile-methanol mixed solution. Single-crystal X-ray diffractio...Antofloxacin free base is prepared from antofloxacin hydrochloride by removing hydrogen chloride. Its crystal is obtained by slow evaporation of an acetonitrile-methanol mixed solution. Single-crystal X-ray diffraction reveals that the crystallography belongs to a triclinic PI space group with cell parameters: a = 0. 663 07(13) nm, b = 0. 898 39(18) nm, c = 1. 569 0(3) nm, α = 75.12(3)°,β = 87.92(3)°, γ = 77.57 (3)°. Antofloxacin shows no fluorescence in solution, but the crystalline state emits strong green light at 510 nm under the excitation of 360 nm, indicating a fluorescence enhancement induced by aggregation. It demonstrates that intermolecular packing and interaction in the crystal lead to the improved fluorescence quantum yield. These results provide important intbrmation for the further exploration of the structure-activity relationship of antofloxacin and the development of new drugs.展开更多
A metal-organic coordination polymer [Cd(tdc)(bimb)(μ2-H2O)]n (H2tdc = thiophe-ne-2,5-dicarboxylic acid, bimb = 1,4-bis(imidazol-l-yl)-butane) 1 has been hydrothermally synthe- sized and characterized by el...A metal-organic coordination polymer [Cd(tdc)(bimb)(μ2-H2O)]n (H2tdc = thiophe-ne-2,5-dicarboxylic acid, bimb = 1,4-bis(imidazol-l-yl)-butane) 1 has been hydrothermally synthe- sized and characterized by elemental analysis, IR, TG, luminescence spectrum and single-crystal X-ray diffraction. Colorless crystals crystallize in the triclinic system, space group P^-1 with a = 5.8945(3), b = 10.3129(5), c = 11.2226(5) A, a = 95.1430(10),β = 97.9020(10), γ = 90.5910(10)°, V = 672.84(6) A^3, C11H11CdN2O5S, Mr= 395.68, De = 1.953 g/cm^3, μ(MoKa) = 1.797 mm^-1, F(000) = 390, Z = 2, the final R = 0.0209 and wR = 0.0508 for 2514 observed reflections (I 〉 2σ(I)). The structure of 1 exhibits a two-dimensional layer-like structure.展开更多
The title compound N-(2-ethoxyphenyl)-3-oxobenzo[d]isothiazole-2(3H)-carboxa-mide(C16H14N2O3S,Mr = 314.35) has been synthesized and structurally characterized by IR,1H NMR and single-crystal X-ray diffraction.Th...The title compound N-(2-ethoxyphenyl)-3-oxobenzo[d]isothiazole-2(3H)-carboxa-mide(C16H14N2O3S,Mr = 314.35) has been synthesized and structurally characterized by IR,1H NMR and single-crystal X-ray diffraction.The crystal belongs to triclinic,space group P with a = 4.6395(15),b = 8.689(3)(A°), c=17.917(7)(A°)α=87.763(9),β = 84.625(9),γ = 82.344(9)°,V = 712.4(4)(A°)^3,Z = 2,Dc = 1.465 Mg·m^-3,λ(MoKa) = 0.71073,F(000) = 328,μ(MoKa) = 0.242 mm-1,the final R = 0.038 and wR = 0.089.A total of 3702 unique reflections were collected,of which 2762 with I 〉 2σ(I) were observed.X-ray analysis revealed that the benzisothiazolone ring and benzene moieties were essentially planar,and three intramolecular hydrogen bonds N(2)-H(2N)…O(1),N(2)-H(2N)…O(3) and C(10)-H(10)…O(2) were observed.The preliminary biologi-cal test showed that the title compound had antifungal and antibacteria activities against Bacillus subtilis(CMCC63003),Aeromonas hydrophila(ATCC7966),Staphylococcus aureus(ATCC6538),Escherichia coli(JM103),Blastomyces albicans,Gloeosporium papaya P.Henn,Colletotrichum gloeosporioides Penz and Botryodiplodia theobromae.展开更多
A one-dimensional chain chlorodibenzyltin 2-quininate has been synthesized and characterized by IR, NMR spectra and elemental analysis. The crystal structure has been determined by X-ray diffraction. The crystal belon...A one-dimensional chain chlorodibenzyltin 2-quininate has been synthesized and characterized by IR, NMR spectra and elemental analysis. The crystal structure has been determined by X-ray diffraction. The crystal belongs to the monoclinic system, space group I4(—) with a = 19.1171(10), b = 19.1171(10), c = 12.5158(6) , Z = 8, V = 4574.1(4) 3, Dc = 1.477 g·cm-3, μ(MoKα) = 1.252 mm-1, F(000) = 2032, R = 0.0259 and wR = 0.0723. In the complex, the tin atom is six-coordinated to adopt a distorted octahedral configuration with bridging carboxyl of quinoline-2-carboxylic acid. The result of fluorescence spectrum analysis shows that the title complex at room temperature exhibits an intense photoluminescence with maximum emission at 364.2 nm (λex = 303.0 nm).展开更多
基金supported by the National Key R&D Program of China(2018YFC1900500)the Graduate Scientific Research and Innovation Foundation of Chongqing,China(Grant No.CYB20002).
