To address the problem of floating and aggregation of Ag-GNSs in the molten pool during the traditional reflow soldering process,Cu/SAC/Ag-GNSs/Cu sandwich joints were prepared under an applied current density(1.0...To address the problem of floating and aggregation of Ag-GNSs in the molten pool during the traditional reflow soldering process,Cu/SAC/Ag-GNSs/Cu sandwich joints were prepared under an applied current density(1.0×10^(4) A/cm^(2))for a few hundred milliseconds to produce Ag-coated graphene-reinforced Sn-Ag-Cu(SAC/AgGNSs)solder joints.The experimental results showed that Ag-GNSs were homogenously dispersed in the solder joints,providing more Cu6 Sn5 grain nucleation sites,which refined these grains and reduced the thickness difference at the anode and cathode.In addition,the Cu6 Sn5 morphology changed from rod-like to plate-shaped because of the uniform distribution of Ag-GNSs and constitutional supercooling.The significantly increased shear strength of the transient current bonding and the change in the fracture mechanism were due to the uniformly distributed Ag-GNSs and the microstructural changes.展开更多
The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being compos...The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being composed of two arbitrary oblique elliptical coils, which can change the electromagnetic concentrative region and the magnitude of eddy current density by changing the elliptical shape and/or spread angle between two elliptical coils. Pulsed current is usually the excitation source in the functional magnetic stimulation, so in this paper we derive the analytical solutions of transient pulsed eddy current field in the time domain due to the elliptical concentrative coil placed in an arbitrary position over a half-infinite plane conductor by making use of the scale-transformation, the Laplace transform and the Fourier transform are used in our derivation. Calculation results of field distributions produced by the figure-8-shaped elliptical coil show some behaviours as follows: 1) the eddy currents are focused on the conductor under the geometric symmetric centre of figure-8-shaped coil; 2) the greater the scale factor of ellipse is, the higher the eddy current density is and the wider the concentrative area of eddy current along y axis is; 3) the maximum magnitude of eddy current density increases with the increase of spread angle. When spread angle is 180°, there are two additional reverse concentrative areas on both sides of x axis.展开更多
Influence of eddy current on transient characteristics of common rail injector solenoid valve was studied in this paper. Experimental investigations of drive current and power source volt- age of both drive current as...Influence of eddy current on transient characteristics of common rail injector solenoid valve was studied in this paper. Experimental investigations of drive current and power source volt- age of both drive current ascending and descending process were conducted on a common rail injec- tor solenoid valve. A new discretizing calculation method of solenoid valve flux linkage was put for- ward for the first time based on the experimental results and drive circuit principle, and flux linkage of both drive current ascending and descending process were evaluated. New inductance calculation methods for drive current ascending and descending process respectively were also presented. Influ- ence of parasitic inductance was evaluated. Results indicate that the air gap, under which the transi- ent flux linkage of the solenoid valve is the biggest, varies with drive current due to eddy current. Flux linkage of drive current descending process is bigger than that of drive current ascending process under the same drive current and the same air gap width. Eddy current can reduce the delay between the time that drive current begins to descend and the time that armature begins to move downward. Inductance of drive current descending process is bigger than that of drive current as- cending process over larger scope of drive current, but the difference becomes smaller with the in- creasing of air gap width. The differences of both flux linkage and inductance between drive current ascending and descending process are caused by the eddy current in core and armature materials.展开更多
The transmural heterogeneous changes of transient outward potassium currents (Ito) in rabbit hypertrophic cardiaomyocytes and the effects of long-term prophylactic treatment with volsartan were investigated. Rabbits w...The transmural heterogeneous changes of transient outward potassium currents (Ito) in rabbit hypertrophic cardiaomyocytes and the effects of long-term prophylactic treatment with volsartan were investigated. Rabbits were divided into hypertrophy group (left ventricular hypertrophy induced by partial ligation of abdominal aorta), vol-treated group (volsartan was administrated after the ligation), and control group (sham operated). Myocytes were isolated by a two-step enzymatical method. The sub-endocardial (Endo) and sub-epicardium (Epi) tissues were separated from midmyocardium (Mid) with a razor. Whole-cell patch-clamp technique was used to record potassium currents. The results showed that membrane capacitance was larger in hypertrophic cells than those in control and vol-treated cells (P<0.01 vs control cells, n=30). The densities of Ito in hypertrophic cells were reduced by sub-epicardium (Epi) (27.8±2.9) %, midmyocardium (Mid) (41.0±4.7) %, and sub-endocardium (Endo) (20.3±3.4) % compared with those in control cells. The decrease of Ito density was more pronounced in Mid than in Epi and Endo (P<0.01 vs Epi or Endo). There were no significant differences in Ito densities between vol-treated group and control group in three layers separately. In conclusion, volsartan can inhibit the transmural heterogeneous changes of Ito in left ventricular hypertrophic cardiomyocytes in rabbit.展开更多
Transient current (I-t), current-voltage (I-V) characteristics, and dc conductivity ln(σ) for bisphenol A corn-cobs (BPACC) sample were investigated. At higher temperatures, I-V characteristics reveal that the dc cur...Transient current (I-t), current-voltage (I-V) characteristics, and dc conductivity ln(σ) for bisphenol A corn-cobs (BPACC) sample were investigated. At higher temperatures, I-V characteristics reveal that the dc cur-rent for the sample undergoes two regions one due to ohmic conduction and the other has been attributed to Space charge limited current (SCLC). The activation energy (Ea), the electron mobility μo), effective electron mobility ?μe), the concentration of the charge’s concentrations in conduction band, trapping factor (θ) and the trap concentration (Nt) were calculated. At lower temperatures, the dc current exhibits a peculiar behavior for I-t regime and I-V characteristics. Transient current of BPACC sample exhibits approximately constant value at constant electric field and it has saturation value for I-V characteristics. The attained results suggest strongly the applicability of this material in the electrical applications.展开更多
Silicon-germanium (SiGe) hereto-junction bipolar transistor current transients induced by pulse laser and heavy iron are measured using a real-time digital oscilloscope. These transients induced by pulse laser and h...Silicon-germanium (SiGe) hereto-junction bipolar transistor current transients induced by pulse laser and heavy iron are measured using a real-time digital oscilloscope. These transients induced by pulse laser and heavy iron exhibit the same waveform and charge collection time except for the amplitude of peak current. Different laser energies and voltage biases under heavy ion irradiation also have impact on current transient, whereas the waveform remains unchanged. The position-correlated current transients suggest that the nature of the current transient is controlled by the behavior of the C/S junction.展开更多
A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especia...A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.展开更多
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived sem...A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.展开更多
In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupl...In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current-voltage (l-V) curves are extracted from the transients. The experimental results of both gate-lag transient current and pulsed I-V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of A1GaN/GaN HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simulation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of GaN-based devices.展开更多
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient volt...A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.展开更多
Busbar differential relaying method based on combined amplitude and phase information of high frequency transient currents is put forward in this paper for the speed and reliability problems of busbar protection based...Busbar differential relaying method based on combined amplitude and phase information of high frequency transient currents is put forward in this paper for the speed and reliability problems of busbar protection based on fundamental frequency. Under the analysis of features of bus high frequency differential currents, complex wavelet analysis is used to extract the amplitude and phase features of 1/4 period high frequency differential currents, and amplitude and phase information are used to form the polar coordinates. Bus fault is identified intuitively and precisely according to polar locus differences. This polar coordinates represented busbar differential protection scheme based on high frequency transient signals can not only avoid TA saturation, realizing quick protection, lots of PSCAD/EMTDC simulations also show that this busbar differential protection scheme works well under different fault conditions.展开更多
