期刊文献+
共找到1,714篇文章
< 1 2 86 >
每页显示 20 50 100
Stability of connected and automated vehicles platoon considering communications failures
1
作者 刘润坤 于海洋 +1 位作者 任毅龙 崔志勇 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期598-609,共12页
As a form of a future traffic system,a connected and automated vehicle(CAV)platoon is a typical nonlinear physical system.CAVs can communicate with each other and exchange information.However,communication failures ca... As a form of a future traffic system,a connected and automated vehicle(CAV)platoon is a typical nonlinear physical system.CAVs can communicate with each other and exchange information.However,communication failures can change the platoon system status.To characterize this change,a dynamic topology-based car-following model and its generalized form are proposed in this work.Then,a stability analysis method is explored.Finally,taking the dynamic cooperative intelligent driver model(DC-IDM)for example,a series of numerical simulations is conducted to analyze the platoon stability in different communication topology scenarios.The results show that the communication failures reduce the stability,but information from vehicles that are farther ahead and the use of a larger desired time headway can improve stability.Moreover,the critical ratio of communication failures required to ensure stability for different driving parameters is studied in this work. 展开更多
关键词 connected and automated vehicle car-following model communication failures string stability
下载PDF
Seismic-induced surficial failure of cohesive slopes using three-dimensional limit analysis:A case study of the Wangjiayan landslide in Beichuan, China
2
作者 Gao Yufeng Liu Yang +1 位作者 Geng Weijuan Zhang Fei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期537-545,共9页
A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused ma... A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused many casualties and resulted in enormous property loss.This study constructs a simple surficial failure model based on the upper bound approach of three-dimensional(3D)limit analysis to evaluate the slope stability of the Wangjiayan case,while a traditional two-dimensional(2D)analysis is also conducted as a reference for comparison with the results of the 3D analysis.A quasi-static calculation is used to study the effect of the earthquake in terms of horizontal ground acceleration,while a parametric study is conducted to evaluate the critical cohesion of slopes.Rather than employing a 3D analysis,using the 2D analysis yields an underestimation regarding the safety factor.In the Wangjiayan landslide,the difference in the factors of safety between the 3D and 2D analyses can reach 20%.The sliding surface morphology as determined by the 3D method is similar to actual morphology,and the parameters of both are also compared to analyze the reliability of the proposed 3D method. 展开更多
关键词 LANDSLIDE Wenchuan earthquake surficial failure limit analysis stability QUASI-STATIC
下载PDF
Numerical three-dimensional modeling of earthen dam piping failure
3
作者 Zhengang Wang 《Water Science and Engineering》 EI CAS CSCD 2024年第1期72-82,共11页
A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice fl... A physically-based numerical three-dimensional earthen dam piping failure model is developed for homogeneous and zoned soil dams.This model is an erosion model,coupled with force/moment equilibrium analyses.Orifice flow and two-dimensional(2D)shallow water equations(SWE)are solved to simulate dam break flows at different breaching stages.Erosion rates of different soils with different construction compaction efforts are calculated using corresponding erosion formulae.The dam's real shape,soil properties,and surrounding area are programmed.Large outer 2D-SWE grids are used to control upstream and downstream hydraulic conditions and control the boundary conditions of orifice flow,and inner 2D-SWE flow is used to scour soil and perform force/moment equilibrium analyses.This model is validated using the European Commission IMPACT(Investigation of Extreme Flood Processes and Uncertainty)Test#5 in Norway,Teton Dam failure in Idaho,USA,and Quail Creek Dike failure in Utah,USA.All calculated peak outflows are within 10%errors of observed values.Simulation results show that,for a V-shaped dam like Teton Dam,a piping breach location at the abutment tends to result in a smaller peak breach outflow than the piping breach location at the dam's center;and if Teton Dam had broken from its center for internal erosion,a peak outflow of 117851 m'/s,which is 81%larger than the peak outflow of 65120 m3/s released from its right abutment,would have been released from Teton Dam.A lower piping inlet elevation tends to cause a faster/earlier piping breach than a higher piping inlet elevation. 展开更多
关键词 3D dam breach model 2D shallow water equations 3D slope stability analysis Piping failure Teton Dam Quail Creek Dike
下载PDF
Upper bound analysis of slope stability with nonlinear failure criterion based on strength reduction technique 被引量:24
4
作者 赵炼恒 李亮 +2 位作者 杨峰 罗强 刘项 《Journal of Central South University》 SCIE EI CAS 2010年第4期836-844,共9页
