In this paper, we investigate experimentally the concept of energy har- vesting from galloping oscillations with a focus on wake and turbulence effects. The .harvester is composed of a unimorph piezoelectric cantileve...In this paper, we investigate experimentally the concept of energy har- vesting from galloping oscillations with a focus on wake and turbulence effects. The .harvester is composed of a unimorph piezoelectric cantilever beam with a square cross-section tip mass. In one case, the harvester is placed in the wake of another galloping harvester with the objective of determining the wake effects on the response of the harvester. In the second case, meshes were placed upstream of the harvester with the objective of investigating the effects of upstream turbulence on the response of the harvester. The results show that both wake effects and up- stream turbulence significantly affect the response of the harvester. Depending on the spacing between the two squares and the opening size of the mesh, wake and upstream turbulence can positively enhance the level of the harvested power.展开更多
Systematic differences in the duration and frequency content of ground motions from the hanging wall and footwall during the 2008 Wenchuan earthquake are investigated,focusing on the influence of these differences on ...Systematic differences in the duration and frequency content of ground motions from the hanging wall and footwall during the 2008 Wenchuan earthquake are investigated,focusing on the influence of these differences on structural input energy based on the elastic and inelastic energy responses of structures.A comparison of the input energy spectra between the hanging wall and the footwall reveal that the structural input energy on the hanging wall is not amplified due to the short duration and low peak ground velocity to acceleration ratio(V/A).However,the larger demand of structural input energy on the footwall in the range of medium and long periods is observed and the demand increases up to 50% relative to the average level of structural input energy for rupture distances larger than 30 km.The importance of considering the footwall effect on structural input energy when comparing ground motions in the range of medium and long periods is recognized.展开更多
The effects of atomic number Z on the energy distribution of hot electrons generated by the interaction of 60fs, 130mJ, 800nm, and 7×10^17W/cm^2 laser pulses with metallic targets have been studied experimentally...The effects of atomic number Z on the energy distribution of hot electrons generated by the interaction of 60fs, 130mJ, 800nm, and 7×10^17W/cm^2 laser pulses with metallic targets have been studied experimentally. The results show that the number and the effective temperature of hot electrons increase with the atomic number Z of metallic targets, and the temperature of hot electrons are in the range of 190-230keV, which is consistent with a scaling law of hot electrons temperature.展开更多
What is sustainability? Does it only concern the environment or even socio-economic policies? It is only a question of ethics or a redefinition of industrial policy oriented towards the use of renewable energy, it can...What is sustainability? Does it only concern the environment or even socio-economic policies? It is only a question of ethics or a redefinition of industrial policy oriented towards the use of renewable energy, it can bring benefits both atmospheric and social employment. The need for the development of renewable sources can be in tune with the correct management of the territory in consideration of the fact that these sources involve the widespread implementation of small and medium-sized plants. A model of economic development based on renewable sources should respect the peculiarities and characteristics of the territories involved. It should also think of the territory as a “value” to be strengthened and used in a sustainable and integrated way and no longer as a passive platform on which to install plants. Solar thermal and photovoltaic, biomass, geothermal, hydrological, wind power are some of the sources the various countries must constantly invest. This publication is based on these concepts starting from an analysis of the employment data of the OECD “Organisation for Economic Co-operation and Development countries”, comparing them successively with the results of renewable energy productivity. The analysis was performed by analyzing a sample of 22 countries over a period of 20 years, after which the regression curve for the variables with the OLS method was created. This econometric method has allowed us to analyze the impact that renewable technologies have on the parameters of social welfare and in particular on unemployment.展开更多
The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area o...The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.展开更多
Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascite...Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascites sarcoma.The three groups of tumor bearing mice were irradiated upon the inner corners with the dosages of 11 00,14 67 and 22 00 J·cm -2 LELI respectively,and injected with CYT intraperitoneally to observe the changes of the survival time,the ascites growth speed,and the kinetic changes of immune functions.The survival times of the three groups of CYT/LELI combination were obviously longer than those of the tumor and CYT control groups.Correspondingly,the amounts of ascites,tumor cells densities and total tumor cells in CYT/LELI groups decreased significantly,while the death ratio of the tumor cells increased.Comparatively,the group of 22 00 J·cm -2 LELI combined with CYT showed the most ideal antitumor effects,and the life prolongation ratio was up to 53 20%.展开更多
