This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ...This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models.展开更多
Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate b...Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate based on facial video is an exciting research field for getting palpation information by observation diagnosis.However,most studies focus on optimizing the algorithm based on a small sample of participants without systematically investigating multiple influencing factors.A total of 209 participants and 2,435 facial videos,based on our self-constructed Multi-Scene Sign Dataset and the public datasets,were used to perform a multi-level and multi-factor comprehensive comparison.The effects of different datasets,blood volume pulse signal extraction algorithms,region of interests,time windows,color spaces,pulse rate calculation methods,and video recording scenes were analyzed.Furthermore,we proposed a blood volume pulse signal quality optimization strategy based on the inverse Fourier transform and an improvement strategy for pulse rate estimation based on signal-to-noise ratio threshold sliding.We found that the effects of video estimation of pulse rate in the Multi-Scene Sign Dataset and Pulse Rate Detection Dataset were better than in other datasets.Compared with Fast independent component analysis and Single Channel algorithms,chrominance-based method and plane-orthogonal-to-skin algorithms have a more vital anti-interference ability and higher robustness.The performances of the five-organs fusion area and the full-face area were better than that of single sub-regions,and the fewer motion artifacts and better lighting can improve the precision of pulse rate estimation.展开更多
Interactive holography offers unmatched levels of immersion and user engagement in the field of future display.Despite of the substantial progress has been made in dynamic meta-holography,the realization of real-time,...Interactive holography offers unmatched levels of immersion and user engagement in the field of future display.Despite of the substantial progress has been made in dynamic meta-holography,the realization of real-time,highly smooth interactive holography remains a significant challenge due to the computational and display frame rate limitations.In this study,we introduced a dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates.To our knowledge,this is the first reported practical dynamic interactive metasurface holographic system.We spa-tially divided the metasurface device into multiple distinct channels,each projecting a reconstructed sub-pattern.The switching states of these channels were mapped to bitwise operations on a set of bit values,which avoids complex holo-gram computations,enabling an ultra-high computational frame rate.Our approach achieves a computational frame rate of 800 kHz and a display frame rate of 23 kHz on a low-power Raspberry Pi computational platform.According to this methodology,we demonstrated an interactive dynamic holographic Tetris game system that allows interactive gameplay,color display,and on-the-fly hologram creation.Our technology presents an inspiration for advanced dynamic meta-holography,which is promising for a broad range of applications including advanced human-computer interaction,real-time 3D visualization,and next-generation virtual and augmented reality systems.展开更多
In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function ...In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficientμ(ρ)=ρ^(α)for any 0<α<1;this includes the timeweighted boundedness from below and above.The smoothness of the solution is discussed.Moreover,we construct a class of self-similar classical solutions which exhibit some interesting properties,such as optimal estimates.The present paper extends the results in[Luo T,Xin Z P,Yang T.SIAM J Math Anal,2000,31(6):1175-1191]to the jump boundary conditions case with density-dependent viscosity.展开更多
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri...The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.展开更多
The dynamic process of non-equilibrium grain boundary segregation of traceboron in Fe-40 percent Ni alloy during cooling and the effect of cooling rate were investigated byboron tracking autoradiography technique. The...The dynamic process of non-equilibrium grain boundary segregation of traceboron in Fe-40 percent Ni alloy during cooling and the effect of cooling rate were investigated byboron tracking autoradiography technique. The results indicate that during cooling process, theamount of segregated boron on grain boundary firstly increases fast, then enters a comparativelyeven increasing stage and increases rapidly again at the third stage. The details of each stagevaried with cooling rate are explained. When the segregation develops to a certain degree, thesegregated boron atoms transform from solute status to precipitate status.展开更多
Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of u...Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of unloading rates.A high-speed photography system and acoustic emission(AE)system were used to monitor the entire process of rockburst process in real-time.The results show that the intensity of gneiss rockburst decreases with decrease of unloading rate,which is manifested as the reduction of AE energy and fragments ejection velocity.The mechanisms are proposed to explain this effect:(i)The reduction of unloading rate changes the crack propagation mechanism in the process of rockburst.This makes the rockbursts change from the tensile failure mechanism at high unloading rate to the tension-shear mixed failure mechanism at low unloading rate,and more energy released in the form of shear crack propagation.Then,less strain energy is converted into kinetic energy of fragments ejection.(ii)Less plate cracking degree of gneiss has taken shape due to decrease of unloading rate,resulting in the destruction of rockburst incubation process.The enlightenments of reducing the unloading rate for the project are also described quantitatively.The rockburst magnitude is reduced from the medium magnitude at the unloading rate of 0.1 MPa/s to the slight magnitude at the unloading rate of 0.025 MPa/s,which was judged by the ejection velocity.展开更多
The mutation rate is a pivotal biological characteristic,intricately governed by natural selection and historically garnering considerable attention.Recent advances in high-throughput sequencing and analytical methodo...The mutation rate is a pivotal biological characteristic,intricately governed by natural selection and historically garnering considerable attention.Recent advances in high-throughput sequencing and analytical methodologies have profoundly transformed our understanding in this domain,ushering in an unprecedented era of mutation rate research.This paper aims to provide a comprehensive overview of the key concepts and methodologies frequently employed in the study of mutation rates.It examines various types of mutations,explores the evolutionary dynamics and associated theories,and synthesizes both classical and contemporary hypotheses.Furthermore,this review comprehensively explores recent advances in understanding germline and somatic mutations in animals and offers an overview of experimental methodologies,mutational patterns,molecular mechanisms,and driving forces influencing variations in mutation rates across species and tissues.Finally,it proposes several potential research directions and pressing questions for future investigations.展开更多
The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic ne...The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.展开更多
In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining ...In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.展开更多
The technology of tunnel boring machine(TBM)has been widely applied for underground construction worldwide;however,how to ensure the TBM tunneling process safe and efficient remains a major concern.Advance rate is a k...The technology of tunnel boring machine(TBM)has been widely applied for underground construction worldwide;however,how to ensure the TBM tunneling process safe and efficient remains a major concern.Advance rate is a key parameter of TBM operation and reflects the TBM-ground interaction,for which a reliable prediction helps optimize the TBM performance.Here,we develop a hybrid neural network model,called Attention-ResNet-LSTM,for accurate prediction of the TBM advance rate.A database including geological properties and TBM operational parameters from the Yangtze River Natural Gas Pipeline Project is used to train and test this deep learning model.The evolutionary polynomial regression method is adopted to aid the selection of input parameters.The results of numerical exper-iments show that our Attention-ResNet-LSTM model outperforms other commonly-used intelligent models with a lower root mean square error and a lower mean absolute percentage error.Further,parametric analyses are conducted to explore the effects of the sequence length of historical data and the model architecture on the prediction accuracy.A correlation analysis between the input and output parameters is also implemented to provide guidance for adjusting relevant TBM operational parameters.The performance of our hybrid intelligent model is demonstrated in a case study of TBM tunneling through a complex ground with variable strata.Finally,data collected from the Baimang River Tunnel Project in Shenzhen of China are used to further test the generalization of our model.The results indicate that,compared to the conventional ResNet-LSTM model,our model has a better predictive capability for scenarios with unknown datasets due to its self-adaptive characteristic.展开更多
This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemi...This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.展开更多
BACKGROUND The prevalence of non-alcoholic fatty liver(NAFLD)has increased recently.Subjects with NAFLD are known to have higher chance for renal function impairment.Many past studies used traditional multiple linear ...BACKGROUND The prevalence of non-alcoholic fatty liver(NAFLD)has increased recently.Subjects with NAFLD are known to have higher chance for renal function impairment.Many past studies used traditional multiple linear regression(MLR)to identify risk factors for decreased estimated glomerular filtration rate(eGFR).However,medical research is increasingly relying on emerging machine learning(Mach-L)methods.The present study enrolled healthy women to identify factors affecting eGFR in subjects with and without NAFLD(NAFLD+,NAFLD-)and to rank their importance.AIM To uses three different Mach-L methods to identify key impact factors for eGFR in healthy women with and without NAFLD.METHODS A total of 65535 healthy female study participants were enrolled from the Taiwan MJ cohort,accounting for 32 independent variables including demographic,biochemistry and lifestyle parameters(independent variables),while eGFR was used as the dependent variable.Aside from MLR,three Mach-L methods were applied,including stochastic gradient boosting,eXtreme gradient boosting and elastic net.Errors