The dynamic responses of generators when subjected to disturbances in an interconnected power system have become a major challenge to power utility companies due to increasing stress on the power network. Since the oc...The dynamic responses of generators when subjected to disturbances in an interconnected power system have become a major challenge to power utility companies due to increasing stress on the power network. Since the occurrence of a disturbance or fault cannot be completely avoided, hence, when it occurs, control measures need to be put in place to limit the fault current, which invariably limit the level of the disturbances. This paper explores the use of Superconductor Fault Current Limiter (SFCL) to improve the transient stability of the Nigeria 330 kV Transmission Network. During a large disturbance, the rotor angle of the generator is enhanced by connecting a Fault Current Limiter (FCL) which reduces the fault current and hence, increases transient stability of the power network. In this study, the most affected generator was taken into consideration in locating the SFCL. The result obtained reveals that the Swing Curve of the generator without FCL increases monotonically which indicates instability, while the Swing Curve of the System with FCL reaches steady state.展开更多
An exact solution to the problem of an MHD transient flow with Hall current past a uniformly accelerated horizontal porous plate in a rotating system has been presented. The dimensionless governing equations of the fl...An exact solution to the problem of an MHD transient flow with Hall current past a uniformly accelerated horizontal porous plate in a rotating system has been presented. The dimensionless governing equations of the flow problem are solved by Laplacetransform technique in closed form. A uniform magnetic field is assumed to be applied transversely to the direction of the flow. The expressions for velocity fields and skin-frictions are obtained in non-dimensional form. The primary and secondary velocity distributions and skin-frictions at the plate due to primary and secondary velocity field are demonstrated graphically and the effects of the different parameters namely, rotational parameter, Hartmann number, Hall parameter and acceleration parameter are discussed and the results are physically interpreted.展开更多
Objective :To investigate the different suppressive effect of lidocaine on persistent Na^+ current and transient Na^+ current in injured or uninjured dorsal root ganglion neurons. Methods: Totally 23 SD rats were ...Objective :To investigate the different suppressive effect of lidocaine on persistent Na^+ current and transient Na^+ current in injured or uninjured dorsal root ganglion neurons. Methods: Totally 23 SD rats were randomly divided into 2 groups: control group (n: 10) and chronically compressed DRG (dorsal root ganglion) group (CCD group, n= 13). Rats were anesthetized and DRG was isolated. Single DRG neuron was isolated by enzymatic disassociation method. Persistent Na^+ current (INap) and transient Na^+ current (INaT) were elicited in voltage clamp mode. Results: The presence of INap was testified in most DRG neurons (38/46 neurons in CCD group and 31/39 neurons in control group, P〉0. 05). However, the cur- rent density of INap in CCD group (4. 6±0. 6 pA/pF, n=38 neurons) was greater than that in control group (2.5±0.4 pA/pF, n=31 neurons) (P〈0. 05). The characteristics of INap was observed and found that INap could he blocked by 0.2 μmol/L tetrodotoxin easily. Furthermore, the does-effect relationship of lidocaine on INaP and IN.T were also examined. INaP and IN.T were suppressed by different concentrations of li- docaine, the range for INap was 5-20 μmol/L and for INaT was 0. 05-2 mmol/L. Conclusion: INap and INaT were suppressed by different concentrations of lidocaine. INap was suppressed by very low concentration of lidocaine (5-20 μmol/L). However, INaT could only be blocked by high concentration of lidocaine (0.05-2 mmol/L).展开更多
To determine the effects of HOE 694, a new and potent Na+- H+ exchanger blocker, on transient inward current (Iti) and Na+- Ca2+ exchange during hypoxia- reoxygenation in guinea pig cardiomyocytes. Methods. Cardio...To determine the effects of HOE 694, a new and potent Na+- H+ exchanger blocker, on transient inward current (Iti) and Na+- Ca2+ exchange during hypoxia- reoxygenation in guinea pig cardiomyocytes. Methods. Cardiomyocytes were isolated from adult guinea pig ventricle. Experiment was performed in an experimental chamber that allowed the cells to be exposed to a sufficiently low O2 pressure. The cells were subjected to hypoxia and reoxygenation. The ionic currents were studied with patch clamp technique. Results. In the absence of HOE 694, hypoxia- reoxygenation induced Iti in 12 of 15 experiments; but in cardiomyocytes pretreated with HOE 694 (10~ 50μ mol/L), the incidence of Iti observed during reoxygenation was reduced to 5 of 11 experiments and 3 of 10 experiments, P Conclusions. Blockade of the Na+- H+ exchange by HOE 694 could reduce Ca2+ overload upon hypoxia- reoxygenation, and inhibition of Na+- H+ exchange may also indirectly decrease Na+- Ca2+ exchange activity during hypoxia.展开更多
A theoretical equation is developed which describes the response of the current transients to a constant potential at tubular electrodes for a reversible electrode reaction in the flowing fluid.