The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-ener...The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.展开更多
Based on analysis of the theoretical impact of energy consumption on air quality,taking 20 heavily polluted cities in the Yangtze River Delta of China as the object,we construct a Spatial Dubin Model,and estimate the ...Based on analysis of the theoretical impact of energy consumption on air quality,taking 20 heavily polluted cities in the Yangtze River Delta of China as the object,we construct a Spatial Dubin Model,and estimate the effect of energy consumption on air quality and the spatial spillover effects of air pollution.We come to the following conclusions:First,the regional air quality has significant spatial dependence and spatial heterogeneity.Second,under three kinds of spatial associated mode,energy consumption has a negative impact on air quality,and the air pollution arising from energy consumption has a negative intra-regional spillover effect.The effect is strongest under the spatial distance weight matrix,followed by the economic distance,and the adjacent spatial weight matrix,which are−0.7926,−0.4547,and−0.4539,respectively.Third,in addition,under the adjacent space and economic distance space matrix,energy consumption has a significant negative effect on air quality,and the inter-regional spillover effects are−0.1513 and−2.5736,respectively.Meanwhile,considering spatial distance and economic development,the inter-regional spillover effect is much larger than is the intra-regional spillover effect.In general,the total spillover effect is at−0.6053 and−3.0284.展开更多
An analysis is performed to study thermo-diffusion and diffusion-thermo effects on mixed convection heat and mass transfer boundary layer flow along an inclined (solar collector) plate. The resulting governing equatio...An analysis is performed to study thermo-diffusion and diffusion-thermo effects on mixed convection heat and mass transfer boundary layer flow along an inclined (solar collector) plate. The resulting governing equations are transformed and then solved numerically using the local nonsimilarity method and Runge-Kutta shooting quadrature. A parametric study illustrating the influence of thermal buoyancy parameter (ζ), Prandtl number (Pr), Schmidt number (Sc), Soret number (Sr), Dufour number (Du) and concentration-to- thermal-buoyancy ratio parameter, N, on the fluid velocity, temperature and concentration profiles as well as on local skin-friction, Nusselt and Sherwood numbers is conducted. For positive inclination angle of the plate (γ = 70 degrees), flow velocity (f') is strongly increased i.e. accelerated, with thermal buoyancy force parameter (ζ), in particular closer to the plate surface;further into the boundary layer, ζ has a much reduced effect. Conversely temperature (θ) and concentration (ψ) is decreased with increasing thermal buoyancy parameter, ζ. For negative plate inclination, the flow is accelerated whereas for positive inclination it is decelerated i.e. velocity is reduced. Conversely with negative plate inclination both the temperature and concentration in the boundary layer is reduced with the opposite apparent for positive inclination. Increasing Prandtl number strongly reduces temperature in the regime whereas an increase in Schmidt number boosts temperatures with temperature overshoots near the plate surface for Sc = 3 and 5 (i.e. for Sc > 1). Concentration is reduced continuously throughout the boundary layer, however, with increasing Schmidt number. A positive increase in concentration-to-thermal-buoyancy ratio parameter, N, significantly accelerates the flow in the domain, whereas negative N causes a deceleration. A velocity overshoot is also identified for N = 20, at intermediate distance from the plate surface. Negative N (thermal and concentration buoyancy forces oppose each other) induces a slight increase in both fluid temperature and concentration, with the reverse observed for positive N (thermal and concentration buoyancy forces assisting each other). Increasing Dufour number respectively causes a rise in temperature and a decrease in concentration, whereas an increase in Soret number cools the fluid i.e. reduces temperature and enhances concentration values. In the absence of Soret and Dufour effects, positive N causes a monotonic increase in local Nusselt number, NuxRex-1/2 with ζ Cos γ, for N = -1 the local Nusselt number remains constant for all values of parameter, ζ Cos γ. Local Sherwood number, ShxRex-1/2 is boosted considerably with higher Schmidt numbers and also with positive N values. The computations in the absence of Soret and Dufour effects correlate accurately with the earlier study by Chen et al. (1980).展开更多
The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of th...The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots展开更多
Throughout the last decade, the use of energy drinks has been increasingly looked upon with caution as potentially dangerous due to their perceived strong concentration of caffeine aside from other substances such as ...Throughout the last decade, the use of energy drinks has been increasingly looked upon with caution as potentially dangerous due to their perceived strong concentration of caffeine aside from other substances such as taurine, guarana, and L-carnitine that are largely unknown to the general public. In addition, a large number of energy drink intoxications have been reported all over the world including cases of seizures and arrhythmias. In this paper, we focus on the effect of energy drinks on the cardiovascular system and whether the current ongoing call for the products' sales and regulation of their contents should continue.展开更多