Based on the upper bound limit analysis theorem and the shear strength reduction technique,the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its... Based on the upper bound limit analysis theorem and the shear strength reduction technique,the equation for expressing critical limit-equilibrium state was employed to define the safety factor of a given slope and its corresponding critical failure mechanism by means of the kinematical approach of limit analysis theory.The nonlinear shear strength parameters were treated as variable parameters and a kinematically admissible failure mechanism was considered for calculation schemes.The iterative optimization method was adopted to obtain the safety factors.Case study and comparative analysis show that solutions presented here agree with available predictions when nonlinear criterion reduces to linear criterion,and the validity of present method could be illuminated.From the numerical results,it can also be seen that nonlinear parameter m,slope foot gradient β,height of slope H,slope top gradient α and soil bulk density γ have significant effects on the safety factor of the slope. 展开更多
关键词 非线性破坏准则 强度折减技术 边坡稳定性 边坡安全系数 上界 抗剪强度参数 极限分析 非线性预测
下载PDF
Energy analysis of stability of twin shallow tunnels based on nonlinear failure criterion 被引量:2
5
作者 张佳华 许敬叔 张标 《Journal of Central South University》 SCIE EI CAS 2014年第12期4669-4676,共8页
Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solu... Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solutions were obtained by the technique of sequential quadratic programming. When nonlinear coefficient equals 1 and internal friction angle equals 0, the nonlinear Mohr-Coulomb failure criterion degenerates into linear failure criterion. The calculated results of stability number in this work were compared with previous results, and the agreement verifies the effectiveness of the present method. Under the condition of nonlinear Mohr-Coulomb failure criterion, the results show that the supporting force on twin shallow tunnels obviously increases when the nonlinear coefficient, burial depth, ground load or pore water pressure coefficients increase. When the clear distance is 0.5to 1.0 times the diameter of tunnel, the supporting force of twin shallow tunnels reaches its maximum value, which means that the tunnels are the easiest to collapse. While the clear distance increases to 3.5 times the diameter of tunnel, the calculation for twin shallow tunnels can be carried out by the method for independent single shallow tunnel. Therefore, 3.5 times the diameter of tunnel serves as a critical value to determine whether twin shallow tunnels influence each other. In designing twin shallow tunnels,appropriate clear distance value must be selected according to its change rules and actual topographic conditions, meanwhile, the influences of nonlinear failure criterion of soil materials and pore water must be completely considered. During the excavation process, supporting system should be intensified at the positions of larger burial depth or ground load to avoid collapses. 展开更多
关键词 非线性破坏准则 浅埋隧道 能源分析 稳定性 非线性系数 埋藏深度 地面荷载 支撑力
下载PDF
THREE-DIMENSIONAL SLOPE STABILITY ANALYSIS BASED ON NONLINEAR FAILURE ENVELOPE 被引量:1
6
作者 JiangJingcai YamagamiTakuo BakerRafael 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2003年第6期1017-1023,共7页
The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated.A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spen... The effects of nonlinearity of strength envelopes on 3D slope stability analysis are investigated.A power relation for the nonlinear envelope is employed to derive the 3D factor of safety equations of an extended Spencer method hich satisfies boty force equilibrium and moment equilibrium.Then,a search procedure is presented based on dynamic programming to determine the 3D critical slip surface for a general slope,Linear and nonlinear strength envelopes used for slope stability computations are obtained by fitting curves to the 103 strength data of consolidated-undrained(CU)triaxial compression tests for compacted Israeli clay.Results of a typical 3D problem show that a linear approximation of the nonlinear strength envelope may lead to a significant overestimation of calculated safety factors. 展开更多
关键词 岩石力学 非线性 包络线 边坡 稳定性
下载PDF
Theoretical study on stability evolution of soft and hard interbedded bedding reservoir slopes
7
作者 WU Qiong ZHANG Bo +3 位作者 TANG Hui-ming WANG di LIU Zhi-qi LIN Zhi-wei 《Journal of Mountain Science》 SCIE CSCD 2023年第9期2744-2755,共12页
Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock... Soft and hard interbedded bedding rock slopes,which is prone to failure,are widely distributed in the Three Gorges Reservoir,China.Limit equilibrium method(LEM)is commonly used to analyze the stability of bedding rock slopes that have a single failure plane.However,this method cannot accurately estimate the stability of soft and hard interbedded bedding reservoir slopes because the strength parameters of a soft and hard interbedded rock mass vary spatially along the bedding plane and deteriorate with time due to periodic fluctuations of reservoir level.A modified LEM is proposed to evaluate the stability evolution of soft and hard interbedded bedding reservoir slopes considering the spatial variation and temporal deterioration of shear strength parameters of rock masses and bedding planes.In the modified LEM,the S-curve model is used to define the spatial variation of shear strength parameters,and general deterioration equations of shear strength parameters with the increasing number of wettingdrying cycles(WDC)are proposed to describe the temporal deterioration.Also,this method is applied to evaluate the stability evolution of a soft and hard interbedded bedding reservoir slope,located at the Three Gorges Reservoir.The results show that neglecting the spatial variation and temporal deterioration of shear strength parameters may overestimate slope stability.Finally,the modified LEM provides useful guidance to reasonably evaluate the long-term stability of soft and hard interbedded bedding reservoir slopes in reservoir area. 展开更多
关键词 Soft and hard interbedded rock slope Limit equilibrium method Spatial variation Wetting and drying cycles Plane failure stability evolution
下载PDF
Upper-Bound Limit Analysis of the Multi-Layer Slope Stability and Failure Mode Based on Generalized Horizontal Slice Method
8
作者 Huawei Zhang Changdong Li +5 位作者 Wenqiang Chen Ni Xie Guihua Wang Wenmin Yao Xihui Jiang Jingjing Long 《Journal of Earth Science》 SCIE CAS CSCD 2024年第3期929-940,共12页
Multi-layer slopes are widely found in clay residue receiving fields.A generalized horizontal slice method(GHSM)for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent ... Multi-layer slopes are widely found in clay residue receiving fields.A generalized horizontal slice method(GHSM)for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent horizontal slices is presented.In view of the upper-bound limit analysis theory,the energy equation is derived and the ultimate failure mode is generated by comparing the sliding surface passing through the slope toe(mode A)with that below(mode B).In addition,the influence of the number of slices on the stability coefficients in the GHSM is studied and the stable value is obtained.Compared to the original method(Chen’s method),the GHSM can acquire more precise results,which takes into account the energy dissipation in the inner sliding soil mass.Moreover,the GHSM,limit equilibrium method(LEM)and numerical simulation method(NSM)are applied to analyze the stability of a multi-layer slope with different slope angles and the results of the safety factor and failure mode are very close in each case.The ultimate failure modes are shown to be mode B when the slope angle is not more than 28°.It illustrates that the determination of the ultimate sliding surface requires comparison of multiple failure modes,not only mode A. 展开更多
关键词 stability and failure mode slope stability generalized horizontal slice method upperbound limit analysis energy dissipation geotechnical engineering.
原文传递
Centrifuge modeling of unreinforced and multi-row stabilizing piles reinforced landslides subjected to reservoir water level fluctuation
9
作者 Chenyang Zhang Yueping Yin +3 位作者 Hui Yan Sainan Zhu Ming Zhang Luqi Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1600-1614,共15页
With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides... With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides in China.In this study,two centrifuge model tests were carried out to study the unreinforced and MRSP-reinforced slopes subjected to reservoir water level(RWL)operation,using the Taping landslide as a prototype.The results indicate that the RWL rising can provide lateral support within the submerged zone and then produce the inward seepage force,eventually strengthening the slope stability.However,a rapid RWL drawdown may induce outward seepage forces and a sudden debuttressing effect,consequently reducing the effective soil normal stress and triggering partial pre-failure within the RWL fluctuation zone.Furthermore,partial deformation and subsequent soil structure damage generate excess pore water pressures,ultimately leading to the overall failure of the reservoir landslide.This study also reveals that a rapid increase in the downslope driving force due to RWL drawdown significantly intensifies the lateral earth pressures exerted on the MRSPs.Conversely,the MRSPs possess a considerable reinforcement effect on the reservoir landslide,transforming the overall failure into a partial deformation and failure situated above and in front of the MRSPs.The mechanical transfer behavior observed in the MRSPs demonstrates a progressive alteration in relation to RWL fluctuations.As the RWL rises,the mechanical states among MRSPs exhibit a growing imbalance.The shear force transfer factor(i.e.the ratio of shear forces on pile of the n th row to that of the first row)increases significantly with the RWL drawdown.This indicates that the mechanical states among MRSPs tend toward an enhanced equilibrium.The insights gained from this study contribute to a more comprehensive understanding of the failure mechanisms of reservoir landslides and the mechanical behavior of MRSPs in reservoir banks. 展开更多