of estimation were used to define method accuracy,where smaller degree of error indicated better model performance.RESULTS Income,albumin,eGFR,High density lipoprotein-Cholesterol,phosphorus,forced expiratory volume in one second(FEV1),and sleep time were all lower in the NAFLD+group,while other factors were all significantly higher except for smoking area.Mach-L had lower estimation errors,thus outperforming MLR.In Model 1,age,uric acid(UA),FEV1,plasma calcium level(Ca),plasma albumin level(Alb)and T-bilirubin were the most important factors in the NAFLD+group,as opposed to age,UA,FEV1,Alb,lactic dehydrogenase(LDH)and Ca for the NAFLD-group.Given the importance percentage was much higher than the 2nd important factor,we built Model 2 by removing age.CONCLUSION The eGFR were lower in the NAFLD+group compared to the NAFLD-group,with age being was the most important impact factor in both groups of healthy Chinese women,followed by LDH,UA,FEV1 and Alb.However,for the NAFLD-group,TSH and SBP were the 5th and 6th most important factors,as opposed to Ca and BF in the NAFLD+group.展开更多
The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corros...The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.展开更多
Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of und...Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of undercooling in the rapid solidification process was investigated using an infrared thermometer.The addition of the Co element affected the evolution of the recalescence phenomenon in Cu-Ni alloys.The images of the solid-liquid interface migration during the rapid solidification of supercooled melts were captured by using a high-speed camera.The solidification rate of Cu-Ni alloys,with the addition of Co elements,was explored.Finally,the grain refinement structure with low supercooling was characterised using electron backscatter diffraction(EBSD).The effect of Co on the microstructural evolution during nonequilibrium solidification of Cu-Ni alloys under conditions of small supercooling is investigated by comparing the microstructures of Cu55Ni45 and Cu55Ni43Co2 alloys.The experimental results show that the addition of a small amount of Co weakens the recalescence behaviour of the Cu55Ni45 alloy and significantly reduces the thermal strain in the rapid solidification phase.In the rapid solidification phase,the thermal strain is greatly reduced,and there is a significant increase in the characteristic undercooling degree.Furthermore,the addition of Co and the reduction of Cu not only result in a lower solidification rate of the alloy,but also contribute to the homogenisation of the grain size.展开更多
The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy ...The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.展开更多
Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been...Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams.展开更多
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surfa...The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem.展开更多
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact...Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.展开更多
基金the National Key R&D Program of China(No.2021YFB3701705).
文摘This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models.
基金supported by the Key Research Program of the Chinese Academy of Sciences(grant number ZDRW-ZS-2021-1-2).
文摘Pulse rate is one of the important characteristics of traditional Chinese medicine pulse diagnosis,and it is of great significance for determining the nature of cold and heat in diseases.The prediction of pulse rate based on facial video is an exciting research field for getting palpation information by observation diagnosis.However,most studies focus on optimizing the algorithm based on a small sample of participants without systematically investigating multiple influencing factors.A total of 209 participants and 2,435 facial videos,based on our self-constructed Multi-Scene Sign Dataset and the public datasets,were used to perform a multi-level and multi-factor comprehensive comparison.The effects of different datasets,blood volume pulse signal extraction algorithms,region of interests,time windows,color spaces,pulse rate calculation methods,and video recording scenes were analyzed.Furthermore,we proposed a blood volume pulse signal quality optimization strategy based on the inverse Fourier transform and an improvement strategy for pulse rate estimation based on signal-to-noise ratio threshold sliding.We found that the effects of video estimation of pulse rate in the Multi-Scene Sign Dataset and Pulse Rate Detection Dataset were better than in other datasets.Compared with Fast independent component analysis and Single Channel algorithms,chrominance-based method and plane-orthogonal-to-skin algorithms have a more vital anti-interference ability and higher robustness.The performances of the five-organs fusion area and the full-face area were better than that of single sub-regions,and the fewer motion artifacts and better lighting can improve the precision of pulse rate estimation.
基金supports from National Natural Science Foundation of China (Grant No.62205117,52275429)National Key Research and Development Program of China (Grant No.2021YFF0502700)+3 种基金Young Elite Scientists Sponsorship Program by CAST (Grant No.2022QNRC001)West Light Foundation of the Chinese Academy of Sciences (Grant No.xbzg-zdsys-202206)Knowledge Innovation Program of Wuhan-Shuguang,Innovation project of Optics Valley Laboratory (Grant No.OVL2021ZD002)Hubei Provincial Natural Science Foundation of China (Grant No.2022CFB792).