In this study, we found for the first time that silkworm eggs were able to survive in vacuum for a long period of time. Subsequently, 10w energy Ar+ ions with different energies and fluences were used to bombard silk...In this study, we found for the first time that silkworm eggs were able to survive in vacuum for a long period of time. Subsequently, 10w energy Ar+ ions with different energies and fluences were used to bombard silkworm eggs so as to explore the resulting biological effects. Results showed that (i) the exposure of silkworm eggs to vacuum within 10 rain did not cause significant impact on the hatching rates, while the irradiation of silkworm eggs by Ar+ ions of 25 keV or 30 keV with fiuences ranging from 2.6×2.6× 10^15 ion/cm2 to 8×2.6 × 10^15 ion/cm2 caused a significant impact on the hatching rates, and the hatching rates decreased with the increase in the fluence and energy level; (ii) the irradiation of silkworm eggs by Ar+ ions of 30 keV with a fluence of 8×2.6 × 10^15 ion/cm2 or 9×2.6 × 10^15 ion/cm2 resulted in a noticeable etching on the egg shell surface which could be observed by a scanning electron microscope; and (iii) the irradiation of silkworm eggs by Ar+ ions of generated several mutant phenotypes which were 30 keV with a fiuence of 9×2.6× 10^15 ion/cm2 observed in the 5th instar silkworms and a moth.展开更多
Energy is now becoming the bottleneck of urban and regional development. The paper takes Shandong Province, one of the most energy consuming provinces in China, as an example, uses quantity methods such as SPSS (Stast...Energy is now becoming the bottleneck of urban and regional development. The paper takes Shandong Province, one of the most energy consuming provinces in China, as an example, uses quantity methods such as SPSS (Stastics Package for Social Science) cluster sampling and regression analysis, and applies quantity analysis, to analyze the situation of energy issues in Shandong province. The conflicts between the quick industrialization and increasing extensive economic development, between urban population and energy consuming per head, between the infinite energy consuming desire and the low level of managing system, and between the unstable world energy supply and the limited energy storage in China are the main factors of energy crisis in Shandong, which not only results in energy shortage, but also becomes the barrier of economic and social development. In order to ensure sufficient energy supply for Shandong province in the 21st century, we should take countermeasures, such as changing the economic development model, pursuing a multiple and high quality energy strategy, improving the intensive urbanization strategy, and building a scientific energy system.展开更多
Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isos...Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.展开更多
Currently,energy conservation draws wide attention in industrial manufacturing systems.In recent years,many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as...Currently,energy conservation draws wide attention in industrial manufacturing systems.In recent years,many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as an effective approach.This paper puts forwards a multi-objective stochastic parallel machine scheduling problem with the consideration of deteriorating and learning effects.In it,the real processing time of jobs is calculated by using their processing speed and normal processing time.To describe this problem in a mathematical way,amultiobjective stochastic programming model aiming at realizing makespan and energy consumption minimization is formulated.Furthermore,we develop a multi-objective multi-verse optimization combined with a stochastic simulation method to deal with it.In this approach,the multi-verse optimization is adopted to find favorable solutions from the huge solution domain,while the stochastic simulation method is employed to assess them.By conducting comparison experiments on test problems,it can be verified that the developed approach has better performance in coping with the considered problem,compared to two classic multi-objective evolutionary algorithms.展开更多
Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms,...Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms, respectively. The total interaction energy function for any rnetallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terrns are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.展开更多
By means of the nuclear parton distribution studied only with lepton deep-inelastic scattering experimental data, the J/ψ "normal nuclear absorption" and energy loss effects are studied in a GIauber formalism at HE...By means of the nuclear parton distribution studied only with lepton deep-inelastic scattering experimental data, the J/ψ "normal nuclear absorption" and energy loss effects are studied in a GIauber formalism at HERA and RHIC energies. Assuming that the absorption cross section σabs increases with the charmonium-nucleon center of mass energy, the results reveal a significant dependence of the aabs on rapidity g at RHIC energies. The initial-state energy loss effect, which is found important only at HERA energies, is also considered, and its influence should be eliminated when we studied the absorption effect at low collision energies. Finally, we also present the theoretical prediction for LHC.展开更多