文摘As a promising anode material for magnesium ion rechargeable batteries,magnesium metavanadate(MgV_(2)O_(6))has attracted considerable research interest in recent years.A MgV_(2)O_(6)sample was synthesized via a facile solid-state reaction by multistep-firing stoichiometric mixtures of MgO and V2O5 powder under an air atmosphere.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)occurred at 841 K and the enthalpy change was 4.37±0.04 kJ/mol.The endothermic effect at 1014 K and the enthalpy change was 26.54±0.26 kJ/mol,which is related to the incongruent melting ofβ-MgV_(2)O_(6).In situ XRD was performed to investigate phase transition of the as-prepared MgV_(2)O_(6)at high temperatures.The cell parameters obtained by Rietveld refinement indicated that it crystallizes in a monoclinic system with the C2/m space group,and the lattice parameters of a=9.280 A°,b=3.501 A°,c=6.731 A°,β=111.76°.The solid-state phase transition fromα-MgV_(2)O_(6)toβ-MgV_(2)O_(6)was further studied by thermal kinetics,indicating that this process is controlled first by a fibril-like mechanism and then by a spherulitic-type mechanism with an increasing heating rate.Additionally,the enthalpy change of MgV_(2)O_(6)at high temperatures was measured utilizing the drop calorimetry,heat capacity was calculated and given as:Cp=208.3+0.03583T-4809000T^(−2)(298-923 K)(J mol^(−1)K^(−1)),the high-temperature heat capacity can be used to calculate Gibbs free energy of MgV_(2)O_(6)at high temperatures.
基金Funded by the Key Research and Development Program of Han Nan province(No.ZDYF2021GXJS027)the Project of Sanya Yazhou Bay Science and Technology City(No.SCKJJYRC-2022-44)the Shenzhen Virtual University Park(SZVUP)Free Exploration Basic Research Project(No.2021Szvup107)。
文摘The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structure,thermal and mechanical properties,and crystallization behavior changes were investigated by nuclear magnetic resonance spectrometer,Fourier-transform infrared spectro-photometer,X-ray diffractometer,differential scanning calorimetry and field emission scanning electron microscope measurements.The change of Q^(n)in glass structures reveals the glass network connectivity decreases due to the increasing content of Fe_(2)O_(3)addition,resulting in the increasing of non-bridging number in glass structure.The glass densities slightly rise from 2.644 to 2.681 g/cm^(3),while Vickers’s hardness increases at first,from 6.469 to 6.901 GPa,then slightly drops to 6.745 GPa,with Fe_(2)O_(3)content increase.There is almost no thermal expansion coefficient change from different Fe_(2)O_(3)content.The glass transmittance in visible range gradually decreases with higher Fe_(2)O_(3)content,resulting from the strong absorption of Fe^(2+)and Fe^(3+)ions.The calculated activation energy from thermal analysis results first decreases from 282.70 to 231.18 kJ/mol,and then increases to 244.02 kJ/mol,with the Fe_(2)O_(3)content increasing from 0.10wt%to 1.30wt%.Meanwhile,the maximum Avrami constant of 2.33 means the CAS glasses exhibit two-dimensional crystallization.All of the CAS glass-ceramics samples contain main crystal phase of anorthite,the microstructure appears lamellar and columnar crystals.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074409 and 12374021)。
文摘Metal–organic frameworks(MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmission electron microscopy(TEM) due to their inherent instability under electron beam irradiation. Here, we employ cryo-electron microscopy(cryoEM) to capture images of MOF ZIF-8, revealing inverted-space structural information at a resolution of up to about 1.7A and enhancing its critical electron dose to around 20 e^(-)/A^(2). In addition, it is confirmed by electron-beam irradiation experiments that the high voltage could effectively mitigate the radiolysis, and the structure of ZIF-8 is more stable along the [100] direction under electron beam irradiation. Meanwhile, since the high-resolution electron microscope images are modulated by contrast transfer function(CTF) and it is difficult to determine the positions corresponding to the atomic columns directly from the images. We employ image deconvolution to eliminate the impact of CTF and obtain the structural images of ZIF-8. As a result, the heavy atom Zn and the organic imidazole ring within the organic framework can be distinguished from structural images.
