孤岛效应是光伏并网逆变器发电系统中存在的一个基本问题。对孤岛效应的检测必须准确而快速,同时孤岛检测的方法应该尽量减小对电能质量的影响。该文阐述了主动频移AFD(active frequency drift)检测法和正反馈主动频移AFDPF(active freq...孤岛效应是光伏并网逆变器发电系统中存在的一个基本问题。对孤岛效应的检测必须准确而快速,同时孤岛检测的方法应该尽量减小对电能质量的影响。该文阐述了主动频移AFD(active frequency drift)检测法和正反馈主动频移AFDPF(active frequency drift with positive feedback)检测法的基本原理、分析了AFDPF的检测盲区,并在此基础上提出一种改进的AFDPF检测法,即以分段函数的方式施加扰动来达到频移的方法。最后在Matlab/Simulink平台进行仿真实验,验证了该改进的AFDPF检测法不仅具有可行性,而且降低了电流谐波失真度THD(total harmonic distortion),即减小了扰动对电能质量的影响。展开更多
Responding to the problem of increased load demand, progress has been made to develop a new smarter infrastructure, which employs a decentralised approach. This smart decentralised system, termed smart grid, is compos...Responding to the problem of increased load demand, progress has been made to develop a new smarter infrastructure, which employs a decentralised approach. This smart decentralised system, termed smart grid, is composed of micro grids which utilise a combination of distributed energy resources (DER). The DERs can either be operated in parallel with the grid or in autonomous condition (intentional-islanding). Operating the DER under intentional islanding condition is seen as the next stage in smart grid’s future development which requires intelligent control implementation. In order to utilise this intelligent control, immediate detection of islanding is essential. This paper proposes a new smarter islanding detection method, which implements the forecast capability of smart grid by detecting the fluctuations before islanding occurs. The proposed method has been tested in simulation and compared against the current islanding detection methods. The simulation results have successfully proven the benefits of the new proposed method over the current methodologies in island detection.展开更多
Due to the increased penetration of multi-inverter distributed generation(DG)systems,different DG technologies,inverter control methods,and other inverter functions are challenging the capabilities of islanding detect...Due to the increased penetration of multi-inverter distributed generation(DG)systems,different DG technologies,inverter control methods,and other inverter functions are challenging the capabilities of islanding detection.In addition,multi-inverter networks connecting the distribution system point of common coupling(PCC)create islanding at paralleling inverters,which adds the vulnerability of islanding detection.Furthermore,available islanding detection must overcome more challenges from non-detection zones(NDZs)under reduced power mismatches.Therefore,in this study,a new method called parameter self-adapting active islanding detection was utilized to minimize the dilution effect and reduce NDZs in multi-inverter power systems.The method utilizes an active frequency drift(AFD)method and applies a positive feedback gain of adoption parameters,which significantly minimizes NDZs at parallel inverters.The simulation and experimental outcomes indicate that the proposed method can effectively weaken the dilution effect in multi-inverter networks connecting the distribution system PCC.展开更多
Islanding detection is an essential function for safety and reliability in grid-connected Distributed Generation Systems (DGS). Passive and active islanding detection methods have been analyzed in literature consideri...Islanding detection is an essential function for safety and reliability in grid-connected Distributed Generation Systems (DGS). Passive and active islanding detection methods have been analyzed in literature considering DGS with only one inverter connected to the utility. With the big scale application of photovoltaic (PV) power systems, islanding detection technology of multi-inverter DGS has been paid more attention. This paper analyzes the performance of diverse islanding detection methods in multiple inverters grid-connected PV systems. Non-Detection Zones (NDZ) of multi-inverter systems in a load parameter space are used as analytical tool. The paper provides guidance for the islanding detection design in multiple grid-connected inverters.展开更多
文摘孤岛效应是光伏并网逆变器发电系统中存在的一个基本问题。对孤岛效应的检测必须准确而快速,同时孤岛检测的方法应该尽量减小对电能质量的影响。该文阐述了主动频移AFD(active frequency drift)检测法和正反馈主动频移AFDPF(active frequency drift with positive feedback)检测法的基本原理、分析了AFDPF的检测盲区,并在此基础上提出一种改进的AFDPF检测法,即以分段函数的方式施加扰动来达到频移的方法。最后在Matlab/Simulink平台进行仿真实验,验证了该改进的AFDPF检测法不仅具有可行性,而且降低了电流谐波失真度THD(total harmonic distortion),即减小了扰动对电能质量的影响。
文摘Responding to the problem of increased load demand, progress has been made to develop a new smarter infrastructure, which employs a decentralised approach. This smart decentralised system, termed smart grid, is composed of micro grids which utilise a combination of distributed energy resources (DER). The DERs can either be operated in parallel with the grid or in autonomous condition (intentional-islanding). Operating the DER under intentional islanding condition is seen as the next stage in smart grid’s future development which requires intelligent control implementation. In order to utilise this intelligent control, immediate detection of islanding is essential. This paper proposes a new smarter islanding detection method, which implements the forecast capability of smart grid by detecting the fluctuations before islanding occurs. The proposed method has been tested in simulation and compared against the current islanding detection methods. The simulation results have successfully proven the benefits of the new proposed method over the current methodologies in island detection.
基金supported by the National Natural Science Foundation of China under Grant No.61671109.
文摘Due to the increased penetration of multi-inverter distributed generation(DG)systems,different DG technologies,inverter control methods,and other inverter functions are challenging the capabilities of islanding detection.In addition,multi-inverter networks connecting the distribution system point of common coupling(PCC)create islanding at paralleling inverters,which adds the vulnerability of islanding detection.Furthermore,available islanding detection must overcome more challenges from non-detection zones(NDZs)under reduced power mismatches.Therefore,in this study,a new method called parameter self-adapting active islanding detection was utilized to minimize the dilution effect and reduce NDZs in multi-inverter power systems.The method utilizes an active frequency drift(AFD)method and applies a positive feedback gain of adoption parameters,which significantly minimizes NDZs at parallel inverters.The simulation and experimental outcomes indicate that the proposed method can effectively weaken the dilution effect in multi-inverter networks connecting the distribution system PCC.
文摘Islanding detection is an essential function for safety and reliability in grid-connected Distributed Generation Systems (DGS). Passive and active islanding detection methods have been analyzed in literature considering DGS with only one inverter connected to the utility. With the big scale application of photovoltaic (PV) power systems, islanding detection technology of multi-inverter DGS has been paid more attention. This paper analyzes the performance of diverse islanding detection methods in multiple inverters grid-connected PV systems. Non-Detection Zones (NDZ) of multi-inverter systems in a load parameter space are used as analytical tool. The paper provides guidance for the islanding detection design in multiple grid-connected inverters.