关键词 Reservoir landslide failure mechanism Multi-row stabilizing piles Mechanical behavior
下载PDF
A Robust Roll Stabilization Controller with Aerodynamic Disturbance and Actuator Failure Consideration
10
作者 Qiancai Ma Fengjie Gao +2 位作者 Yang Wang Qiuxiong Gou Liangyu Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第1期109-130,共22页
Combining adaptive theory with an advanced second-order sliding mode control algorithm,a roll stabilization controller with aerodynamic disturbance and actuator failure consideration for spinning flight vehicles is pr... Combining adaptive theory with an advanced second-order sliding mode control algorithm,a roll stabilization controller with aerodynamic disturbance and actuator failure consideration for spinning flight vehicles is proposed in this paper.The presented controller is summarized as an“observer-controller”system.More specifically,an adaptive secondorder sliding mode observer is presented to select the proper design parameters and estimate the knowledge of aerodynamic disturbance and actuator failure,while the proposed roll stabilization control scheme can drive both roll angle and rotation rate smoothly converge to the desired value.Theoretical analysis and numerical simulation results demonstrate the effectiveness of the proposed controller. 展开更多
关键词 Roll stabilization fault-tolerant control aerodynamic disturbance actuator failure precision strike
下载PDF
Stability and control of room mining coal pillars-taking room mining coal pillars of solid backfill recovery as an example 被引量:11
11
作者 张吉雄 黄鹏 +2 位作者 张强 李猛 陈志维 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1121-1132,共12页
The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mini... The stability of room mining coal pillars during their secondary mining for recovering coal was analyzed. An analysis was performed for the damage and instability mechanism of coal pillars recovered by the caving mining method. During the damage progression of a single room coal pillar, the shape of the stress distribution in the pillar transformed from the initial stable saddle shape to the final arch-shaped distribution of critical instability. By combining the shapes of stress distribution in the coal pillars with the ultimate strength theory, the safe-stress value of coal pillar was obtained as 11.8 MPa. The mechanism of instability of coal pillar groups recovered by the caving mining method was explained by the domino effect. Since the room coal pillars mined and recovered by the traditional caving mining method were significantly influenced by the secondary mining during recovery, the coal pillars would go through a chain-type instability failure. Because of this limitation, the method of solid backfilling was proposed for mining and recovering room coal pillars, thus changing the transfer mechanism of stress caused by the secondary mining(recovery) of coal pillars. The mechanical model of the stope in the case of backfilling and recovering room coal pillars was built. The peak stress values inside coal pillars varied with the variance of backfilling ratio when the working face was advanced by 150 m. Furthermore, when the critical backfilling ratio was 80.6%, the instability failure of coal pillars would not occur during the solid backfill mining process. By taking Bandingliang Coal Mine as an example, the coal pillars' stability of stope under this backfilling ratio was studied, and a project scheme was designed. 展开更多
关键词 ROOM MINING stability of COAL PILLARS COAL MINING of SOLID BACKFILL ultimate strength instability failure
下载PDF
Effects of in-situ stress on the stability of a roadway excavated through a coal seam 被引量:8
12
作者 Li He Lin Baiquan +5 位作者 Hong Yidu Gao Yabin Yang Wei Liu Tong, Wang Rui Huang Zhanbo 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第6期917-927,共11页
Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at v... Roadways excavated through a coal seam can exert an adverse effect on roadway stability. To investigate the effects of in-situ stress on roadway stability, numerical models were built and high horizontal stresses at varying orientations were applied. The results indicate that stress concentrations, roadway deformation and failure increase in magnitude and extent as the excavation angle with respect to the maximum horizontal stress increases. In addition, the stress adjacent to the coal-rock interface sharply varies in space and evolves with time; coal is much more vulnerable to deformation and failure than rock.The results provide insights into the layout of roadways excavated through a coal seam. Roadways should be designed parallel or at a narrow angle to the maximum horizontal stress. The concentrated stress at the top corner of the face-end should be reduced in advance, and the coal seam should be reinforced immediately after excavation. 展开更多
关键词 ROADWAY stability Numerical simulation IN-SITU STRESS STRESS CONCENTRATION failure Deformation
下载PDF
Evaluation of the effect of geometrical parameters on stope probability of failure in the open stoping method using numerical modeling 被引量:10