文摘A novel compound(H_(2)L)SCN(5⁃methyl⁃3⁃phenyl⁃2H⁃pyrazol⁃1⁃ium thiocyanate)has been obtained by the reaction of thiosemicarbazide with benzoylacetone in ethanol.Two zinccomplexes[Zn(HL)_(2)(NCS)(CH_(3)COO)](1)and[Zn_(2)(L)_(2)(HL)_(2)(NCS)_(2)]_(2)·2CH_(3)OH(2)have been synthesized by the coordination reactions of Zn(OAc)_(2)·2H_(2)O or ZnCl_(2)with(H_(2)L)SCN under reflux conditions.Elemental analyses and single⁃crystal X⁃ray diffraction have con⁃firmed the structures of the synthesized compounds.The(H_(2)L)SCN ligand and complex 1 pertain to the triclinic sys⁃tem with space group P1,while complex 2 belongs to the monoclinic system with space group P2_(1)/n.Additionally,the antibacterial activities of the compounds were evaluated in vitro using the agar diffusion method against the bac⁃terial strains(Candida albicans,Staphylococcus aureus,and Escherichia coli).The results showed that the ligand exhibited relatively good antibacterial activities against the bacteria,and the complexes possessed stronger antibac⁃terial activities against the same bacteria than the free ligand.CCDC:2190252,(H2L)SCN;2190253,1;2190256,2.
基金supported by funding from the National Natural Science Foundation of China(No.52277028,51577154,U1903133)
文摘Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of achieving high thermal conductivity(k),desirable dielectric performance,and robust thermomechanical properties simultaneously.Liquid crystal epoxy(LCE)emerges as a unique epoxy,exhibiting inherently high k achieved through the self-assembly of mesogenic units into ordered structures.This characteristic enables liquid crystal epoxy to retain all the beneficial physical properties of pristine epoxy,while demonstrating a prominently enhanced k.As such,liquid crystal epoxy materials represent a promising solution for thermal management,with potential to tackle the critical issues and technical bottlenecks impeding the increasing miniaturization of microelectronic devices and electrical equipment.This article provides a comprehensive review on recent advances in liquid crystal epoxy,emphasizing the correlation between liquid crystal epoxy’s microscopic arrangement,organized mesoscopic domain,k,and relevant physical properties.The impacts of LC units and curing agents on the development of ordered structure are discussed,alongside the consequent effects on the k,dielectric,thermal,and other properties.External processing factors such as temperature and pressure and their influence on the formation and organization of structured domains are also evaluated.Finally,potential applications that could benefit from the emergence of liquid crystal epoxy are reviewed.
文摘Two new coordination polymers,[Ni(Hpdc)(bib)(H_(2)O)]_(n)(1)and{[Ni(bib)_(3)](ClO_(4))_(2)}_(n)(2),were prepared by mixing Ni^(2+),3,5⁃pyrazoledicarboxylic acid(H3pdc)/p⁃nitrobenzoic acid and 1,4⁃bis(imidazol⁃1⁃ylmethyl)butane(bib)by a hydrothermal method,respectively.X⁃ray crystallography reveals a 2D network constructed by six⁃coordinated Ni(Ⅱ)centers,bib,and Hpdc2-ligands in complex 1,while a 2D network is built by Ni(Ⅱ)and bib ligands in 2.Furthermore,the quantum⁃chemical calculations have been performed on‘molecular fragments’extracted from the crystal structure of 1 using the PBE0/LANL2DZ method in Gaussian 16 and the VASP program.CCDC:2343794,1;2343798,2.