Recent experimental and theoretical studies show that energy efficiency, which measures the amount of infor- mation processed by a neuron with per unit of energy consumption, plays an important role in the evolution o...Recent experimental and theoretical studies show that energy efficiency, which measures the amount of infor- mation processed by a neuron with per unit of energy consumption, plays an important role in the evolution of neural systems. Here we calculate the information rates and energy efficieneies of the Hodgkin-Huxley (HH) neuron model at different temperatures in a noisy environment. It is found that both the information rate and energy efficiency are maximized by certain temperatures. Though the information rate and energy efficiency cannot be maximized simultaneously, the neuron holds a high information processing capacity at the tempera- ture corresponding to the maximal energy efficiency. Our results support the idea that the energy efficiency is a selective pressure that influences the evolution of nervous systems.展开更多
During the years 2021 and 2022, the city of Maroua experienced repeated power blackouts. However, this locality has significant photovoltaic energy potential. Nevertheless, the evaluation of the electrical performance...During the years 2021 and 2022, the city of Maroua experienced repeated power blackouts. However, this locality has significant photovoltaic energy potential. Nevertheless, the evaluation of the electrical performance showed the dependence of the population on these fluctuations, which could be bypassed or suppressed. In most cases, the blackout occurs during high energy demand. In this paper, a method for evaluating electrical efficiency is proposed and its credibility has been demonstrated on the one hand, and on the other hand, a renewable energy production system is proposed. The Homer software has made possible the analysis of the proposed system and its impact on the environment has also been carried out. The techno-economic study of the system has proved that a solar photovoltaic farm associated with an energy storage system, with a capacity of 47 MW, can meet the energy demand of the town of Maroua. This alternative is profitable for this locality which lives in a precarious situation and a continuous need.展开更多
In the context of global carbon neutrality,new energy vehicle promotion(NEVP)has become an important means of reducing carbon emissions.This paper constructs a theoretical model and uses panel data on NEVP in 21 count...In the context of global carbon neutrality,new energy vehicle promotion(NEVP)has become an important means of reducing carbon emissions.This paper constructs a theoretical model and uses panel data on NEVP in 21 countries from 2012 to 2018 to empirically examine the green effect of NEVP.The results indicate the following:(1)NEVP significantly reduces greenhouse gases emissions,and the green effect can be transmitted and diffused through a direct path.(2)Replacing fuel-fired vehicles and accelerating the end-of-life vehicle scrapping process significantly conducted the green effect,and aggravating traffic congestion was not statistically significant.(3)The transmission mechanism of the green effect is regulated by regional economic heterogeneity.In regions with better development of fuel-fired vehicles,the transmission of the green effect is subject to the elimination of fuel-fired vehicles and traffic congestion governance,and the transmission efficiency is low.However,regions with a relatively weak fuel-fired automobile industry foundation show a strong“advantage of backwardness”,and the green effect is more prominent.This means that global NEVP should be further accelerated to achieve the green effect and the goal of global carbon neutrality.展开更多
文摘In this paper, we investigate experimentally the concept of energy har- vesting from galloping oscillations with a focus on wake and turbulence effects. The .harvester is composed of a unimorph piezoelectric cantilever beam with a square cross-section tip mass. In one case, the harvester is placed in the wake of another galloping harvester with the objective of determining the wake effects on the response of the harvester. In the second case, meshes were placed upstream of the harvester with the objective of investigating the effects of upstream turbulence on the response of the harvester. The results show that both wake effects and up- stream turbulence significantly affect the response of the harvester. Depending on the spacing between the two squares and the opening size of the mesh, wake and upstream turbulence can positively enhance the level of the harvested power.
基金Special Research Foundation of Earthquake Industry under Grant No. 201208013National Natural Science Foundation of China under Grant No. 51008101 & 51078117
文摘Systematic differences in the duration and frequency content of ground motions from the hanging wall and footwall during the 2008 Wenchuan earthquake are investigated,focusing on the influence of these differences on structural input energy based on the elastic and inelastic energy responses of structures.A comparison of the input energy spectra between the hanging wall and the footwall reveal that the structural input energy on the hanging wall is not amplified due to the short duration and low peak ground velocity to acceleration ratio(V/A).However,the larger demand of structural input energy on the footwall in the range of medium and long periods is observed and the demand increases up to 50% relative to the average level of structural input energy for rupture distances larger than 30 km.The importance of considering the footwall effect on structural input energy when comparing ground motions in the range of medium and long periods is recognized.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275056) and the Science and Technology 0ffice of Sichuan, China (Grant 04JY029-097).