The transient current behaviour for Iron in 3.5%NaCl and 3.5%NaCl +1%NaNO2 solutions during corrosion fatigue (CF) process has been investigated at different given strain amplitudes and strain rates. The results show ...The transient current behaviour for Iron in 3.5%NaCl and 3.5%NaCl +1%NaNO2 solutions during corrosion fatigue (CF) process has been investigated at different given strain amplitudes and strain rates. The results show that elastic strain has little contribution to material dissolution. The elastic tension strain results in the decrease in the transient current, while the elastic compression strain increases the transient current. Compared to the elastic deformation, plastic deformation affects material dissolution evidently For iron in 3.5%NaCl solution, the strain amplitude plays a dominant role in the dissolution process accelerated by the plastic strain, while in 3.5%NaCl+1%NaNO2 solution, both the strain amplitude and strain rate play an important role in this process. In this paper, the effect of the elastic deformation on the material dissolution and the relation between the tension and compression current peak values under the plastic cycle deformation are discussed展开更多
Urban rail transit is one of the most important way for urban residents. However, frequent power failure, especially the short fault hinders the safe and stable operation of rail transit. The research of the transient...Urban rail transit is one of the most important way for urban residents. However, frequent power failure, especially the short fault hinders the safe and stable operation of rail transit. The research of the transient variation of line electrical parameters in short circuit fault is the basis of researches for technology of line protection and short circuit fault location. Based on Matlab/Simulink, a 24-pulse rectifier circuit model is established, the resistance and inductance value of the catenary and rail network are calculated. The short Circuit fault simulation model of DC traction power supply system is established. The short-circuit fault of the traction network at close and distant points are simulated, the transient variation values of fault current with the different fault distance are analyzed. The simulation results show that the transient current peak of the nearby short circuit is oscillatory and convergent due to the nonlinear devices, which proves the accuracy of the model and provides a reference for the precise configuration of the line protection equipment.展开更多
The single event transient(SET)effect in nanotube tunneling field-effect transistor with bias-induced electron–hole bilayer(EHBNT-TFET)is investigated by 3-D TCAD simulation for the first time.The effects of linear e...The single event transient(SET)effect in nanotube tunneling field-effect transistor with bias-induced electron–hole bilayer(EHBNT-TFET)is investigated by 3-D TCAD simulation for the first time.The effects of linear energy transfer(LET),characteristic radius,strike angle,electrode bias and hit location on SET response are evaluated in detail.The simulation results show that the peak value of transient drain current is up to 0.08 m A for heavy ion irradiation with characteristic radius of 50 nm and LET of 10 Me V·cm^(2)/mg,which is much higher than the on-state current of EHBNTTFET.The SET response of EHBNT-TFET presents an obvious dependence on LET,strike angle,drain bias and hit location.As LET increases from 2 Me V·cm^(2)/mg to 10 Me V·cm^(2)/mg,the peak drain current increases monotonically from 0.015 mA to 0.08 mA.The strike angle has an greater impact on peak drain current especially for the smaller characteristic radius.The peak drain current and collected charge increase by 0.014 mA and 0.06 fC,respectively,as the drain bias increases from 0.1 V to 0.9 V.Whether from the horizontal or the vertical direction,the most sensitive hit location is related to wt.The underlying physical mechanism is explored and discussed.展开更多
基金financial support from the National Natural Science Foundation of China(No.51974198)。
