期刊文献+
共找到266篇文章
< 1 2 14 >
每页显示 20 50 100
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:27
1
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (nsga)-II
下载PDF
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
2
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
下载PDF
Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II 被引量:3
3
作者 Xi JIN Jie ZHANG +1 位作者 Jin-liang GAO Wen-yan WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期391-400,共10页
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol... Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions. 展开更多
关键词 Water supply system Water supply network Optimal rehabilitation MULTI-OBJECTIVE non-dominated sorting Ge-netic algorithm (nsga
下载PDF
Planning of DC Electric Spring with Particle Swarm Optimization and Elitist Non-dominated Sorting Genetic Algorithm
4
作者 Qingsong Wang Siwei Li +2 位作者 Hao Ding Ming Cheng Giuseppe Buja 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期574-583,共10页
This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical... This paper addresses the planning problem of parallel DC electric springs (DCESs). DCES, a demand-side management method, realizes automatic matching of power consumption and power generation by adjusting non-critical load (NCL) and internal storage. It can offer higher power quality to critical load (CL), reduce power imbalance and relieve pressure on energy storage systems (RESs). In this paper, a planning method for parallel DCESs is proposed to maximize stability gain, economic benefits, and penetration of RESs. The planning model is a master optimization with sub-optimization to highlight the priority of objectives. Master optimization is used to improve stability of the network, and sub-optimization aims to improve economic benefit and allowable penetration of RESs. This issue is a multivariable nonlinear mixed integer problem, requiring huge calculations by using common solvers. Therefore, particle Swarm optimization (PSO) and Elitist non-dominated sorting genetic algorithm (NSGA-II) were used to solve this model. Considering uncertainty of RESs, this paper verifies effectiveness of the proposed planning method on IEEE 33-bus system based on deterministic scenarios obtained by scenario analysis. 展开更多
关键词 DC distribution network DC electric spring non-dominated sorting genetic algorithm particle swarm optimization renewable energy source
原文传递
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem
5
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 Multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