文摘Interactive holography offers unmatched levels of immersion and user engagement in the field of future display.Despite of the substantial progress has been made in dynamic meta-holography,the realization of real-time,highly smooth interactive holography remains a significant challenge due to the computational and display frame rate limitations.In this study,we introduced a dynamic interactive bitwise meta-holography with ultra-high computational and display frame rates.To our knowledge,this is the first reported practical dynamic interactive metasurface holographic system.We spa-tially divided the metasurface device into multiple distinct channels,each projecting a reconstructed sub-pattern.The switching states of these channels were mapped to bitwise operations on a set of bit values,which avoids complex holo-gram computations,enabling an ultra-high computational frame rate.Our approach achieves a computational frame rate of 800 kHz and a display frame rate of 23 kHz on a low-power Raspberry Pi computational platform.According to this methodology,we demonstrated an interactive dynamic holographic Tetris game system that allows interactive gameplay,color display,and on-the-fly hologram creation.Our technology presents an inspiration for advanced dynamic meta-holography,which is promising for a broad range of applications including advanced human-computer interaction,real-time 3D visualization,and next-generation virtual and augmented reality systems.
基金supported by the NSFC(11931013)the GXNSF(2022GXNSFDA035078)。
文摘In this paper,we study the one-dimensional motion of viscous gas near a vacuum,with the gas connecting to a vacuum state with a jump in density.The interface behavior,the pointwise decay rates of the density function and the expanding rates of the interface are obtained with the viscosity coefficientμ(ρ)=ρ^(α)for any 0<α<1;this includes the timeweighted boundedness from below and above.The smoothness of the solution is discussed.Moreover,we construct a class of self-similar classical solutions which exhibit some interesting properties,such as optimal estimates.The present paper extends the results in[Luo T,Xin Z P,Yang T.SIAM J Math Anal,2000,31(6):1175-1191]to the jump boundary conditions case with density-dependent viscosity.
基金supported by the National Natural Science Foundation of China(Grant Nos.42175099,42027804,42075073)the Innovative Project of Postgraduates in Jiangsu Province in 2023(Grant No.KYCX23_1319)+3 种基金supported by the National Natural Science Foundation of China(Grant No.42205080)the Natural Science Foundation of Sichuan(Grant No.2023YFS0442)the Research Fund of Civil Aviation Flight University of China(Grant No.J2022-037)supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(Earth Lab)。
文摘The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.
基金This work was financially supported by the Projects of Development of the State Key Fundamental Research(National 973 Project)(No.G19980601507).]
文摘The dynamic process of non-equilibrium grain boundary segregation of traceboron in Fe-40 percent Ni alloy during cooling and the effect of cooling rate were investigated byboron tracking autoradiography technique. The results indicate that during cooling process, theamount of segregated boron on grain boundary firstly increases fast, then enters a comparativelyeven increasing stage and increases rapidly again at the third stage. The details of each stagevaried with cooling rate are explained. When the segregation develops to a certain degree, thesegregated boron atoms transform from solute status to precipitate status.
基金The financial support from the National Natural Science Foundation of China(Grant Nos.41941018 and 52074299)the Fundamental Research Funds for the Central Universities of China(Grant No.2023JCCXSB02)。
文摘Rockburst are often encountered in tunnel construction due to the complex geological conditions.To study the influence of unloading rate on rockburst,gneiss rockburst experiments were conducted under three groups of unloading rates.A high-speed photography system and acoustic emission(AE)system were used to monitor the entire process of rockburst process in real-time.The results show that the intensity of gneiss rockburst decreases with decrease of unloading rate,which is manifested as the reduction of AE energy and fragments ejection velocity.The mechanisms are proposed to explain this effect:(i)The reduction of unloading rate changes the crack propagation mechanism in the process of rockburst.This makes the rockbursts change from the tensile failure mechanism at high unloading rate to the tension-shear mixed failure mechanism at low unloading rate,and more energy released in the form of shear crack propagation.Then,less strain energy is converted into kinetic energy of fragments ejection.(ii)Less plate cracking degree of gneiss has taken shape due to decrease of unloading rate,resulting in the destruction of rockburst incubation process.The enlightenments of reducing the unloading rate for the project are also described quantitatively.The rockburst magnitude is reduced from the medium magnitude at the unloading rate of 0.1 MPa/s to the slight magnitude at the unloading rate of 0.025 MPa/s,which was judged by the ejection velocity.