文摘The effects of atomic number Z on the energy distribution of hot electrons generated by the interaction of 60fs, 130mJ, 800nm, and 7×10^17W/cm^2 laser pulses with metallic targets have been studied experimentally. The results show that the number and the effective temperature of hot electrons increase with the atomic number Z of metallic targets, and the temperature of hot electrons are in the range of 190-230keV, which is consistent with a scaling law of hot electrons temperature.
文摘What is sustainability? Does it only concern the environment or even socio-economic policies? It is only a question of ethics or a redefinition of industrial policy oriented towards the use of renewable energy, it can bring benefits both atmospheric and social employment. The need for the development of renewable sources can be in tune with the correct management of the territory in consideration of the fact that these sources involve the widespread implementation of small and medium-sized plants. A model of economic development based on renewable sources should respect the peculiarities and characteristics of the territories involved. It should also think of the territory as a “value” to be strengthened and used in a sustainable and integrated way and no longer as a passive platform on which to install plants. Solar thermal and photovoltaic, biomass, geothermal, hydrological, wind power are some of the sources the various countries must constantly invest. This publication is based on these concepts starting from an analysis of the employment data of the OECD “Organisation for Economic Co-operation and Development countries”, comparing them successively with the results of renewable energy productivity. The analysis was performed by analyzing a sample of 22 countries over a period of 20 years, after which the regression curve for the variables with the OLS method was created. This econometric method has allowed us to analyze the impact that renewable technologies have on the parameters of social welfare and in particular on unemployment.
基金supported by the National Natural Science Foundation of China(Nos.12105341 and 12035019)the opening fund of Key Laboratory of Silicon Device and Technology,Chinese Academy of Sciences(No.KLSDTJJ2022-3).
文摘The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.
文摘Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascites sarcoma.The three groups of tumor bearing mice were irradiated upon the inner corners with the dosages of 11 00,14 67 and 22 00 J·cm -2 LELI respectively,and injected with CYT intraperitoneally to observe the changes of the survival time,the ascites growth speed,and the kinetic changes of immune functions.The survival times of the three groups of CYT/LELI combination were obviously longer than those of the tumor and CYT control groups.Correspondingly,the amounts of ascites,tumor cells densities and total tumor cells in CYT/LELI groups decreased significantly,while the death ratio of the tumor cells increased.Comparatively,the group of 22 00 J·cm -2 LELI combined with CYT showed the most ideal antitumor effects,and the life prolongation ratio was up to 53 20%.
基金supported by the National Natural Science Foundation of China (10772096)
文摘The Bauschinger and size effects in the thinfilm plasticity theory arising from the defect-energy of geometrically necessary dislocations (GNDs) are analytically investigated in this paper. Firstly, this defect-energy is deduced based on the elastic interactions of coupling dislocations (or pile-ups) moving on the closed neighboring slip plane. This energy is a quadratic function of the GNDs density, and includes an elastic interaction coefficient and an energetic length scale L. By incorporating it into the work- conjugate strain gradient plasticity theory of Gurtin, an energetic stress associated with this defect energy is obtained, which just plays the role of back stress in the kinematic hardening model. Then this back-stress hardening model is used to investigate the Bauschinger and size effects in the tension problem of single crystal Al films with passivation layers. The tension stress in the film shows a reverse dependence on the film thickness h. By comparing it with discrete-dislocation simulation results, the length scale L is determined, which is just several slip plane spacing, and accords well with our physical interpretation for the defect- energy. The Bauschinger effect after unloading is analyzed by combining this back-stress hardening model with a friction model. The effects of film thickness and pre-strain on the reversed plastic strain after unloading are quantified and qualitatively compared with experiment results.
基金supported by the National Statistical Scientific Research Project of China[Grant number.2016LZ13]the Ministry of Education of Humanities and Social Science Project of China[Grant number.16YJAZH015]the National Natural Science Foundation of China[Grant number.71874185].