下载PDF
基于CatBoost-NSGA-Ⅲ算法的盾构姿态预测与优化
6
作者 吴贤国 刘俊 +3 位作者 曹源 雷宇 李士范 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第8期69-77,共9页
为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影... 为解决盾构掘进过程中因盾构前倾变形、蛇形、轴线偏离及纠偏等影响施工安全性与高效性的问题,提出一种将类别型特征梯度提升(CatBoost)与第三代非支配排序遗传算法(NSGA-Ⅲ)相结合的盾构姿态多目标优化方法;以贵阳地铁为例,选取22个影响因素作为输入参数,利用CatBoost算法建立输入参数与盾构姿态之间的非线性映射函数关系,采用随机森林(RF)算法评价输入参数的重要性;以盾构姿态绝对值最小化为目标,构建CatBoost-NSGA-Ⅲ多目标优化模型,并通过案例分析验证所提方法的适用性和有效性。结果表明:采用CatBoost算法训练工程实测数据得到的预测模型具有较高的精度,5个盾构姿态目标的R^(2)范围为0.916~0.943;所研发的CatBoost-NSGA-Ⅲ盾构姿态多目标优化方法,可使盾构姿态得到显著优化,整体改进的平均值为53.34%。 展开更多
关键词 类别型特征梯度提升(CatBoost) 第三代非支配排序遗传算法(nsga-Ⅲ) 盾构姿态 多目标优化 重要性排序
下载PDF
基于NSGA-Ⅱ的滑油泵叶轮结构优化设计
7
作者 孙永国 金欣 +2 位作者 薛冬 单建平 石晓春 《中国机械工程》 EI CAS CSCD 北大核心 2024年第3期559-569,共11页
滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,... 滑油泵常需要在高空、低压工况下稳定运转,常会出现供油不足、效率降低等问题。为了得到满足设计要求且具有最佳性能的滑油泵,以某直升机用滑油泵叶轮为研究对象,对其结构进行优化设计。选择高空两个典型工况的效率与扬程作为优化目标,利用NSGA-Ⅱ算法对滑油泵叶轮几何参数进行寻优,对优化前后的滑油泵效率、扬程进行对比分析。采用CFD流体仿真及实验方法对优化结果进行对比验证。结果表明:所选优化参数对滑油泵性能有较大影响,优化后的滑油泵叶片位置附近流动更加平稳,高低压区域过渡平缓,能量损失更小,且降低了汽蚀发生的可能性;优化后的滑油泵设计点扬程提高2.6 m,效率提高2.86%。 展开更多
关键词 滑油泵叶轮 优化设计 非支配排序遗传算法nsga-Ⅱ 扬程 效率
下载PDF
基于NSGA-Ⅲ的机器人气囊抛光工具结构动力学多目标优化
8
作者 焦培俊 姜晨 +1 位作者 姜臻禹 周勇宇 《轻工机械》 CAS 2024年第3期37-45,53,共10页
为了提高机器人的加工质量,针对末端执行装置动刚度不足的问题,课题组开展了机器人气囊抛光工具结构动力学优化研究。分别进行了有限元模态分析和实验模态分析,对比验证仿真结果的准确性,找出抛光工具易发生振动的薄弱结构;基于模态分... 为了提高机器人的加工质量,针对末端执行装置动刚度不足的问题,课题组开展了机器人气囊抛光工具结构动力学优化研究。分别进行了有限元模态分析和实验模态分析,对比验证仿真结果的准确性,找出抛光工具易发生振动的薄弱结构;基于模态分析对薄弱结构进行谐波激励得到工况下的振动响应加速度;建立动力学近似模型,以提高基频、降低质量及加速度响应为目标,分别采用非支配排序遗传算法NSGA-Ⅲ(non-dominated sorting genetic algorithm-Ⅲ)和多目标粒子群算法(multi-objective particle swarm optimization, MOPSO)对薄弱结构进行多目标优化,获得最优动力响应的参数组合。结果表明:NSGA-Ⅲ具有更好的优化效果,基频提高了21.62%;4个薄弱部位的最大加速度响应分别下降了73.78%,69.06%,56.15%和28.28%;质量减少了3.32%。该方法有效提高了抛光工具的动态特性。 展开更多
关键词 机器人 气囊抛光 结构动力学 nsga-Ⅲ 近似模型 谐波激励
下载PDF
基于改进NSGA-Ⅱ算法的RV减速器参数多目标优化研究 被引量:1
9
作者 杨昊霖 王茹芸 +2 位作者 罗利敏 贡林欢 楼应侯 《机电工程》 CAS 北大核心 2024年第4期651-658,共8页
旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究... 旋转矢量(RV)减速器是工业机器人核心部件,对于机器人的性能起到关键作用。针对提升RV减速器综合性能的问题,从优化传动压力角的相关参数出发,对其结构参数(摆线轮齿数、短幅系数、针径系数、摆线轮宽度等)的多目标优化设计进行了研究。首先,研究了摆线轮平均压力角、传动效率和传动机构体积三者的相关参数之间的关系;然后,以此为优化目标,在摆线轮标准齿廓方程的基础上建立了多目标优化数学模型(该模型采用了基于非支配占优排序遗传学算法(NSGA-Ⅱ)改进了交叉算子系数生成的改进NSGA-Ⅱ算法);通过模型求解得到了帕累托最优解集,根据模糊集合理论的相关方法选取了最优解;最后,以某公司220-BX型RV减速器为例,进行了优化设计,建立了3D模型后进行了有限元分析,并加工出实验样机,进行了传动效率对比实验。实验结果表明:摆线轮平均压力角减小了7.19%,体积减小了11.1%,传动效率提高了4.9%。研究结果表明:该模型交互性强,能提高设计效率并节省设计开销,可为实际RV减速器工程优化设计提供参考。 展开更多
关键词 机械传动 旋转矢量(RV)减速器 改进非支配占优排序遗传学算法(nsga-Ⅱ) 多目标优化 平均传动压力角 传动效率
下载PDF
基于NSGA-Ⅱ的智能化电铲多目标最优挖掘轨迹规划