文摘To address the problem of floating and aggregation of Ag-GNSs in the molten pool during the traditional reflow soldering process,Cu/SAC/Ag-GNSs/Cu sandwich joints were prepared under an applied current density(1.0×10^(4) A/cm^(2))for a few hundred milliseconds to produce Ag-coated graphene-reinforced Sn-Ag-Cu(SAC/AgGNSs)solder joints.The experimental results showed that Ag-GNSs were homogenously dispersed in the solder joints,providing more Cu6 Sn5 grain nucleation sites,which refined these grains and reduced the thickness difference at the anode and cathode.In addition,the Cu6 Sn5 morphology changed from rod-like to plate-shaped because of the uniform distribution of Ag-GNSs and constitutional supercooling.The significantly increased shear strength of the transient current bonding and the change in the fracture mechanism were due to the uniformly distributed Ag-GNSs and the microstructural changes.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50807001)
文摘The electromagnetic concentrative coils are indispensable in the functional magnetic stimulation and have potential applications in nondestructive testing. In this paper, we propose a figure-8-shaped coil being composed of two arbitrary oblique elliptical coils, which can change the electromagnetic concentrative region and the magnitude of eddy current density by changing the elliptical shape and/or spread angle between two elliptical coils. Pulsed current is usually the excitation source in the functional magnetic stimulation, so in this paper we derive the analytical solutions of transient pulsed eddy current field in the time domain due to the elliptical concentrative coil placed in an arbitrary position over a half-infinite plane conductor by making use of the scale-transformation, the Laplace transform and the Fourier transform are used in our derivation. Calculation results of field distributions produced by the figure-8-shaped elliptical coil show some behaviours as follows: 1) the eddy currents are focused on the conductor under the geometric symmetric centre of figure-8-shaped coil; 2) the greater the scale factor of ellipse is, the higher the eddy current density is and the wider the concentrative area of eddy current along y axis is; 3) the maximum magnitude of eddy current density increases with the increase of spread angle. When spread angle is 180°, there are two additional reverse concentrative areas on both sides of x axis.
基金Supported by the National Natural Science Foundation of China(51076014)the Research Fund for the Doctoral Program of Higher Education(20101101110011)
文摘Influence of eddy current on transient characteristics of common rail injector solenoid valve was studied in this paper. Experimental investigations of drive current and power source volt- age of both drive current ascending and descending process were conducted on a common rail injec- tor solenoid valve. A new discretizing calculation method of solenoid valve flux linkage was put for- ward for the first time based on the experimental results and drive circuit principle, and flux linkage of both drive current ascending and descending process were evaluated. New inductance calculation methods for drive current ascending and descending process respectively were also presented. Influ- ence of parasitic inductance was evaluated. Results indicate that the air gap, under which the transi- ent flux linkage of the solenoid valve is the biggest, varies with drive current due to eddy current. Flux linkage of drive current descending process is bigger than that of drive current ascending process under the same drive current and the same air gap width. Eddy current can reduce the delay between the time that drive current begins to descend and the time that armature begins to move downward. Inductance of drive current descending process is bigger than that of drive current as- cending process over larger scope of drive current, but the difference becomes smaller with the in- creasing of air gap width. The differences of both flux linkage and inductance between drive current ascending and descending process are caused by the eddy current in core and armature materials.
文摘The transmural heterogeneous changes of transient outward potassium currents (Ito) in rabbit hypertrophic cardiaomyocytes and the effects of long-term prophylactic treatment with volsartan were investigated. Rabbits were divided into hypertrophy group (left ventricular hypertrophy induced by partial ligation of abdominal aorta), vol-treated group (volsartan was administrated after the ligation), and control group (sham operated). Myocytes were isolated by a two-step enzymatical method. The sub-endocardial (Endo) and sub-epicardium (Epi) tissues were separated from midmyocardium (Mid) with a razor. Whole-cell patch-clamp technique was used to record potassium currents. The results showed that membrane capacitance was larger in hypertrophic cells than those in control and vol-treated cells (P<0.01 vs control cells, n=30). The densities of Ito in hypertrophic cells were reduced by sub-epicardium (Epi) (27.8±2.9) %, midmyocardium (Mid) (41.0±4.7) %, and sub-endocardium (Endo) (20.3±3.4) % compared with those in control cells. The decrease of Ito density was more pronounced in Mid than in Epi and Endo (P<0.01 vs Epi or Endo). There were no significant differences in Ito densities between vol-treated group and control group in three layers separately. In conclusion, volsartan can inhibit the transmural heterogeneous changes of Ito in left ventricular hypertrophic cardiomyocytes in rabbit.
文摘Transient current (I-t), current-voltage (I-V) characteristics, and dc conductivity ln(σ) for bisphenol A corn-cobs (BPACC) sample were investigated. At higher temperatures, I-V characteristics reveal that the dc cur-rent for the sample undergoes two regions one due to ohmic conduction and the other has been attributed to Space charge limited current (SCLC). The activation energy (Ea), the electron mobility μo), effective electron mobility ?μe), the concentration of the charge’s concentrations in conduction band, trapping factor (θ) and the trap concentration (Nt) were calculated. At lower temperatures, the dc current exhibits a peculiar behavior for I-t regime and I-V characteristics. Transient current of BPACC sample exhibits approximately constant value at constant electric field and it has saturation value for I-V characteristics. The attained results suggest strongly the applicability of this material in the electrical applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274106 and 61574171
文摘Silicon-germanium (SiGe) hereto-junction bipolar transistor current transients induced by pulse laser and heavy iron are measured using a real-time digital oscilloscope. These transients induced by pulse laser and heavy iron exhibit the same waveform and charge collection time except for the amplitude of peak current. Different laser energies and voltage biases under heavy ion irradiation also have impact on current transient, whereas the waveform remains unchanged. The position-correlated current transients suggest that the nature of the current transient is controlled by the behavior of the C/S junction.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51137004,61427806 and 51577184the Equipment Development Project of Chinese Academy of Sciences under Grant No YZ201507
文摘A new method of 3D transient eddy current field calculation is proposed. The Maxwell equations with time component elimination (METCE) are derived under the assumption of magnetic quasi static approximation, especially for the sample of low conductivity. Based on METCE, we deduce a more efficient reconstruction algorithm of a 3D transient eddy current field. The computational burden is greatly reduced through the new algorithm, and the computational efficiency is improved. This new algorithm decompounds the space-time variables into two individual variables. The idea is to solve the spatial vector component firstly, and then multiply it by the corresponded time component. The iterative methods based on METCE are introduced to recover the distribution of conductivity in magneto-acoustic tomography. The reconstructed images of conductivity are consistent with the original distribution, which validate the new method.
基金supported partially by the Institute of Hydroengineering of the Polish Academy of Sciences and the state budget for research for the years 2010-2011
文摘A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.
基金Project supported by the National Natural Science Foundation of China(Grant No.61306113)
文摘In this paper, two-dimensional (2D) transient simulations of an A1GaN/GaN high-electron-mobility transistor (HEMT) are carded out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current-voltage (l-V) curves are extracted from the transients. The experimental results of both gate-lag transient current and pulsed I-V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of A1GaN/GaN HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simulation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of GaN-based devices.
基金supported by the National Natural Science Foundation of China(Grant No.51307124)the Major Program of the National Natural Science Foundation of China(Grant No.51190105)
文摘A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.