文摘The mutation rate is a pivotal biological characteristic,intricately governed by natural selection and historically garnering considerable attention.Recent advances in high-throughput sequencing and analytical methodologies have profoundly transformed our understanding in this domain,ushering in an unprecedented era of mutation rate research.This paper aims to provide a comprehensive overview of the key concepts and methodologies frequently employed in the study of mutation rates.It examines various types of mutations,explores the evolutionary dynamics and associated theories,and synthesizes both classical and contemporary hypotheses.Furthermore,this review comprehensively explores recent advances in understanding germline and somatic mutations in animals and offers an overview of experimental methodologies,mutational patterns,molecular mechanisms,and driving forces influencing variations in mutation rates across species and tissues.Finally,it proposes several potential research directions and pressing questions for future investigations.
基金supported by grants from the Ministry of Science and Technology(Grant Nos.2021FY100101,2019QZKK0901)the National Natural Science Foundation of China(Grant Nos.41941016,42230312,42020104007)China Geological Survey(Grant No.DD20221630).
文摘The Earth’s surface kinematics and deformation are fundamental to understanding crustal evolution.An effective research approach is to estimate regional motion field and deformation fields based on modern geodetic networks.If the discrete observed velocity field is obtained,the velocity related fields,such as dilatation rate and maximum shear strain rate,can be estimated by applying varied mathematical approaches.This study applied Akaike's Bayesian Information Criterion(ABIC)method to calculate strain rate fields constrained by GPS observations in the southeast Tibetan Plateau.Comparison with results derived from other three methods revealed that our ABIC-derived strain rate fields were more precise.The maximum shear strain rate highlighted the Xianshuihe–Xiaojiang fault system as the main boundary for the outward migration of material in southeastern Tibet,indicating rotation of eastern Tibet material around the eastern Himalaya rather than whole extrusion along a fixed channel.Additionally,distinct dilatation rate patterns in the northeast and southwest regions of the fault system were observed.The northeast region,represented by the Longmenshan area,exhibited negative dilatational anomalies;while the southwest region,represented by the Jinsha River area north of 29°N,displayed positive dilatational anomalies.This indicates compression in the former and extension in the latter.Combined with deep geophysical observations,we believe that the upper and lower crusts of the Jinsha River area north of 29°N are in an entire expanding state,probably caused by the escape-drag effect of material.The presence of a large,low-viscosity region south of 29°N may not enable the entire escape of the crust,but instead result in a differential escape of the lower crust faster than the upper crust.
基金This research was funded by the National Natural Science Foundation of China(No.62272124)the National Key Research and Development Program of China(No.2022YFB2701401)+3 种基金Guizhou Province Science and Technology Plan Project(Grant Nos.Qiankehe Paltform Talent[2020]5017)The Research Project of Guizhou University for Talent Introduction(No.[2020]61)the Cultivation Project of Guizhou University(No.[2019]56)the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education(GZUAMT2021KF[01]).
文摘In the assessment of car insurance claims,the claim rate for car insurance presents a highly skewed probability distribution,which is typically modeled using Tweedie distribution.The traditional approach to obtaining the Tweedie regression model involves training on a centralized dataset,when the data is provided by multiple parties,training a privacy-preserving Tweedie regression model without exchanging raw data becomes a challenge.To address this issue,this study introduces a novel vertical federated learning-based Tweedie regression algorithm for multi-party auto insurance rate setting in data silos.The algorithm can keep sensitive data locally and uses privacy-preserving techniques to achieve intersection operations between the two parties holding the data.After determining which entities are shared,the participants train the model locally using the shared entity data to obtain the local generalized linear model intermediate parameters.The homomorphic encryption algorithms are introduced to interact with and update the model intermediate parameters to collaboratively complete the joint training of the car insurance rate-setting model.Performance tests on two publicly available datasets show that the proposed federated Tweedie regression algorithm can effectively generate Tweedie regression models that leverage the value of data fromboth partieswithout exchanging data.The assessment results of the scheme approach those of the Tweedie regressionmodel learned fromcentralized data,and outperformthe Tweedie regressionmodel learned independently by a single party.
基金The research was supported by the National Natural Science Foundation of China(Grant No.52008307)the Shanghai Sci-ence and Technology Innovation Program(Grant No.19DZ1201004)The third author would like to acknowledge the funding by the China Postdoctoral Science Foundation(Grant No.2023M732670).