10
作者 陈广玲 张天赐 +2 位作者 付涛 王林涛 宋学官 《现代制造工程》 CSCD 北大核心 2024年第2期142-149,共8页
为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使... 为实现智能化电铲实时节能的挖掘,提出了一种基于非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm-II,NSGA-Ⅱ)的智能化电铲多目标最优挖掘轨迹规划方法。首先,通过拉格朗日方程建立智能化电铲工作装置动力学模型;然后,使用高次多项式对挖掘轨迹进行插值,将挖掘轨迹寻优问题转化为多项式系数寻优问题,最后,以挖掘时间最短及单位体积物料的挖掘能耗最小作为优化目标,以电机性能与挖掘过程中几何条件等作为约束,利用多目标优化平台PlatEMO,将NSGA-Ⅱ作为多目标优化算法,指定待优化问题的目标函数及约束函数,获取到多目标优化Pareto最优解集,基于决策偏好设置权重并根据TOPSIS法获取最优解,得到多目标最优挖掘轨迹规划结果。结果表明,优化后挖掘轨迹满足实时节能的挖掘要求。 展开更多
关键词 智能化电铲 动力学模型 非支配排序遗传算法 挖掘轨迹规划 多目标优化
下载PDF
Satellite constellation design with genetic algorithms based on system performance
11
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(nsga Pareto optimal set satellite constellation design surveillance performance
下载PDF
基于NSGA-Ⅲ算法的低影响开发措施规划设计
12
作者 张慧颖 任亚铮 +6 位作者 胡朝仲 毛谨 张淼 马自飞 程阳 李雪龙 范俊楠 《扬州大学学报(自然科学版)》 CAS 2024年第3期1-9,共9页
为完善海绵城市建设的整体规划设计,基于东南亚某经济开发区,结合雨洪管理模型(storm water management model,SWMM)和第三代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅲ,NSGA-Ⅲ)建立了一个四目标优化模型,以地表... 为完善海绵城市建设的整体规划设计,基于东南亚某经济开发区,结合雨洪管理模型(storm water management model,SWMM)和第三代非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅲ,NSGA-Ⅲ)建立了一个四目标优化模型,以地表径流系数、管道过载时间、节点溢流量等3个城市内涝指标和总投资成本作为优化目标进行求解.结果表明:该优化模型可实现多目标同步优化,获得效益较高的低影响开发(low impact development,LID)措施的设计方案,优化后地表径流系数为0.309~0.355,管道过载时间为23.834~27.967 h,节点溢流量为10477~21802 m^(3),工程总投资成本为7.479亿~9.593亿元.研究结果可为未来海绵城市内涝控制设计提供技术参考. 展开更多
关键词 城市内涝 低影响开发 第三代非支配排序遗传算法 雨洪管理模型 优化设计
下载PDF
Suspended sediment load prediction using non-dominated sorting genetic algorithm Ⅱ 被引量:3
13
作者 Mahmoudreza Tabatabaei Amin Salehpour Jam Seyed Ahmad Hosseini 《International Soil and Water Conservation Research》 SCIE CSCD 2019年第2期119-129,共11页
Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating... Awareness of suspended sediment load (SSL) and its continuous monitoring plays an important role in soil erosion studies and watershed management.Despite the common use of the conventional model of the sediment rating curve (SRC) and the methods proposed to correct it,the results of this model are still not sufficiently accurate.In this study,in order to increase the efficiency of SRC model,a multi-objective optimization approach is proposed using the Non-dominated Sorting Genetic Algorithm Ⅱ (NSGA-Ⅱ) algorithm.The instantaneous flow discharge and SSL data from the Ramian hydrometric station on the Ghorichay River,Iran are used as a case study.In the first part of the study,using self-organizing map (SOM),an unsupervised artificial neural network,the data