13
作者 Shahriyar Heidarzadeh Ali Saeidi Alain Rouleau 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第3期399-408,共10页
Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes ... Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter. 展开更多
关键词 STOPE stability STOPE GEOMETRICAL parameters PROBABILITY of failure General FACTORIAL design Numerical modeling Sublevel OPEN STOPING
下载PDF
Numerical investigation into pillar failure induced by time-dependent skin degradation 被引量:9
14
作者 Sainoki Atsushi Mitri Hani S. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期591-597,共7页
This paper focuses on the instability mechanism of an isolated pillar, caused by time-dependent skin degradation and strength heterogeneity. The time-dependent skin degradation is simulated with a non-linear rheologic... This paper focuses on the instability mechanism of an isolated pillar, caused by time-dependent skin degradation and strength heterogeneity. The time-dependent skin degradation is simulated with a non-linear rheological model capable of simulating tertiary creep, whereby two different pillar failure cases are investigated. The first case is of an isolated pillar in a deep hard rock underground mine and subjected to high stresses. The results show that pillar degradation is limited to the regions near the surface or the skin until two months after ore extraction. Afterwards degradation starts to extend deeper into the pillar, eventually leaving a highly-stressed pillar core due to stress transfer from the failed skin.Rockburst potential indices show that the risk increases exponentially at the core as time goes by. It is then demonstrated that the progressive skin degradation cannot be simulated with conventional strain-softening model assuming brittle failure. The parametric study with respect to the degree of heterogeneity reveals that heterogeneity is key to the occurrence of progressive skin degradation. The second case investigated in this study is pillar failure taking place in a very long period. Such failure becomes significantly important when assessing the risk for ground subsidence caused by pillar collapse in an abandoned mine. The analysis results demonstrate that the employed non-linear rheological model can simulate gradual skin degradation taking place over several hundred years. The percentage of damage zone volume within the pillar is merely 1% after a lapse of one days and increases to 50% after one hundred years, indicating a high risk for pillar collapse in the long term. The vertical displacements within the pillar also indicate the risk of subsidence. The proposed method is suitable for evaluating the risk of ground surface subsidence above an abandoned mine. 展开更多
关键词 Pillar stability Underground mine Skin degradation Rheological model Time-dependent failure
下载PDF
Applications of rock failure process analysis (RFPA) method 被引量:14
15
作者 Chun'an Tang Shibin Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2011年第4期352-372,共21页
Brittle failure of rocks is a classical rock mechanical problem. Rock failure not only involves initiation and propagation of single crack, but also is associated with initiation, propagation and coalescence of many c... Brittle failure of rocks is a classical rock mechanical problem. Rock failure not only involves initiation and propagation of single crack, but also is associated with initiation, propagation and coalescence of many cracks. The rock failure process analysis (RFPA) tool has been proposed since 1995. The heterogeneity of rocks at a mesoscopic level is considered by assuming that the material properties follow the Weibull distribution. Elastic damage mechanics is used for describing the constitutive law of the meso-level element. The finite element method (FEM) is employed as the basic stress analysis tool. The maximum tensile strain criterion and the Mohr-Coulomb criterion are utilized as the damage threshold. In order to solve the stability problem related to rock engineering structures, fundamental principles of strength reduction method (SRM) and gravity increase method (GIM) are integrated into the RFPA. And the acoustic emission (AE) event rate is employed as the criterion for rock engineering failure. The prominent feature of the RFPA-SRM and RFPA-GIM for stability analysis of rock engineering is that the factor of safety can be obtained without any presumption for the shape and location of the failure surface. In this paper, several geotechnical engineering applications that use the RFPA method to analyze their stability are presented to provide some references for relevant researches. The principles of the RFPA method in engineering are introduced firstly, and then the stability analysis of tunnel, slope and dam is focused on. The results indicate that the RFPA method is capable of capturing the mechanism of rock engineering stability and has the potential for application in a larger range of geo-engineering. 展开更多
关键词 case studies rock slopes and fotmdations stability analysis rock failure
下载PDF
Deformation and failure mechanism of slope in three dimensions 被引量:19
16