文摘Busbar differential relaying method based on combined amplitude and phase information of high frequency transient currents is put forward in this paper for the speed and reliability problems of busbar protection based on fundamental frequency. Under the analysis of features of bus high frequency differential currents, complex wavelet analysis is used to extract the amplitude and phase features of 1/4 period high frequency differential currents, and amplitude and phase information are used to form the polar coordinates. Bus fault is identified intuitively and precisely according to polar locus differences. This polar coordinates represented busbar differential protection scheme based on high frequency transient signals can not only avoid TA saturation, realizing quick protection, lots of PSCAD/EMTDC simulations also show that this busbar differential protection scheme works well under different fault conditions.
文摘The dynamic responses of generators when subjected to disturbances in an interconnected power system have become a major challenge to power utility companies due to increasing stress on the power network. Since the occurrence of a disturbance or fault cannot be completely avoided, hence, when it occurs, control measures need to be put in place to limit the fault current, which invariably limit the level of the disturbances. This paper explores the use of Superconductor Fault Current Limiter (SFCL) to improve the transient stability of the Nigeria 330 kV Transmission Network. During a large disturbance, the rotor angle of the generator is enhanced by connecting a Fault Current Limiter (FCL) which reduces the fault current and hence, increases transient stability of the power network. In this study, the most affected generator was taken into consideration in locating the SFCL. The result obtained reveals that the Swing Curve of the generator without FCL increases monotonically which indicates instability, while the Swing Curve of the System with FCL reaches steady state.
文摘An exact solution to the problem of an MHD transient flow with Hall current past a uniformly accelerated horizontal porous plate in a rotating system has been presented. The dimensionless governing equations of the flow problem are solved by Laplacetransform technique in closed form. A uniform magnetic field is assumed to be applied transversely to the direction of the flow. The expressions for velocity fields and skin-frictions are obtained in non-dimensional form. The primary and secondary velocity distributions and skin-frictions at the plate due to primary and secondary velocity field are demonstrated graphically and the effects of the different parameters namely, rotational parameter, Hartmann number, Hall parameter and acceleration parameter are discussed and the results are physically interpreted.
基金the National Natural Science Foundation of China(No.30600581)
文摘Objective :To investigate the different suppressive effect of lidocaine on persistent Na^+ current and transient Na^+ current in injured or uninjured dorsal root ganglion neurons. Methods: Totally 23 SD rats were randomly divided into 2 groups: control group (n: 10) and chronically compressed DRG (dorsal root ganglion) group (CCD group, n= 13). Rats were anesthetized and DRG was isolated. Single DRG neuron was isolated by enzymatic disassociation method. Persistent Na^+ current (INap) and transient Na^+ current (INaT) were elicited in voltage clamp mode. Results: The presence of INap was testified in most DRG neurons (38/46 neurons in CCD group and 31/39 neurons in control group, P〉0. 05). However, the cur- rent density of INap in CCD group (4. 6±0. 6 pA/pF, n=38 neurons) was greater than that in control group (2.5±0.4 pA/pF, n=31 neurons) (P〈0. 05). The characteristics of INap was observed and found that INap could he blocked by 0.2 μmol/L tetrodotoxin easily. Furthermore, the does-effect relationship of lidocaine on INaP and IN.T were also examined. INaP and IN.T were suppressed by different concentrations of li- docaine, the range for INap was 5-20 μmol/L and for INaT was 0. 05-2 mmol/L. Conclusion: INap and INaT were suppressed by different concentrations of lidocaine. INap was suppressed by very low concentration of lidocaine (5-20 μmol/L). However, INaT could only be blocked by high concentration of lidocaine (0.05-2 mmol/L).
基金This work was supported by Leading Specialty Funding of Shanghai, Grant No.94- III- 001.