were clustered and classified as two homogeneous groups as 70% and 30% for use in calibration and evaluation of SRC models,respectively.In the second part of the study,two different groups of SRC model comprised of conventional SRC models and optimized models (single and multi-objective optimization algorithms) were extracted from calibration data set and their performance was evaluated.The comparative analysis of the results revealed that the optimal SRC model achieved through NSGA-Ⅱ algorithm was superior to the SRC models in the daily SSL estimation for the data used in this study.Given that the use of the SRC model is common,the proposed model in this study can increase the efficiency of this regression model. 展开更多
关键词 Clustering Neural network non-dominated sorting genetic algorithm (nsga-Ⅱ) SEDIMENT RATING CURVE SELF-ORGANIZING map
原文传递
基于改进NSGA-Ⅱ的铁路项目进度计划多目标优化 被引量:1
14
作者 周国华 马依婷 《工业工程》 北大核心 2023年第4期85-95,共11页
以总工期最短和总费用最低为目标,针对包含线性活动、条状活动、块状活动等多种施工场景的铁路工程项目,基于RSM方法构建铁路项目多目标优化模型,并提出一种改进的NSGA-Ⅱ算法对模型进行求解.算法设计一种分层次选取种群个体的均匀进化... 以总工期最短和总费用最低为目标,针对包含线性活动、条状活动、块状活动等多种施工场景的铁路工程项目,基于RSM方法构建铁路项目多目标优化模型,并提出一种改进的NSGA-Ⅱ算法对模型进行求解.算法设计一种分层次选取种群个体的均匀进化精英选择策略,以提高种群多样性和收敛性;同时引入差分进化算法的变异、交叉算子,构造分层多策略自适应变异、交叉算子,以平衡整个种群的局部搜索能力和全局搜索能力.结果表明,增加对特殊活动和施工方向的考虑,可增强模型对铁路项目的适用性;改进后的算法收敛速度快,运行稳定,得到的结果更优,能够满足较大规模铁路项目进度计划优化. 展开更多
关键词 重复性项目调度 nsga-Ⅱ算法 工期-费用 多目标优化
下载PDF
基于NSGA-Ⅱ的自适应多尺度特征通道分组优化算法
15
作者 王彬 向甜 +1 位作者 吕艺东 王晓帆 《计算机应用》 CSCD 北大核心 2023年第5期1401-1408,共8页
针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最... 针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最大化作为两个优化目标,进行双目标函数建模及理论分析;然后,设计基于NSGA-Ⅱ的LCNN结构优化框架,并在原始LCNN结构的深度卷积层之上增加基于NSGA-Ⅱ的自适应分组层,构建基于NSGA-Ⅱ的自适应多尺度的特征融合网络NSGA2-AMFFNetwork。在图像分类数据集上的实验结果显示,与手工设计的网络结构M_blockNet_v1相比,NSGA2-AMFFNetwork的平均精确度提升了1.2202个百分点,运行时间降低了41.07%。这表明所提优化算法能较好平衡LCNN的复杂度和精确度,同时还可为领域知识不足的普通用户提供更多性能表现均衡的网络结构选择方案。 展开更多
关键词 轻量型卷积神经网络 特征提取通道分组优化 双目标函数建模 快速非支配排序遗传算法 图像分类 进化算法
下载PDF
基于强化学习的改进NSGA-Ⅱ算法的城市快速路入口匝道控制
16
作者 陈娟 郭琦 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期666-680,共15页
为了缓解城市快速路拥堵和尾气排放问题,提出了基于竞争结构和深度循环Q网络的改进非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ based on dueling deep recurrent Q network, DRQN-NSGA-Ⅱ).该算法结合了基于竞争... 为了缓解城市快速路拥堵和尾气排放问题,提出了基于竞争结构和深度循环Q网络的改进非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ based on dueling deep recurrent Q network, DRQN-NSGA-Ⅱ).该算法结合了基于竞争结构的深度Q网络(dueling deep Q network, Dueling DQN)、深度循环Q网络(deep recurrent Q network, DRQN)和NSGA-Ⅱ算法,将Dueling DRQN-NSGA-Ⅱ算法用于匝道控制问题.除了考虑匝道车辆汇入以提高快速路通行效率外,还考虑了环境和能源指标,将尾气排放和燃油消耗作为评价指标.除了与无控制情况及其他算法进行比较之外, Dueling DRQN-NSGA-Ⅱ还与NSGA-Ⅱ算法进行了比较.实验结果表明:与无控制情况相比,本算法能有效改善路网通行效率、缓解环境污染、减少能源损耗;相对于无控制情况,总花费时间(total time spent, TTS)减少了16.14%,总尾气排放(total emissions, TE)减少了9.56%,总燃油消耗(total fuel consumption, TF)得到了43.49%的改善. 展开更多