文摘The technology of tunnel boring machine(TBM)has been widely applied for underground construction worldwide;however,how to ensure the TBM tunneling process safe and efficient remains a major concern.Advance rate is a key parameter of TBM operation and reflects the TBM-ground interaction,for which a reliable prediction helps optimize the TBM performance.Here,we develop a hybrid neural network model,called Attention-ResNet-LSTM,for accurate prediction of the TBM advance rate.A database including geological properties and TBM operational parameters from the Yangtze River Natural Gas Pipeline Project is used to train and test this deep learning model.The evolutionary polynomial regression method is adopted to aid the selection of input parameters.The results of numerical exper-iments show that our Attention-ResNet-LSTM model outperforms other commonly-used intelligent models with a lower root mean square error and a lower mean absolute percentage error.Further,parametric analyses are conducted to explore the effects of the sequence length of historical data and the model architecture on the prediction accuracy.A correlation analysis between the input and output parameters is also implemented to provide guidance for adjusting relevant TBM operational parameters.The performance of our hybrid intelligent model is demonstrated in a case study of TBM tunneling through a complex ground with variable strata.Finally,data collected from the Baimang River Tunnel Project in Shenzhen of China are used to further test the generalization of our model.The results indicate that,compared to the conventional ResNet-LSTM model,our model has a better predictive capability for scenarios with unknown datasets due to its self-adaptive characteristic.
基金the support of Prince Sultan University for paying the article processing charges(APC)of this publication.
文摘This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.
基金Supported by the Kaohsiung Armed Forces General Hospital.
文摘BACKGROUND The prevalence of non-alcoholic fatty liver(NAFLD)has increased recently.Subjects with NAFLD are known to have higher chance for renal function impairment.Many past studies used traditional multiple linear regression(MLR)to identify risk factors for decreased estimated glomerular filtration rate(eGFR).However,medical research is increasingly relying on emerging machine learning(Mach-L)methods.The present study enrolled healthy women to identify factors affecting eGFR in subjects with and without NAFLD(NAFLD+,NAFLD-)and to rank their importance.AIM To uses three different Mach-L methods to identify key impact factors for eGFR in healthy women with and without NAFLD.METHODS A total of 65535 healthy female study participants were enrolled from the Taiwan MJ cohort,accounting for 32 independent variables including demographic,biochemistry and lifestyle parameters(independent variables),while eGFR was used as the dependent variable.Aside from MLR,three Mach-L methods were applied,including stochastic gradient boosting,eXtreme gradient boosting and elastic net.Errors of estimation were used to define method accuracy,where smaller degree of error indicated better model performance.RESULTS Income,albumin,eGFR,High density lipoprotein-Cholesterol,phosphorus,forced expiratory volume in one second(FEV1),and sleep time were all lower in the NAFLD+group,while other factors were all significantly higher except for smoking area.Mach-L had lower estimation errors,thus outperforming MLR.In Model 1,age,uric acid(UA),FEV1,plasma calcium level(Ca),plasma albumin level(Alb)and T-bilirubin were the most important factors in the NAFLD+group,as opposed to age,UA,FEV1,Alb,lactic dehydrogenase(LDH)and Ca for the NAFLD-group.Given the importance percentage was much higher than the 2nd important factor,we built Model 2 by removing age.CONCLUSION The eGFR were lower in the NAFLD+group compared to the NAFLD-group,with age being was the most important impact factor in both groups of healthy Chinese women,followed by LDH,UA,FEV1 and Alb.However,for the NAFLD-group,TSH and SBP were the 5th and 6th most important factors,as opposed to Ca and BF in the NAFLD+group.
文摘The corrosion rate is a crucial factor that impacts the longevity of materials in different applications.After undergoing friction stir processing(FSP),the refined grain structure leads to a notable decrease in corrosion rate.However,a better understanding of the correlation between the FSP process parameters and the corrosion rate is still lacking.The current study used machine learning to establish the relationship between the corrosion rate and FSP process parameters(rotational speed,traverse speed,and shoulder diameter)for WE43 alloy.The Taguchi L27 design of experiments was used for the experimental analysis.In addition,synthetic data was generated using particle swarm optimization for virtual sample generation(VSG).The application of VSG has led to an increase in the prediction accuracy of machine learning models.A sensitivity analysis was performed using Shapley Additive Explanations to determine the key factors affecting the corrosion rate.The shoulder diameter had a significant impact in comparison to the traverse speed.A graphical user interface(GUI)has been created to predict the corrosion rate using the identified factors.This study focuses on the WE43 alloy,but its findings can also be used to predict the corrosion rate of other magnesium alloys.