作者 Yingfa Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第2期109-119,共11页
Understanding three-dimensional (3D) slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mecha-nisms of progressi... Understanding three-dimensional (3D) slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mecha-nisms of progressive failure with thrust-type and pull-type landslides are described in detail. It is considered that the post-failure stress state and the pre-peak stress state may occur at different regions of a landslide body with deformation development, and a critical stress state element (or the soil slice block) exists between the post-failure stress state and the pre-peak stress state regions. In this regard, two sorts of failure modes are suggested for the thrust-type and three sorts for pull-type landslides, based on the characteristics of shear stress and strain (or tensile stress and strain). Accordingly, a new joint constitutive model (JCM) is proposed based on the current stability analytical theories, and it can be used to describe the mechanical behaviors of geo-materials with softening properties. Five methods, i.e. CSRM (comprehensive sliding resistance method), MTM (main thrust method), CDM (comprehensive displacement method), SDM (surplus displacement method), and MPM (main pull method), for slope stability calculation are proposed. The S-shaped curve of monitored displacement vs. time is presented for different points on the sliding surface during progressive failure process of landslide, and the rela-tionship between the displacement of different points on the sliding surface and height of landslide body is regarded as the parabolic curve. The comparisons between the predicted and observed loadedis-placement and displacementetime relations of the points on the sliding surface are conducted. The classification of stable/unstable displacementetime curves is proposed. The definition of the main sliding direction of a landslide is also suggested in such a way that the failure body of landslide (simplified as“collapse body”) is only involved in the main sliding direction, and the strike and the dip are the same as the collapse body. The rake angle is taken as the direction of the sum of sliding forces or the sum of displacements in collapse body, in which the main slip direction is dependent on progressive defor-mation. The reason of non-convergence with finite element method (FEM) in calculating the stability of slope is also numerically analyzed, in which a new method considering the slip surface associated with the boundary condition is proposed. It is known that the boundary condition of sliding surface can be described by perfect elasto-plastic model (PEPM) and JCM, and that the stress and strain of a landslide can be described properly with the JCM. 展开更多
关键词 failure mechanism New joint constitutive model(JCM) stability analyses Boundary method by sliding surface
下载PDF
Probabilistic approach for open pit bench slope stability analysis——A mine case study 被引量:6
17
作者 Christian Obregon Hani Mitri 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期629-640,共12页
The geotechnical slope design of an open pit wall starts at the bench scale configuration.At this scale,the rock slope stability is governed primarily by the geological discontinuities within the rock mass and as a re... The geotechnical slope design of an open pit wall starts at the bench scale configuration.At this scale,the rock slope stability is governed primarily by the geological discontinuities within the rock mass and as a result,structurally-controlled failures(e.g.planar,wedge or toppling)are most likely to occur.The probabilistic approach offers a major advantage over the traditional deterministic method in that it accounts for the different degrees of variability and uncertainty often encountered in rock properties.This paper presents a bench slope stability assessment for an open pit mine in Peru using a probabilistic-based approach by coupling a kinematic analysis based on stereographic projection techniques followed by a kinetic analysis by means of the limit equilibrium method.Finally,these two probabilities are combined to provide an overall measure of the probability of failure(PoF)of the bench slope system.The case study is characterized by significant scatter in the geometrical and mechanical properties of the joints.Extensive surface mapping was conducted at 36 different sites following the ISRM suggested procedures.Several direct shear tests were carried out.It is shown that by combining field and laboratory measurements and engineering judgment,the probability density functions(PDF)of the discontinuity parameters can be obtained.These are then used in a Monte Carlo simulation process to compute both kinematic and kinetic probabilities of failure.The overall probability of failure aims to provide the design engineer with a tool to critically evaluate the bench performance from a geotechnical risk perspective and to provide a basis for future bench design optimization. 展开更多
关键词 MINE safety Rock SLOPE stability KINEMATIC ANALYSIS Probability of failure LIMIT EQUILIBRIUM ANALYSIS Case study