基金supported by the Key Project of Science and Technology Plan of Beijing Education Commission(KZ20231002808)。
文摘Two Cu(Ⅰ)complexes[Cu(Bphen)(dppBz)]ClO_(4)·2CH_(3)OH(1)and[Cu_(2)(Bphen)_(2)(dpppda)]BF_(4)(2){Bphen=4,7-diphenyl-1,10-phenanthroline,dppBz=1,2-Bis(diphenylphosphino)benzene,dpppda=N1,N1,N4,N4-tetrakis[(diphenylphosphino)methyl]-1,4-benzenediamin}were synthesized using a one-pot method.X-ray crystallography was used to elucidate their crystal structures and photophysical properties.A series of characterization tests including elemental analysis,NMR,FT-IR,UV-Vis absorption spectroscopy,fluorescence spectroscopy,thermal gravimetric analysis and terahertz time-domain spectroscopy(THz-TDS)were used to further investigate their properties.The results show that complex 1 structure is mononuclear containing two solvent molecules per unit cell,while complex 2 structure is binuclear containing two metal centers per unit cell.According to photophysical properties and density functional theory(DFT)calculations,their luminescence properties can be attributed to metal-to-ligand charge transfer(MLCT).Both complexes have a unique stability,which is confirmed by thermal gravimetric analysis.
文摘Organic light-emitting diodes(OLEDs)have important applications in the field of next-generation displays and lighting,and phosphorescent iridium complexes are an important class of electroluminescent phosphorescent materials.In this paper,Ir(bmppy)_(3),tris(4-methyl-2,5-diphenylpyridine)iridium,was synthesized and elvaluted for photo-physical characteristics.Single crystals suitale for X-ray diffraction(XRD)were grown from a mixture solvent of dichloromethane and absolute ethanol.The composition and structur of Ir(bmppy)_(3)were determined by element analysis,NMR spectra and XRD.The complex crystallizes in the monoclinic symmetry with the space group P21/c with a slightly distorted octahedral configuration.As measured by UV-Visible and photoluminescence spectra,Ir(bmppy)_(3) displays a maximum emission at at 527 nm at ambient temperature,a typical green-emitting profile.The complex has potential for application in the OLED industry.
文摘The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75</sub>Co0.75</sub>Mn0.5</sub>O6−δ</sub>, with potential implications for its applications in various technological and scientific domains.
文摘In the traditional process, m-phenylenediamine reacts with fuming sulfuric acid at high temperature to get intermediates, and then after dehydration occurs intramolecular rearrangement to get 2,4-diaminobenzenesulfonic acid. Traditional methods need to consume a lot of fuming sulfuric acid or concentrated sulfuric acid, resulting in high industrial large-scale production cost, more waste, and posing a serious environmental pollution risk. In this thesis, three different sulfonation reagents were used for the sulfonation reaction of m-phenylenediamine, and the reaction mechanisms and crystal structures of the three pathways were investigated. The three routes are: 1) one-step synthesis of monosulfonated compound 1 from raw material and sulfur trioxide (SO<sub>3</sub>);2) rapid reaction of raw material and chlorosulfonic acid to synthesize bisulfonated compound 2;3) direct eutectic crystallization of raw material and ordinary sulfuric acid to obtain compound 3. The crystal structure of the compounds synthesized by three paths was analyzed by X-ray single crystal diffraction, and compound 1 was characterized by NMR, Fourier infrared spectra, UV-visible spectrum and Mass spectrometry. The one-step synthesis of SO<sub>3</sub> as a sulfonation reagent has the advantages of mild reaction conditions, simple operation and low cost.
基金Project(51674144)supported by the National Natural Science Foundation of ChinaProject(KJLD14016)supported by the Luodi Research Plan of Jiangxi Educational Department,China+1 种基金Projects(20122BAB206021,20133ACB21003)supported by the Natural Science Foundation of Jiangxi Province,ChinaProject(20122BCB23001)supported by the Young Scientists Cultivating Program of Jiangxi Province,China
文摘The formation of non-dendritic structures in the primary phase of an aluminum alloy solidified using low superheat pouring with a shearing field(LSPSF) machine was investigated by numerical simulation.The growth and motion of a dendrite during solidification was simulated by a combination of the lattice Boltzmann method and the phase field method.The simulation results indicated that enough shear flow helped homogenize the concentration fields,rotate crystals and altere microstructures from dendritic to non-dendritic.The interaction of grains was also discussed.A fragmentation criterion was established based on partial remelting of dendrite arms;fragmentation was enhanced by a strong shear flow and larger inclined angles.The simulation results were verified experimentally.
基金Project(50771083) supported by the National Natural Science Foundation of ChinaProject(02-TZ-2008) supported by State Key Laboratory of Solidification Processing in NWPU,China
文摘Morphological evolution of non-dendritic microstructure during the solidification of succinonitrile-5%water(SCN-5%Wat) transparent alloy under mechanical stirring was experimentally investigated.The incubation time for the formation of non-dendritic microstructures decreased rapidly and the microstructure was gradually refined with the increase of stirring rate and cooling rate.When the stirring rate and cooling rate were low,the incubation time for the formation of non-dendritic microstructures decreased obviously with the increase of the melt undercooling.When the stirring rate was high,the effect of the melt undercooling on the incubation time for the formation of non-dendritic microstructures was weak.The morphology of primary microstructures had an important influence on the subsequent morphological evolution of these microstructures during the isothermal holding of the melt without stirring.It was found that when there were dendrites in the undercooled melt,the dendrites would be dissolved and the final microstructure would be replaced by the re-nucleated globular crystals if the stirring time was long enough.
基金Project (2008-04) supported by the Top Talent Plan of Jiangsu University, ChinaProject (10KJA430008) supported by the Natural Science Foundation of Jiangsu Higher Education Institutions,China
文摘Mg65Cu25Y10 bulk amorphous alloy specimens prepared by conventional copper mould method were heated at 200 °C for different time and the phase contents as well as microstructure were studied.The XRD results show that the crystallization of Mg65Cu25Y10 bulk amorphous alloy specimen becomes complete as the treating time increases and Mg2Cu,Mg24Y5 and HCP-Mg crystalline phases are found.Snowflake-like morphology is found in different specimens through SEM observation.The EDS patterns show that the composition of the snowflake-like structure is close to that of the as-cast alloy.Laminated structures are observed from the TEM images of the snowflake-like structure.From the electron diffraction patterns,it is seen that the snowflake-like structure is the combination of Mg24Y5 and amorphous matrix.The FCC-Mg phase in the matrix transforms into HCP-Mg during the heat-treating process.
文摘New solid complex of the antimony trichloride and dioxane was obtained th rough a reaction of the dioxane and the absolute methanol solution of the antimony trichloride.The formula of the complex is[SbCl_(3)·{(CH_(2))_(4)O_(2)}_(1.5)].The crystal structure of the comple x belongs to cubic system,space group I-43d,a=17.1417(5)?,Z=16.The trivalent antimony ion not only bonds directly to three chlorine anions,but also is co ordinated by three oxygen atoms of th e dioxane molecules.Two oxygen atoms in a dioxane molecule wi ll coordinate to different antimony ions,respectively.
文摘Nanoscale Sb doped titanium dioxide thin films photocatalyst (Ti1-xSbO2) were obtained from dip-coating sol-gel method. The influence of dopant Sb density on the crystal structure and the phase transformation of the thin tilms were characterized by X-ray diffraction (XRD) and Raman spectra. The results of XRD showed that as prepared lilms were not only in anatase state but also in brookite. The crystalline size was estimated to be around 13.3-20 nm. Raman spectra indicated there coexisted other phases and a transformation from brookite to anatase in the samples doped with 0.2% Sb. After doping a proper amount of Sb, the cryst,allization rate and the content of the anatase Ti1-x, SbO2 in the thin films was clearly enhanced because Sb replaced part. of the Ti of TiO2 in the thin films. The anode current density (photocurrent density) and the first order reaction speed constant (k) of t.hin films doped with 0.2% Sb reached 42.49 μA/cm^2 and 0.171 h/cm^2 under 254 nm UV illumination, respectively, which is about 11 times and 2 times that of the non doped TiO2 anode prepared by the same method respectively.
基金Project (21001118) supported by the National Natural Science Foundation of China
文摘A novel compound Cu(phen)(m-CBA)2 was synthesized with m-chlorobenzoic acid(m-CBA), 1,10-phenanthroline(phen) and Cu(OAc)2·H2O. It was characterized by IR, UV, elemental analyses and X-ray crystallography. It crystallizes in the monoclinic crystal system with C2/c space group, a=2.9699(4) nm, b=1.15452(2) nm, c=1.5335(2) nm, β=111.118(2)°, V=4.905 1(1) nm3, Z=8, F(000)=2 328, R1=0.072 8, wR2=0.223 4 [I2σ(I)]. Structure analysis shows that the copper center coordinates with two nitrogen atoms from one 1,10-phenanthroline molecule, two oxygen atoms from two m-chlorobenzoic acid molecules, giving a distorted squared planar coordination geometry. This novel compound shows paramagnetic interactions between copper centers.
文摘Antofloxacin free base is prepared from antofloxacin hydrochloride by removing hydrogen chloride. Its crystal is obtained by slow evaporation of an acetonitrile-methanol mixed solution. Single-crystal X-ray diffraction reveals that the crystallography belongs to a triclinic PI space group with cell parameters: a = 0. 663 07(13) nm, b = 0. 898 39(18) nm, c = 1. 569 0(3) nm, α = 75.12(3)°,β = 87.92(3)°, γ = 77.57 (3)°. Antofloxacin shows no fluorescence in solution, but the crystalline state emits strong green light at 510 nm under the excitation of 360 nm, indicating a fluorescence enhancement induced by aggregation. It demonstrates that intermolecular packing and interaction in the crystal lead to the improved fluorescence quantum yield. These results provide important intbrmation for the further exploration of the structure-activity relationship of antofloxacin and the development of new drugs.
基金supported by the Science and Technology Research Projects of the Education Department of Jilin Province (No. 2012.479)
文摘A metal-organic coordination polymer [Cd(tdc)(bimb)(μ2-H2O)]n (H2tdc = thiophe-ne-2,5-dicarboxylic acid, bimb = 1,4-bis(imidazol-l-yl)-butane) 1 has been hydrothermally synthe- sized and characterized by elemental analysis, IR, TG, luminescence spectrum and single-crystal X-ray diffraction. Colorless crystals crystallize in the triclinic system, space group P^-1 with a = 5.8945(3), b = 10.3129(5), c = 11.2226(5) A, a = 95.1430(10),β = 97.9020(10), γ = 90.5910(10)°, V = 672.84(6) A^3, C11H11CdN2O5S, Mr= 395.68, De = 1.953 g/cm^3, μ(MoKa) = 1.797 mm^-1, F(000) = 390, Z = 2, the final R = 0.0209 and wR = 0.0508 for 2514 observed reflections (I 〉 2σ(I)). The structure of 1 exhibits a two-dimensional layer-like structure.
基金Supported by the National Natural Science Foundation of China (No. 20962007)
文摘The title compound N-(2-ethoxyphenyl)-3-oxobenzo[d]isothiazole-2(3H)-carboxa-mide(C16H14N2O3S,Mr = 314.35) has been synthesized and structurally characterized by IR,1H NMR and single-crystal X-ray diffraction.The crystal belongs to triclinic,space group P with a = 4.6395(15),b = 8.689(3)(A°), c=17.917(7)(A°)α=87.763(9),β = 84.625(9),γ = 82.344(9)°,V = 712.4(4)(A°)^3,Z = 2,Dc = 1.465 Mg·m^-3,λ(MoKa) = 0.71073,F(000) = 328,μ(MoKa) = 0.242 mm-1,the final R = 0.038 and wR = 0.089.A total of 3702 unique reflections were collected,of which 2762 with I 〉 2σ(I) were observed.X-ray analysis revealed that the benzisothiazolone ring and benzene moieties were essentially planar,and three intramolecular hydrogen bonds N(2)-H(2N)…O(1),N(2)-H(2N)…O(3) and C(10)-H(10)…O(2) were observed.The preliminary biologi-cal test showed that the title compound had antifungal and antibacteria activities against Bacillus subtilis(CMCC63003),Aeromonas hydrophila(ATCC7966),Staphylococcus aureus(ATCC6538),Escherichia coli(JM103),Blastomyces albicans,Gloeosporium papaya P.Henn,Colletotrichum gloeosporioides Penz and Botryodiplodia theobromae.
基金sponsored by the open fund of key laboratory of functional organometallic materials of ordinary university in Hunan province (No. 09K099, 10K010)science and technology projects in Hunan province (No. 2010JT4041)sponsored by key discipline of Hunan Province and scientific development plan of Hengyang city (No. 2009KG52)
文摘A one-dimensional chain chlorodibenzyltin 2-quininate has been synthesized and characterized by IR, NMR spectra and elemental analysis. The crystal structure has been determined by X-ray diffraction. The crystal belongs to the monoclinic system, space group I4(—) with a = 19.1171(10), b = 19.1171(10), c = 12.5158(6) , Z = 8, V = 4574.1(4) 3, Dc = 1.477 g·cm-3, μ(MoKα) = 1.252 mm-1, F(000) = 2032, R = 0.0259 and wR = 0.0723. In the complex, the tin atom is six-coordinated to adopt a distorted octahedral configuration with bridging carboxyl of quinoline-2-carboxylic acid. The result of fluorescence spectrum analysis shows that the title complex at room temperature exhibits an intense photoluminescence with maximum emission at 364.2 nm (λex = 303.0 nm).