文摘Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of undercooling in the rapid solidification process was investigated using an infrared thermometer.The addition of the Co element affected the evolution of the recalescence phenomenon in Cu-Ni alloys.The images of the solid-liquid interface migration during the rapid solidification of supercooled melts were captured by using a high-speed camera.The solidification rate of Cu-Ni alloys,with the addition of Co elements,was explored.Finally,the grain refinement structure with low supercooling was characterised using electron backscatter diffraction(EBSD).The effect of Co on the microstructural evolution during nonequilibrium solidification of Cu-Ni alloys under conditions of small supercooling is investigated by comparing the microstructures of Cu55Ni45 and Cu55Ni43Co2 alloys.The experimental results show that the addition of a small amount of Co weakens the recalescence behaviour of the Cu55Ni45 alloy and significantly reduces the thermal strain in the rapid solidification phase.In the rapid solidification phase,the thermal strain is greatly reduced,and there is a significant increase in the characteristic undercooling degree.Furthermore,the addition of Co and the reduction of Cu not only result in a lower solidification rate of the alloy,but also contribute to the homogenisation of the grain size.
基金Funded by the Basic Research Projects in Shanxi Province(No.202103021224183)。
文摘The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.
基金supported by the Australian Research Council(Grant No.DP200101293)the National Natural Science Foundation of China(Grant No.42202286)the Zhejiang Collaborative Innovation Center for Prevention and Control of Mountain Geological Hazards(Grant No.PCMGH-2017-Z-02).
文摘Long-term permeability experiments have indicated that sorption-induced swelling can switch from internal to bulk depending on the evolutive sorption status.However,this sorption swelling switch mechanism has not been considered in current analytical permeability models.This study introduces a normalized sorption non-equilibrium index(SNEI)to characterize the sorption status,quantify the dynamical variations of matrix swelling accumulation and internal swelling partition,and formulate the sorption swelling switch model.The incorporation of this index into the extended total effective stress concept leads to an analytical transient coal permeability model.Model results show that the sorption swelling switch itself results in the permeability switch under stress-constrained conditions,while the confined bulk swelling suppresses the permeability recovery to the continuous reduction under displacement-constrained conditions.Model verifications show that current experimental observations correspond to the early stages of the transient process,and they could be extended to the whole process with these models.This study demonstrates the importance of the sorption swelling switch in determining permeability evolution using simple boundary conditions.It provides new insights into experimentally revealing the sorption swelling switch in the future,and underscores the requirement of a rigorous model for complex coupled processes in large-scale coal seams.
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金funding this work through Small Research Project under grant number RGP.1/141/45。
文摘The heat transfer through a concave permeable fin is analyzed by the local thermal non-equilibrium(LTNE)model.The governing dimensional temperature equations for the solid and fluid phases of the porous extended surface are modeled,and then are nondimensionalized by suitable dimensionless terms.Further,the obtained nondimensional equations are solved by the clique polynomial method(CPM).The effects of several dimensionless parameters on the fin's thermal profiles are shown by graphical illustrations.Additionally,the current study implements deep neural structures to solve physics-governed coupled equations,and the best-suited hyperparameters are attained by comparison with various network combinations.The results of the CPM and physicsinformed neural network(PINN)exhibit good agreement,signifying that both methods effectively solve the thermal modeling problem.
基金supported by the National Natural Science Foundation of China (Grant Nos.U22A6005 and 12074408)the National Key Research and Development Program of China (Grant No.2021YFA1301502)+7 种基金Guangdong Major Scientific Research Project (Grant No.2018KZDXM061)Youth Innovation Promotion Association of CAS (Grant No.2021009)Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant Nos.YJKYYQ20200055,ZDKYYQ2017000,and 22017BA10)Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos.XDB25000000 and XDB33010100)Beijing Municipal Science and Technology Major Project (Grant No.Z201100001820006)IOP Hundred Talents Program (Grant No.Y9K5051)Postdoctoral Support Program of China (Grant No.2020M670501)the Synergetic Extreme Condition User Facility (SECUF)。
文摘Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams.