An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is stud...An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.展开更多
The hairpin probe using microwave resonance in plasma is applicable to high pressure 1.33 ×10^3-1.01×10^5 Pa)) as developed recently. In this work, an analytic model of the hairpin resonator probe surround...The hairpin probe using microwave resonance in plasma is applicable to high pressure 1.33 ×10^3-1.01×10^5 Pa)) as developed recently. In this work, an analytic model of the hairpin resonator probe surrounded by a thin dielectric layer and a sheath layer is proposed. The correction factor due to these surroundings is analytically found and confirmed by electromagnetic field finite difference time domain simulation, thus enabling the accurate measurement of electron density in a high-pressure non-equilibrium uniform discharge.展开更多
Ammonia is gaining increasing attention as a green alternative fuel for achieving large-scale carbon emission reduction. Despite its potential technical prospects, the harsh ignition conditions and slow flame propagat...Ammonia is gaining increasing attention as a green alternative fuel for achieving large-scale carbon emission reduction. Despite its potential technical prospects, the harsh ignition conditions and slow flame propagation speed of ammonia pose significant challenges to its application in engines. Non-equilibrium plasma has been identified as a promising method, but current research on plasma-enhanced ammonia combustion is limited and primarily focuses on ignition characteristics revealed by kinetic models. In this study, low-temperature and low-pressure chemistry in plasma-assisted ammonia oxidative pyrolysis is investigated by integrated studies of steady-state GC measurements and mathematical simulation. The detailed kinetic mechanism of NH_(3) decomposition in plasma-driven Ar/NH_(3) and Ar/NH_(3)/O_(2) mixtures has been developed. The numerical model has good agreements with the experimental measurements in NH_(3)/O_(2) consumption and N_(2)/H_(2) generation, which demonstrates the rationality of modelling. Based on the modelling results, species density profiles, path flux and sensitivity analysis for the key plasmaproduced species such as NH_(2), NH, H_(2), OH, H, O, O(^(1)D), O_(2)(a^(1)△_(g)), O_(2)(b^(1)∑_(g)^(+)), Ar^(*), H^(-), Ar^(+), NH_(3)^(+), O_(2)^(-) in the discharge and afterglow are analyzed in detail to illustrate the effectiveness of the active species on NH_(3) excitation and decomposition at low temperature and relatively higher E/N values. The results revealed that NH_(2), NH, H as well as H_(2) are primarily generated through the electron collision reactions e + NH_(3)→ e + NH_(2)+ H, e + NH_(3)→ e + NH + H_(2) and the excited-argon collision reaction Ar^(*) + NH_(3)+ H → Ar + NH_(2)+ 2H, which will then react with highly reactive oxidative species such as O_(2)^(*), O^(*), O, OH, and O_(2) to produce stable products of NOx and H_(2)O. NH_(3)→ NH is found a specific pathway for NH_(3) consumption with plasma assistance, which further highlights the enhanced kinetic effects.展开更多
A "plane cathode micro-hollow anode discharge (PCHAD)" is studied in comparison with micro-hollow cathode discharge (MHCD). A new triode-configuration discharge device is also designed for large-volume, high-pre...A "plane cathode micro-hollow anode discharge (PCHAD)" is studied in comparison with micro-hollow cathode discharge (MHCD). A new triode-configuration discharge device is also designed for large-volume, high-pressure glow discharges plasma without glow-to-arc transitions, as well as with an anode metal needle, and a cathode of PCHAD. It has a "needle-hole" sustained glow discharge. Its discharge circuit employs only one power supply circuit with a variable resistor. The discharge experiments have been carried out in the air. The electrical properties and the photoimages in PCHAD, multi-PCHAD and "needle-hole" sustained discharge have been investigated. The electrical and the optical measurements show that this triode-configuration discharge device can operate stably at high-pressure, in parallel without individual ballasting resistance. And the electron density of the plasma is estimated to be up to 10^12cm^-3. Compared with the twosupply circuit system, this electrode configuration is very simple with lower cost in generating large-volume plasma at high pressures.展开更多
In the reaction of methane and carbon dioxide to C2 hydrocarbons under non-equilibrium plasma, methane conversion was decreased, but selectivity of C2 hydrocarbons was increased when using La2O3/?Al2O3 as catalyst. S...In the reaction of methane and carbon dioxide to C2 hydrocarbons under non-equilibrium plasma, methane conversion was decreased, but selectivity of C2 hydrocarbons was increased when using La2O3/?Al2O3 as catalyst. So the yield of C2 hydrocarbons was higher than using plasma alone. The synergism of La2O3/?Al2O3 and plasma gave methane conversion of 24.9% and C2 yield of 18.1%. The distribution of C2 hydrocarbons changed when Pd- La2O3/?Al2O3 was used as catalyst, the major C2 product was ethylene.展开更多
Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer...Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H202 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.展开更多
A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-fie...A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-field and the momentum of gas particles. For a driving electricfield of 56 kV/cm and a gas particles' momentum of 10^9 × 10^-22 g·m/s, the ion density can exceed 10^10/cm^3 while the effective volume of the plasma source is only 2.5 cm^2. This study may help develop a method to generate a minitype plasma source with low energy consumption but high ion concentration. This source can be used in chemical industry, environmental engineering and military applications.展开更多