文摘To determine the effects of HOE 694, a new and potent Na+- H+ exchanger blocker, on transient inward current (Iti) and Na+- Ca2+ exchange during hypoxia- reoxygenation in guinea pig cardiomyocytes. Methods. Cardiomyocytes were isolated from adult guinea pig ventricle. Experiment was performed in an experimental chamber that allowed the cells to be exposed to a sufficiently low O2 pressure. The cells were subjected to hypoxia and reoxygenation. The ionic currents were studied with patch clamp technique. Results. In the absence of HOE 694, hypoxia- reoxygenation induced Iti in 12 of 15 experiments; but in cardiomyocytes pretreated with HOE 694 (10~ 50μ mol/L), the incidence of Iti observed during reoxygenation was reduced to 5 of 11 experiments and 3 of 10 experiments, P Conclusions. Blockade of the Na+- H+ exchange by HOE 694 could reduce Ca2+ overload upon hypoxia- reoxygenation, and inhibition of Na+- H+ exchange may also indirectly decrease Na+- Ca2+ exchange activity during hypoxia.
文摘A theoretical equation is developed which describes the response of the current transients to a constant potential at tubular electrodes for a reversible electrode reaction in the flowing fluid.
文摘The transient current behaviour for Iron in 3.5%NaCl and 3.5%NaCl +1%NaNO2 solutions during corrosion fatigue (CF) process has been investigated at different given strain amplitudes and strain rates. The results show that elastic strain has little contribution to material dissolution. The elastic tension strain results in the decrease in the transient current, while the elastic compression strain increases the transient current. Compared to the elastic deformation, plastic deformation affects material dissolution evidently For iron in 3.5%NaCl solution, the strain amplitude plays a dominant role in the dissolution process accelerated by the plastic strain, while in 3.5%NaCl+1%NaNO2 solution, both the strain amplitude and strain rate play an important role in this process. In this paper, the effect of the elastic deformation on the material dissolution and the relation between the tension and compression current peak values under the plastic cycle deformation are discussed
文摘Urban rail transit is one of the most important way for urban residents. However, frequent power failure, especially the short fault hinders the safe and stable operation of rail transit. The research of the transient variation of line electrical parameters in short circuit fault is the basis of researches for technology of line protection and short circuit fault location. Based on Matlab/Simulink, a 24-pulse rectifier circuit model is established, the resistance and inductance value of the catenary and rail network are calculated. The short Circuit fault simulation model of DC traction power supply system is established. The short-circuit fault of the traction network at close and distant points are simulated, the transient variation values of fault current with the different fault distance are analyzed. The simulation results show that the transient current peak of the nearby short circuit is oscillatory and convergent due to the nonlinear devices, which proves the accuracy of the model and provides a reference for the precise configuration of the line protection equipment.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.61974056)the Natural Science Foundation of Shanghai(Grant No.19ZR1471300)+1 种基金Shanghai Science and Technology Innovation Action Plan(Grant No.19511131900)Shanghai Science and Technology Explorer Plan(Grant No.21TS1401700)。
文摘The single event transient(SET)effect in nanotube tunneling field-effect transistor with bias-induced electron–hole bilayer(EHBNT-TFET)is investigated by 3-D TCAD simulation for the first time.The effects of linear energy transfer(LET),characteristic radius,strike angle,electrode bias and hit location on SET response are evaluated in detail.The simulation results show that the peak value of transient drain current is up to 0.08 m A for heavy ion irradiation with characteristic radius of 50 nm and LET of 10 Me V·cm^(2)/mg,which is much higher than the on-state current of EHBNTTFET.The SET response of EHBNT-TFET presents an obvious dependence on LET,strike angle,drain bias and hit location.As LET increases from 2 Me V·cm^(2)/mg to 10 Me V·cm^(2)/mg,the peak drain current increases monotonically from 0.015 mA to 0.08 mA.The strike angle has an greater impact on peak drain current especially for the smaller characteristic radius.The peak drain current and collected charge increase by 0.014 mA and 0.06 fC,respectively,as the drain bias increases from 0.1 V to 0.9 V.Whether from the horizontal or the vertical direction,the most sensitive hit location is related to wt.The underlying physical mechanism is explored and discussed.