下载PDF
Robust fault-tolerant controller design for linear time-invariant systems with actuator failures:an indirect adaptive method 被引量:7
18
作者 Xiaozheng JIN Guanghong YANG Yanping LI 《控制理论与应用(英文版)》 EI 2010年第4期471-478,共8页
In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant... In this paper,indirect adaptive state feedback control schemes are developed to solve the robust fault-tolerant control (FTC) design problem of actuator fault and perturbation compensations for linear time-invariant systems.A more general and practical model of actuator faults is presented.While both eventual faults on actuators and perturbations are unknown,the adaptive schemes are addressed to estimate the lower and upper bounds of actuator-stuck faults and perturbations online,as well as to estimate control effectiveness on actuators.Thus,on the basis of the information from adaptive schemes,an adaptive robust state feed-back controller is designed to compensate the effects of faults and perturbations automatically.According to Lyapunov stability theory,it is shown that the robust adaptive closed-loop systems can be ensured to be asymptotically stable under the influence of actuator faults and bounded perturbations.An example is provided to further illustrate the fault compensation effectiveness. 展开更多
关键词 Fault-tolerant control Actuator failures Adaptive robust control Asymptotic stability
下载PDF
Combined influence of nonlinearity and dilation on slope stability evaluated by upper-bound limit analysis 被引量:5
19
作者 唐高朋 赵炼恒 +1 位作者 李亮 陈静瑜 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第7期1602-1611,共10页
The combined influence of nonlinearity and dilation on slope stability was evaluated using the upper-bound limit analysis theorem.The mechanism of slope collapse was analyzed by dividing it into arbitrary discrete soi... The combined influence of nonlinearity and dilation on slope stability was evaluated using the upper-bound limit analysis theorem.The mechanism of slope collapse was analyzed by dividing it into arbitrary discrete soil blocks with the nonlinear Mohr–Coulomb failure criterion and nonassociated flow rule.The multipoint tangent(multi-tangent) technique was used to analyze the slope stability by linearizing the nonlinear failure criterion.A general expression for the slope safety factor was derived based on the virtual work principle and the strength reduction technique,and the global slope safety factor can be obtained by the optimization method of nonlinear sequential quadratic programming.The results show better agreement with previous research result when the nonlinear failure criterion reduces to a linear failure criterion or the non-associated flow rule reduces to an associated flow rule,which demonstrates the rationality of the presented method.Slope safety factors calculated by the multi-tangent inclined-slices technique were smaller than those obtained by the traditional single-tangent inclined-slices technique.The results show that the multi-tangent inclined-slices technique is a safe and effective method of slope stability limit analysis.The combined effect of nonlinearity and dilation on slope stability was analyzed,and the parameter analysis indicates that nonlinearity and dilation have significant influence on the result of slope stability analysis. 展开更多
关键词 SLOPE stability ANALYSIS nonlinear failure criterion non-associated flow rule multipoint TANGENT technique upper-bound limit ANALYSIS THEOREM
下载PDF
Effects of spatial variation in cohesion over the concrete-rock interface on dam sliding stability 被引量:5
20
作者 Alexandra Krounis Fredrik Johansson Stefan Larsson 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期659-667,共9页
The limit equilibrium method (LEM) is widely used for sliding stability evaluation of concrete gravitydams. Failure is then commonly assumed to occur along the entire sliding surface simultaneously.However, the brit... The limit equilibrium method (LEM) is widely used for sliding stability evaluation of concrete gravitydams. Failure is then commonly assumed to occur along the entire sliding surface simultaneously.However, the brittle behaviour of bonded concrete-rock contacts, in combination with the varying stressover the interface, implies that the failure of bonded dam-foundation interfaces occurs progressively. Inaddition, the spatial variation in cohesion may introduce weak spots where failure can be initiated.Nonetheless, the combined effect of brittle failure and spatial variation in cohesion on the overall shearstrength of the interface has not been studied previously. In this paper, numerical analyses are used toinvestigate the effect of brittle failure in combination with spatial variation in cohesion that is taken intoaccount by random fields with different correlation lengths. The study concludes that a possible existenceof weak spots along the interface has to be considered since it significantly reduces the overallshear strength of the interface, and implications for doing so are discussed. 展开更多
关键词 Concrete gravity dam Sliding stability COHESION Brittle failure Spatial variation
下载PDF
上一页 1 2 86 下一页 到第
使用帮助 返回顶部