In this paper,a three-dimensional non-equilibrium steady arc model is used to investigate the temperature,velocity and electromagnetic field in multi-cathode arc torch,and the formation mechanism of a large-area,unifo...In this paper,a three-dimensional non-equilibrium steady arc model is used to investigate the temperature,velocity and electromagnetic field in multi-cathode arc torch,and the formation mechanism of a large-area,uniform and diffused arc plasma is analyzed.The numerical simulation results show that a large volume plasma region can be formed in the central region of the generator during discharge.During this process,the maximum electron temperature appears near the cathode and in the central convergence region,while the maximum heavy particle temperature only appears in the central convergence region.This phenomenon is consistent with the experimental arc images.Near the cathode tip,the arc column is in a contraction state.In the area slightly away from the cathode,the six arc columns begin to join together.In the plasma generator,there is a large-scale current distribution in all directions of X,Y and Z,forming a stable arc plasma with a wide range of diffusion.The calculated electron temperature distribution is in good agreement with the measured electron temperature.The results suggest that the largearea diffused arc plasma in the multi-cathode arc torch is the combined effect of current distribution,convection heat transfer and heat conduction.展开更多
Magnetohydrodynamic (MHD) accelerator is proposed as a next generation propulsion system. It can be used to increase the performance of a propulsion system. The objective of this study is to investigate the performa...Magnetohydrodynamic (MHD) accelerator is proposed as a next generation propulsion system. It can be used to increase the performance of a propulsion system. The objective of this study is to investigate the performance of MHD accelerator using non-equilibrium air plasma as working gas. In this study, the fundamental performance of MHD accelerator such as flow performance and electrical performance is evaluated at different levels of applied magnetic field using I-D numerical simulation. The numerical simulation is developed based on a set of differential equations with MHD approximation. To solve this set of differential equations the MacCormack scheme is used. A specified channel designed and developed at NASA Marshall Space Flight Centre is used in the numerical simulation. The composition of the simulated air plasma consists of seven species, namely, N2, N, O2, O, NO, NO+, and e-. The performance of the non-equilibrium MHD accelerator is also compared with the equilibrium MHD accelerator.展开更多
A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate ...A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate the plasma flow characteristics inside and outside the RPT.Then,a detailed comparison of the results of the 2 T model with those of the local thermal equilibrium(LTE)model is presented.Furthermore,the temperature of the plasma jet generated by a RPT and the RPT’s voltage are experimentally measured to compare and validate the result obtained by different models.The differences of the measured excitation temperature and the arc voltage between the 2 T model and experimental measurement are less than 13%and 8%,respectively,in all operating cases,validating the effectiveness of the 2 T model.The LTE model overestimates the velocity and temperature distribution of the RPT and its plasma jet,showing that thermal non-equilibrium phenomena cannot be neglected in the numerical modelling of the RPT.Unlike other common hot cathode plasma torches,the thermal non-equilibrium phenomenon is found even in the arc core of the RPT,due to the strong cooling effect caused by the big gas flow rate.展开更多
Deposition of TiO2 film from atmospheric pressure non- equilibrium Ar/O2/TiCl4 plasma was done to study the effect of discharge power during the film deposition process in this paper. TiO2 films with kinds of morpholo...Deposition of TiO2 film from atmospheric pressure non- equilibrium Ar/O2/TiCl4 plasma was done to study the effect of discharge power during the film deposition process in this paper. TiO2 films with kinds of morphologies and controlled crystallization were deposited from mixtures of TiCl4 and O2 on quartz substrate by one step process. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to analyze the morphology and crystallization of the deposited TiO2 films. It was found that the discharge power played a key role in the morphology and crystallization of the deposited TiO2 film whether the flow of TiCl4was large or small. When the flow of TiCl4 was large, the deposited TiO2 film was amorphous particles at low discharge power and was multi-crystalline at high discharge power. When the flow of TiCl4 was small, the deposited TiO2 film became more compact and the crystallization was enhanced as the discharge power increased. The dependence of the discharge current and the applied voltage with the discharge power indicated that it was a glow discharge. The gas temperature which increases with the discharge power is one of the main causes that affect the morphology and crystallization of the deposited film.展开更多
A few factors effecting the reaction of plasma dehydrocoupling of methane have been investigated. The experiment shows that plasma power load, i.e. the ratio of methane flow to plasma power, is the most important fact...A few factors effecting the reaction of plasma dehydrocoupling of methane have been investigated. The experiment shows that plasma power load, i.e. the ratio of methane flow to plasma power, is the most important factor effecting methane dehydrocoupling. The products of the reaction are mainly acetylene, ethylene, ethane and unreacted methane etc. If oxygen with a suitable molar ratio is introduced into plasma region at a reasonable position, the selectivity of C2 hydrocarbons can be increased greatly.展开更多
In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conv...In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conversion rate of methane and the yield of C2 hydrocarbon with a gradual increase in the addition of hydrogen in a certain range of proportionality. This conclusion explores a new route of hydrogenated methane coupling.展开更多
This study investigates the effect of a rotating gliding discharge on synthetic biogas combustion at atmospheric pressure.Synthetic biogas was produced by mixing methane and carbon dioxide.Three mixtures were consider...This study investigates the effect of a rotating gliding discharge on synthetic biogas combustion at atmospheric pressure.Synthetic biogas was produced by mixing methane and carbon dioxide.Three mixtures were considered:100%/0%,70%/30%,and 50%/50%of methane and carbon dioxide,respectively.The plasma effect was investigated in a low-swirl-number burner equipped with a high-voltage electrode to produce gliding discharges.The effect of plasma on the stability limits of the flame is reported for several electrical powers.During plasma-assisted combustion,the lean blow-off limits of biogas-air flames were significantly improved,which agrees with what can be found in the literature for other fuels.The electrical parameters of the discharge and the plasma emissions were measured using electric probes and emission spectroscopy,respectively.The mixture with the CO_(2)dilution was associated with a higher reduced electric field and higher ion production.A better understanding of the excited-species concentration evolution during plasma is necessary and will be investigated in future work.展开更多
Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic modeling.A plasma...Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic modeling.A plasma chemistry kinetic mechanism incorporating the reactions involving vibrational excitation of CH4,CO2,H2 and CO molecules as well as the low temperature He/CH4/CO2 conversion pathways was developed and validated.The calculation results showed that at lower E/N values(<150 Td)large population of energized electrons generated in a He/CH4/CO2 discharge resulted in an intensification of vibrational excitation.Despite the large generation of vibration,the vibrationally excited molecules in a 0.5/0.25/0.25 of He/CH4/CO2 discharge mixture were easy to relax,due to the strong coupling of the vibration of different molecules in a gas mixture.The results showed that the moderate levels of the vibrational excitation,such as CO2(v10,11,...,18)and CO(v9,10),presented most efficient in the stimulation of species generation including CO,CH2 O,CH3 OH,C2 H4 and C2 H6.Specifically,under conditions of E/N of 108 Td,14.9%of CO formation was estimated from the recombination of CO2(v)with CH3 and H,CO2(v)+CH3→CH3 O+CO,CO2(v)+H→CO+OH.Also,4.8%of C2 H4 formation was from the recombination reaction CH4(v)+CH→C2 H4+H.These results highlight the strong roles of vibrational states in a complex plasma chemistry system.展开更多
A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control ...A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.展开更多
A gliding arc discharge plasma and its characteristics are described. Analysis of the production principle of the plasma is presented. Some experimental results about two novel types of the gliding arc plasma generato...A gliding arc discharge plasma and its characteristics are described. Analysis of the production principle of the plasma is presented. Some experimental results about two novel types of the gliding arc plasma generator have been obtained. These types of gliding arc plasma axe potentially usable in the chemical industry and environmental engineering.展开更多
A two-temperature thermal non-equilibrium model is used to simulate and compare the arc characteristics within the converging-diverging and traditional cylindrical plasma torches.The modeling results show that the pre...A two-temperature thermal non-equilibrium model is used to simulate and compare the arc characteristics within the converging-diverging and traditional cylindrical plasma torches.The modeling results show that the presence of the constrictor within the converging-diverging torch makes the evolution characteristics of the arc significantly different from that of cylindrical torch.Compared with a cylindrical geometrical torch,a much higher plasma flow velocity and relatively longer high temperature region can be generated and maintained inside the converging-diverging torch.In the constrictor of converging-diverging torch,the normalized radius of arc column increases and the degree of thermodynamic equilibrium of the plasma is significantly improved with the increase of axial distance.The radial momentum balance analysis shows that for the cylindrical torch,the pressure gradient that drives the arc expansion and the Lorentz force that drives the arc contraction dominate the radial evolution of the arc.While at the converging and constrictor region of a converging-diverging plasma torch,the radial gas dynamic forces in arc fringes pointing toward the arc center enhance the mixing of the cold gas of boundary layer with the high temperature gas of the arc center,increasing the average gas temperature and decreasing the thickness of cold boundary layer,thereby facilitating the formation of diffusion type arc anode attachment at the diverging section of torch.展开更多