关键词 匝道控制 基于竞争结构的深度Q网络 深度循环Q网络 非支配排序遗传算法
下载PDF
基于改进NSGA-Ⅲ的多目标联邦学习进化算法 被引量:2
17
作者 钟佳淋 吴亚辉 +2 位作者 邓苏 周浩浩 马武彬 《计算机科学》 CSCD 北大核心 2023年第4期333-342,共10页
联邦学习技术能在一定程度上解决数据孤岛和隐私泄露的问题,但存在通信成本高、通信不稳定、参与者性能分布不均衡等缺点。为了改进这些缺点并实现模型有效性、公平性和通信成本的均衡,提出了一种面向联邦学习多目标优化的改进NSGA-Ⅲ... 联邦学习技术能在一定程度上解决数据孤岛和隐私泄露的问题,但存在通信成本高、通信不稳定、参与者性能分布不均衡等缺点。为了改进这些缺点并实现模型有效性、公平性和通信成本的均衡,提出了一种面向联邦学习多目标优化的改进NSGA-Ⅲ算法。首先构建联邦学习多目标优化模型,以最大化全局模型准确率、最小化全局模型准确率分布方差和通信成本为目标,提出了基于快速贪婪初始化的改进NSGA-Ⅲ算法,提高了NSGA-Ⅲ对于联邦学习多目标优化的效率。实验结果表明,相比经典多目标进化算法,提出的优化方法能得到较优Pareto解;与标准的联邦模型相比,优化的模型能在保证全局模型准确率的情况下,有效降低通信成本和全局模型准确率分布方差。 展开更多
关键词 联邦学习 多目标均衡 nsga-Ⅲ算法 多目标进化 参数优化
下载PDF
Optimization of solar thermal power station LCOE based on NSGA-Ⅱ algorithm 被引量:2
18
作者 LI Xin-yang LU Xiao-juan DONG Hai-ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期1-8,共8页
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ... In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high. 展开更多
关键词 solar thermal power generation levelling cost of energy(LCOE) linear Fresnel non-dominated sorting genetic algorithm II(nsga-II)
下载PDF
Models for Location Inventory Routing Problem of Cold Chain Logistics with NSGA-Ⅱ Algorithm 被引量:1
19
作者 郑建国 李康 伍大清 《Journal of Donghua University(English Edition)》 EI CAS 2017年第4期533-539,共7页
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location... In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem. 展开更多
关键词 cold chain logistics MULTI-OBJECTIVE location inventory routing problem(LIRP) non-dominated sorting in genetic algorithm Ⅱ(nsga-Ⅱ)
下载PDF
基于NSGA-Ⅱ与方案优选的机场航站楼大跨度钢结构多目标优化研究 被引量:5
20
作者 王星星 于竞宇 +3 位作者 毛江峰 丁文轩 周文武 黄松 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2023年第7期941-949,共9页
为优选出机场航站楼大跨度钢结构最佳施工方案,实现施工工期短、成本低和质量高的综合优化目标,文章以非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)与方案优选为基础,结合建筑信息模型(building informatio... 为优选出机场航站楼大跨度钢结构最佳施工方案,实现施工工期短、成本低和质量高的综合优化目标,文章以非支配排序遗传算法(non-dominated sorting genetic algorithm Ⅱ,NSGA-Ⅱ)与方案优选为基础,结合建筑信息模型(building information modeling,BIM)技术和工作分解结构(work breakdown structure,WBS)技术,构建兼具优化与施工仿真模拟的大跨度钢结构多目标优化体系;以某军民合用机场为例,应用该体系确定该工程航站楼大跨度网架结构安装采用分块安装法,优选出的施工方案较优化前不仅质量水平保持在较高的0.95,而且工期缩短22 d、成本减少57625元,进一步验证了该体系具有很好的可行性与有效性。研究结果可为科学合理地确定大跨度钢结构施工方案提供依据,并有助于提高机场航站楼施工管理水平,为类似工程提供参考。 展开更多
关键词 大跨度钢结构 多目标优化 非支配排序遗传算法(nsga-Ⅱ) 建筑信息模型(BIM) 工作分解结构(WBS)
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部