In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance betw...In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance between ions and electrons as well as the axial magnetic field will relax the threshold of ignition conditions.Therefore, ignition conditions for this model are derived numerically involving the energy balance equation at the stagnation point. It has been derived using parametric space including electron and ion temperature(T_e, T_i), areal density(q R), and seed magnetic field-dependent free parameters of B/q, mB, and BR. For B/ρ < 10~6 G cm^3 g^(-1),mB < 4 × 10~4 G cm g^(-1), and BR <3 × 10~5 G cm, the minimum fuel areal density exceeds between ρR >0.002 g cm^(-2), ρR> 0.25 g cm^(-2), and ρR > 0.02 g cm^(-2),respectively. The practical equilibrium conditions also addressed which is in good agreement with the corresponding one-temperature magnetized mode proposed in previous studies. Moreover, it has been shown that the typical criterion of BR ≥(6.13–4.64) × 10~5 G cm would be expectable. It is also confirmed that the minimum product of areal density times fuel temperature in equilibrium model is located in the range of T = 6–8 keV for all these free parameters, depending on the magnitude of the magnetic field. This is the entry point for the non-equilibrium model consistent with equilibrium model.展开更多
A combined experimental and simulational work was carried out in this paper to investigate the kinetic effects of non-equilibrium excitation by direct electron impact on low temperature pyrolysis of CH4 in a RF dielec...A combined experimental and simulational work was carried out in this paper to investigate the kinetic effects of non-equilibrium excitation by direct electron impact on low temperature pyrolysis of CH4 in a RF dielectric barrier discharge.Special attention was placed on the vibrational chemistry of CH4 and some other important products including H2,C2H2,C2H4,C2H6 and C3H8 largely produced in CH4/He discharge under an intermediate reduced electric field ranging 51-80 Td.A detailed kinetic mechanism incorporating a set of electron impact reactions,electron-ion recombination reactions,negative ions attachment reactions,charge exchange reactions,reactions involving vibrationally excited molecules and the relaxation process of vibrationally excited species was assembled and experimentally validated.The modeling results showed a reasonable agreement with the experimentally measured results in terms of CH4 conversion and products production including C2 hydrocarbons and hydrogen.A linear increasing trend of methane conversion with increasing plasma power input was discovered,which suggested a strong dependence of molecular excitation on energy input.Both the CH4/He mole ratio and the reactor temperature play significant roles in CH4 conversion and major products production.The experimental results showed that the selectivity of value-added products C2H4 and H2 keeps essentially unchanged with increasing energy input,mostly because the contribution CH4 ionization and He excitation effectively compete with vibrational excitation and dissociation of CH4 molecule with the E/N value increasing.The calculated results showed that the typical relaxation time of vibrational states is comparable to the gas-kinetics time in a CH4/He discharge mixture,thus the vibrationally excited molecules can significantly accelerate chemical reactions through an effective decrease of activation energy.The path flux analysis revealed that the vibrationally excited molecules CH4(v)and H2(v)enhanced chain propagation reactions,such as CH4(v)+H→CH3+H2,CH4(v)+CH→C2 H4+H,and H2(v)+C→CH+H,further stimulating the production of active radicals and final products.Specifically,H2(v)+C→CH+H was responsible for 7.9%of CH radical formation and CH4(v)+CH→C2 H4+H accounted for 31.4%of total C2 H4 production.This kinetic study provides new sights in demonstrating the contribution of vibrationally excited molecules in RF plasma assisted methane pyrolysis.展开更多
基金The China Ocean Mineral Resources Research and Development Association Research Program of the State Oceanic Administration of China under contract No.DY125-13-R-07the National Natural Science Foundation of China under contract Nos 41322036 and 41230960+1 种基金the Shandong Provincial Natural Science Foundation of China under contract No.ZR2014DP009the Special Basic Research Funds for Central Public Research Institutes for The First Institute of Oceanography,State Oceanic Administration of China under contract Nos GY0213G06 and GY02-2012G35
文摘An improved analytical method to determine the content of 52 major, minor and trace elements in marine geological samples, using a HF-HCl-HNO_3 acid system with a high-pressure closed digestion method(HPCD), is studied by an inductively coupled plasma optical emission spectrometry(ICP-OES) and an inductively coupled plasma mass spectrometry(ICP-MS). The operating parameters of the instruments are optimized, and the optimal analytical parameters are determined. The influences of optical spectrum and mass spectrum interferences, digestion methods and acid systems on the analytical results are investigated. The optimal spectral lines and isotopes are chosen, and internal standard element of rhodium is selected to compensate for matrix effects and analytical signals drifting. Compared with the methods of an electric heating plate digestion and a microwave digestion, a high-pressure closed digestion method is optimized with less acid, complete digestion,less damage for digestion process. The marine geological samples are dissolved completely by a HF-HCl-HNO_3 system, the relative error(RE) for the analytical results are all less than 6.0%. The method detection limits are 2–40μg/g by the ICP-OES, and 6–80 ng/g by ICP-MS. The methods are used to determine the marine sediment reference materials(GBW07309, GBW07311, GBW07313), rock reference materials(GBW07103, GBW07104,GBW07105), and cobalt-rich crust reference materials(GBW07337, GBW07338, GBW07339), the obtained analytical results are in agreement with the certified values, and both of the relative standard deviation(RSD) and the relative error(RE) are less than 6.0%. The analytical method meets the requirements for determining 52 elements contents of bulk marine geological samples.
基金supported by the National Natural Science Foundation of China (Grant No. 10835004 )the 2nd Knowledge Cluster Research Project of Japan:Tokai Region Nanotechnology Manufacturing Cluster (Innovation of Environment Friendly Highly Functional Materials and Devices)
文摘The hairpin probe using microwave resonance in plasma is applicable to high pressure 1.33 ×10^3-1.01×10^5 Pa)) as developed recently. In this work, an analytic model of the hairpin resonator probe surrounded by a thin dielectric layer and a sheath layer is proposed. The correction factor due to these surroundings is analytically found and confirmed by electromagnetic field finite difference time domain simulation, thus enabling the accurate measurement of electron density in a high-pressure non-equilibrium uniform discharge.
基金the grant support from the National Natural Science Foundation of China (No. 21975018, 22278032)。
文摘Ammonia is gaining increasing attention as a green alternative fuel for achieving large-scale carbon emission reduction. Despite its potential technical prospects, the harsh ignition conditions and slow flame propagation speed of ammonia pose significant challenges to its application in engines. Non-equilibrium plasma has been identified as a promising method, but current research on plasma-enhanced ammonia combustion is limited and primarily focuses on ignition characteristics revealed by kinetic models. In this study, low-temperature and low-pressure chemistry in plasma-assisted ammonia oxidative pyrolysis is investigated by integrated studies of steady-state GC measurements and mathematical simulation. The detailed kinetic mechanism of NH_(3) decomposition in plasma-driven Ar/NH_(3) and Ar/NH_(3)/O_(2) mixtures has been developed. The numerical model has good agreements with the experimental measurements in NH_(3)/O_(2) consumption and N_(2)/H_(2) generation, which demonstrates the rationality of modelling. Based on the modelling results, species density profiles, path flux and sensitivity analysis for the key plasmaproduced species such as NH_(2), NH, H_(2), OH, H, O, O(^(1)D), O_(2)(a^(1)△_(g)), O_(2)(b^(1)∑_(g)^(+)), Ar^(*), H^(-), Ar^(+), NH_(3)^(+), O_(2)^(-) in the discharge and afterglow are analyzed in detail to illustrate the effectiveness of the active species on NH_(3) excitation and decomposition at low temperature and relatively higher E/N values. The results revealed that NH_(2), NH, H as well as H_(2) are primarily generated through the electron collision reactions e + NH_(3)→ e + NH_(2)+ H, e + NH_(3)→ e + NH + H_(2) and the excited-argon collision reaction Ar^(*) + NH_(3)+ H → Ar + NH_(2)+ 2H, which will then react with highly reactive oxidative species such as O_(2)^(*), O^(*), O, OH, and O_(2) to produce stable products of NOx and H_(2)O. NH_(3)→ NH is found a specific pathway for NH_(3) consumption with plasma assistance, which further highlights the enhanced kinetic effects.
基金supported by the Scientific Research Foundation of Education Department of Hubei Government(D20062202)the Scientific Research Foundation of Huang Shi City Government (2005)
文摘A "plane cathode micro-hollow anode discharge (PCHAD)" is studied in comparison with micro-hollow cathode discharge (MHCD). A new triode-configuration discharge device is also designed for large-volume, high-pressure glow discharges plasma without glow-to-arc transitions, as well as with an anode metal needle, and a cathode of PCHAD. It has a "needle-hole" sustained glow discharge. Its discharge circuit employs only one power supply circuit with a variable resistor. The discharge experiments have been carried out in the air. The electrical properties and the photoimages in PCHAD, multi-PCHAD and "needle-hole" sustained discharge have been investigated. The electrical and the optical measurements show that this triode-configuration discharge device can operate stably at high-pressure, in parallel without individual ballasting resistance. And the electron density of the plasma is estimated to be up to 10^12cm^-3. Compared with the twosupply circuit system, this electrode configuration is very simple with lower cost in generating large-volume plasma at high pressures.
文摘In the reaction of methane and carbon dioxide to C2 hydrocarbons under non-equilibrium plasma, methane conversion was decreased, but selectivity of C2 hydrocarbons was increased when using La2O3/?Al2O3 as catalyst. So the yield of C2 hydrocarbons was higher than using plasma alone. The synergism of La2O3/?Al2O3 and plasma gave methane conversion of 24.9% and C2 yield of 18.1%. The distribution of C2 hydrocarbons changed when Pd- La2O3/?Al2O3 was used as catalyst, the major C2 product was ethylene.
基金National Natural Science Foundation of China(Nos.20576079,20776159)
文摘Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H202 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.
基金National High-tech Research & Development Plan(863 Projeet)(No.2008AA062317)National Natural Science Foundation of China(No.50578020)
文摘A mini-type of plasma source was studied experimentally. The results showed that the plasma density, which was generated by an atmospheric non-equilibrium plasma source, rises with the increase in driving electric-field and the momentum of gas particles. For a driving electricfield of 56 kV/cm and a gas particles' momentum of 10^9 × 10^-22 g·m/s, the ion density can exceed 10^10/cm^3 while the effective volume of the plasma source is only 2.5 cm^2. This study may help develop a method to generate a minitype plasma source with low energy consumption but high ion concentration. This source can be used in chemical industry, environmental engineering and military applications.
基金supported by National Natural Science Foundation of China(Nos.11875256,12005023,11705202)Scientific Research Fund Project of Anhui Jianzhu University(No.2020QDZ09)Anhui Provincial Natural Science Foundation(No.1808085MA12).
文摘In this paper,a three-dimensional non-equilibrium steady arc model is used to investigate the temperature,velocity and electromagnetic field in multi-cathode arc torch,and the formation mechanism of a large-area,uniform and diffused arc plasma is analyzed.The numerical simulation results show that a large volume plasma region can be formed in the central region of the generator during discharge.During this process,the maximum electron temperature appears near the cathode and in the central convergence region,while the maximum heavy particle temperature only appears in the central convergence region.This phenomenon is consistent with the experimental arc images.Near the cathode tip,the arc column is in a contraction state.In the area slightly away from the cathode,the six arc columns begin to join together.In the plasma generator,there is a large-scale current distribution in all directions of X,Y and Z,forming a stable arc plasma with a wide range of diffusion.The calculated electron temperature distribution is in good agreement with the measured electron temperature.The results suggest that the largearea diffused arc plasma in the multi-cathode arc torch is the combined effect of current distribution,convection heat transfer and heat conduction.
文摘Magnetohydrodynamic (MHD) accelerator is proposed as a next generation propulsion system. It can be used to increase the performance of a propulsion system. The objective of this study is to investigate the performance of MHD accelerator using non-equilibrium air plasma as working gas. In this study, the fundamental performance of MHD accelerator such as flow performance and electrical performance is evaluated at different levels of applied magnetic field using I-D numerical simulation. The numerical simulation is developed based on a set of differential equations with MHD approximation. To solve this set of differential equations the MacCormack scheme is used. A specified channel designed and developed at NASA Marshall Space Flight Centre is used in the numerical simulation. The composition of the simulated air plasma consists of seven species, namely, N2, N, O2, O, NO, NO+, and e-. The performance of the non-equilibrium MHD accelerator is also compared with the equilibrium MHD accelerator.
基金support from National Natural Science Foundation of China(No.51875372)the Key R&D Program of Advanced Technology of Sichuan Science and Technology Department(No.2020YFG0111)。
文摘A two-temperature(2 T)thermal non-equilibrium model is developed to address the thermal nonequilibrium phenomenon that inevitably exists in the reverse-polarity plasma torch(RPT)and applied to numerically investigate the plasma flow characteristics inside and outside the RPT.Then,a detailed comparison of the results of the 2 T model with those of the local thermal equilibrium(LTE)model is presented.Furthermore,the temperature of the plasma jet generated by a RPT and the RPT’s voltage are experimentally measured to compare and validate the result obtained by different models.The differences of the measured excitation temperature and the arc voltage between the 2 T model and experimental measurement are less than 13%and 8%,respectively,in all operating cases,validating the effectiveness of the 2 T model.The LTE model overestimates the velocity and temperature distribution of the RPT and its plasma jet,showing that thermal non-equilibrium phenomena cannot be neglected in the numerical modelling of the RPT.Unlike other common hot cathode plasma torches,the thermal non-equilibrium phenomenon is found even in the arc core of the RPT,due to the strong cooling effect caused by the big gas flow rate.
基金National Natural Science Foundations of China (No.10835004,No.10775031)Science and Technology Commission of Shanghai Municipality,China (No.10XD1400100)
文摘Deposition of TiO2 film from atmospheric pressure non- equilibrium Ar/O2/TiCl4 plasma was done to study the effect of discharge power during the film deposition process in this paper. TiO2 films with kinds of morphologies and controlled crystallization were deposited from mixtures of TiCl4 and O2 on quartz substrate by one step process. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to analyze the morphology and crystallization of the deposited TiO2 films. It was found that the discharge power played a key role in the morphology and crystallization of the deposited TiO2 film whether the flow of TiCl4was large or small. When the flow of TiCl4 was large, the deposited TiO2 film was amorphous particles at low discharge power and was multi-crystalline at high discharge power. When the flow of TiCl4 was small, the deposited TiO2 film became more compact and the crystallization was enhanced as the discharge power increased. The dependence of the discharge current and the applied voltage with the discharge power indicated that it was a glow discharge. The gas temperature which increases with the discharge power is one of the main causes that affect the morphology and crystallization of the deposited film.
文摘A few factors effecting the reaction of plasma dehydrocoupling of methane have been investigated. The experiment shows that plasma power load, i.e. the ratio of methane flow to plasma power, is the most important factor effecting methane dehydrocoupling. The products of the reaction are mainly acetylene, ethylene, ethane and unreacted methane etc. If oxygen with a suitable molar ratio is introduced into plasma region at a reasonable position, the selectivity of C2 hydrocarbons can be increased greatly.
文摘In this paper, hydrogen is first utilized in the study on methane coupling under nonequilibrium plasma. Results indicate that the addition of hydrogen is beneficial. to the methane coupling so as to increase the conversion rate of methane and the yield of C2 hydrocarbon with a gradual increase in the addition of hydrogen in a certain range of proportionality. This conclusion explores a new route of hydrogenated methane coupling.
基金partly funded by the King Abdullah University of Science and Technology,through the baseline fund BAS/1/1396-01-01the partial financial support from Sichuan Science and Technology Program(Nos.2021YFSY0042 and 2021YFG0360)。
文摘This study investigates the effect of a rotating gliding discharge on synthetic biogas combustion at atmospheric pressure.Synthetic biogas was produced by mixing methane and carbon dioxide.Three mixtures were considered:100%/0%,70%/30%,and 50%/50%of methane and carbon dioxide,respectively.The plasma effect was investigated in a low-swirl-number burner equipped with a high-voltage electrode to produce gliding discharges.The effect of plasma on the stability limits of the flame is reported for several electrical powers.During plasma-assisted combustion,the lean blow-off limits of biogas-air flames were significantly improved,which agrees with what can be found in the literature for other fuels.The electrical parameters of the discharge and the plasma emissions were measured using electric probes and emission spectroscopy,respectively.The mixture with the CO_(2)dilution was associated with a higher reduced electric field and higher ion production.A better understanding of the excited-species concentration evolution during plasma is necessary and will be investigated in future work.
基金supported by the National Natural Science Foundation of China(Grant No.21676024)the Beijing Natural Science Foundation(Grant No.3182029)。
文摘Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic modeling.A plasma chemistry kinetic mechanism incorporating the reactions involving vibrational excitation of CH4,CO2,H2 and CO molecules as well as the low temperature He/CH4/CO2 conversion pathways was developed and validated.The calculation results showed that at lower E/N values(<150 Td)large population of energized electrons generated in a He/CH4/CO2 discharge resulted in an intensification of vibrational excitation.Despite the large generation of vibration,the vibrationally excited molecules in a 0.5/0.25/0.25 of He/CH4/CO2 discharge mixture were easy to relax,due to the strong coupling of the vibration of different molecules in a gas mixture.The results showed that the moderate levels of the vibrational excitation,such as CO2(v10,11,...,18)and CO(v9,10),presented most efficient in the stimulation of species generation including CO,CH2 O,CH3 OH,C2 H4 and C2 H6.Specifically,under conditions of E/N of 108 Td,14.9%of CO formation was estimated from the recombination of CO2(v)with CH3 and H,CO2(v)+CH3→CH3 O+CO,CO2(v)+H→CO+OH.Also,4.8%of C2 H4 formation was from the recombination reaction CH4(v)+CH→C2 H4+H.These results highlight the strong roles of vibrational states in a complex plasma chemistry system.
文摘A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al2O3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended.
基金supported by the National Natural Science Foundation of China(Nos.90205026,10375082)
文摘A gliding arc discharge plasma and its characteristics are described. Analysis of the production principle of the plasma is presented. Some experimental results about two novel types of the gliding arc plasma generator have been obtained. These types of gliding arc plasma axe potentially usable in the chemical industry and environmental engineering.
基金National Natural Science Foundation of China(Nos.11575273,11735004,11575019)the National Postdoctoral Program for Innovative Talents(BX20180029).
文摘A two-temperature thermal non-equilibrium model is used to simulate and compare the arc characteristics within the converging-diverging and traditional cylindrical plasma torches.The modeling results show that the presence of the constrictor within the converging-diverging torch makes the evolution characteristics of the arc significantly different from that of cylindrical torch.Compared with a cylindrical geometrical torch,a much higher plasma flow velocity and relatively longer high temperature region can be generated and maintained inside the converging-diverging torch.In the constrictor of converging-diverging torch,the normalized radius of arc column increases and the degree of thermodynamic equilibrium of the plasma is significantly improved with the increase of axial distance.The radial momentum balance analysis shows that for the cylindrical torch,the pressure gradient that drives the arc expansion and the Lorentz force that drives the arc contraction dominate the radial evolution of the arc.While at the converging and constrictor region of a converging-diverging plasma torch,the radial gas dynamic forces in arc fringes pointing toward the arc center enhance the mixing of the cold gas of boundary layer with the high temperature gas of the arc center,increasing the average gas temperature and decreasing the thickness of cold boundary layer,thereby facilitating the formation of diffusion type arc anode attachment at the diverging section of torch.
文摘In this paper, non-equilibrium ignition conditions for magnetized cylindrical deuterium–tritium plasma in the presence of an axial magnetic field have been investigated. It is expected that temperature imbalance between ions and electrons as well as the axial magnetic field will relax the threshold of ignition conditions.Therefore, ignition conditions for this model are derived numerically involving the energy balance equation at the stagnation point. It has been derived using parametric space including electron and ion temperature(T_e, T_i), areal density(q R), and seed magnetic field-dependent free parameters of B/q, mB, and BR. For B/ρ < 10~6 G cm^3 g^(-1),mB < 4 × 10~4 G cm g^(-1), and BR <3 × 10~5 G cm, the minimum fuel areal density exceeds between ρR >0.002 g cm^(-2), ρR> 0.25 g cm^(-2), and ρR > 0.02 g cm^(-2),respectively. The practical equilibrium conditions also addressed which is in good agreement with the corresponding one-temperature magnetized mode proposed in previous studies. Moreover, it has been shown that the typical criterion of BR ≥(6.13–4.64) × 10~5 G cm would be expectable. It is also confirmed that the minimum product of areal density times fuel temperature in equilibrium model is located in the range of T = 6–8 keV for all these free parameters, depending on the magnitude of the magnetic field. This is the entry point for the non-equilibrium model consistent with equilibrium model.
基金supported by the National Natural Science Foundation of China(Grant No.21676024)the Beijing Natural Science Foundation(Grant No.3182029)the Fundamental Research Funds for the Central Universities(2018YJS141)
文摘A combined experimental and simulational work was carried out in this paper to investigate the kinetic effects of non-equilibrium excitation by direct electron impact on low temperature pyrolysis of CH4 in a RF dielectric barrier discharge.Special attention was placed on the vibrational chemistry of CH4 and some other important products including H2,C2H2,C2H4,C2H6 and C3H8 largely produced in CH4/He discharge under an intermediate reduced electric field ranging 51-80 Td.A detailed kinetic mechanism incorporating a set of electron impact reactions,electron-ion recombination reactions,negative ions attachment reactions,charge exchange reactions,reactions involving vibrationally excited molecules and the relaxation process of vibrationally excited species was assembled and experimentally validated.The modeling results showed a reasonable agreement with the experimentally measured results in terms of CH4 conversion and products production including C2 hydrocarbons and hydrogen.A linear increasing trend of methane conversion with increasing plasma power input was discovered,which suggested a strong dependence of molecular excitation on energy input.Both the CH4/He mole ratio and the reactor temperature play significant roles in CH4 conversion and major products production.The experimental results showed that the selectivity of value-added products C2H4 and H2 keeps essentially unchanged with increasing energy input,mostly because the contribution CH4 ionization and He excitation effectively compete with vibrational excitation and dissociation of CH4 molecule with the E/N value increasing.The calculated results showed that the typical relaxation time of vibrational states is comparable to the gas-kinetics time in a CH4/He discharge mixture,thus the vibrationally excited molecules can significantly accelerate chemical reactions through an effective decrease of activation energy.The path flux analysis revealed that the vibrationally excited molecules CH4(v)and H2(v)enhanced chain propagation reactions,such as CH4(v)+H→CH3+H2,CH4(v)+CH→C2 H4+H,and H2(v)+C→CH+H,further stimulating the production of active radicals and final products.Specifically,H2(v)+C→CH+H was responsible for 7.9%of CH radical formation and CH4(v)+CH→C2 H4+H accounted for 31.4%of total C2 H4 production.This kinetic study provides new sights in demonstrating the contribution of vibrationally excited molecules in RF plasma assisted methane pyrolysis.