文摘Based on analysis of the theoretical impact of energy consumption on air quality,taking 20 heavily polluted cities in the Yangtze River Delta of China as the object,we construct a Spatial Dubin Model,and estimate the effect of energy consumption on air quality and the spatial spillover effects of air pollution.We come to the following conclusions:First,the regional air quality has significant spatial dependence and spatial heterogeneity.Second,under three kinds of spatial associated mode,energy consumption has a negative impact on air quality,and the air pollution arising from energy consumption has a negative intra-regional spillover effect.The effect is strongest under the spatial distance weight matrix,followed by the economic distance,and the adjacent spatial weight matrix,which are−0.7926,−0.4547,and−0.4539,respectively.Third,in addition,under the adjacent space and economic distance space matrix,energy consumption has a significant negative effect on air quality,and the inter-regional spillover effects are−0.1513 and−2.5736,respectively.Meanwhile,considering spatial distance and economic development,the inter-regional spillover effect is much larger than is the intra-regional spillover effect.In general,the total spillover effect is at−0.6053 and−3.0284.
文摘An analysis is performed to study thermo-diffusion and diffusion-thermo effects on mixed convection heat and mass transfer boundary layer flow along an inclined (solar collector) plate. The resulting governing equations are transformed and then solved numerically using the local nonsimilarity method and Runge-Kutta shooting quadrature. A parametric study illustrating the influence of thermal buoyancy parameter (ζ), Prandtl number (Pr), Schmidt number (Sc), Soret number (Sr), Dufour number (Du) and concentration-to- thermal-buoyancy ratio parameter, N, on the fluid velocity, temperature and concentration profiles as well as on local skin-friction, Nusselt and Sherwood numbers is conducted. For positive inclination angle of the plate (γ = 70 degrees), flow velocity (f') is strongly increased i.e. accelerated, with thermal buoyancy force parameter (ζ), in particular closer to the plate surface;further into the boundary layer, ζ has a much reduced effect. Conversely temperature (θ) and concentration (ψ) is decreased with increasing thermal buoyancy parameter, ζ. For negative plate inclination, the flow is accelerated whereas for positive inclination it is decelerated i.e. velocity is reduced. Conversely with negative plate inclination both the temperature and concentration in the boundary layer is reduced with the opposite apparent for positive inclination. Increasing Prandtl number strongly reduces temperature in the regime whereas an increase in Schmidt number boosts temperatures with temperature overshoots near the plate surface for Sc = 3 and 5 (i.e. for Sc > 1). Concentration is reduced continuously throughout the boundary layer, however, with increasing Schmidt number. A positive increase in concentration-to-thermal-buoyancy ratio parameter, N, significantly accelerates the flow in the domain, whereas negative N causes a deceleration. A velocity overshoot is also identified for N = 20, at intermediate distance from the plate surface. Negative N (thermal and concentration buoyancy forces oppose each other) induces a slight increase in both fluid temperature and concentration, with the reverse observed for positive N (thermal and concentration buoyancy forces assisting each other). Increasing Dufour number respectively causes a rise in temperature and a decrease in concentration, whereas an increase in Soret number cools the fluid i.e. reduces temperature and enhances concentration values. In the absence of Soret and Dufour effects, positive N causes a monotonic increase in local Nusselt number, NuxRex-1/2 with ζ Cos γ, for N = -1 the local Nusselt number remains constant for all values of parameter, ζ Cos γ. Local Sherwood number, ShxRex-1/2 is boosted considerably with higher Schmidt numbers and also with positive N values. The computations in the absence of Soret and Dufour effects correlate accurately with the earlier study by Chen et al. (1980).
文摘The temperature and the size dependences of the self-trapping energy of a polaron in a GaAs parabolic quantum dot are investigated by the second order Rayleigh-Schrodinger perturbation method using the framework of the effective mass approximation. The numerical results show that the self-trapping energies of polaron in GaAs parabolic quantum dots shrink with the enhancement of temperature and the size of the quantum dot. The results also indicate that the temperature effect becomes obvious in small quantum dots
文摘Throughout the last decade, the use of energy drinks has been increasingly looked upon with caution as potentially dangerous due to their perceived strong concentration of caffeine aside from other substances such as taurine, guarana, and L-carnitine that are largely unknown to the general public. In addition, a large number of energy drink intoxications have been reported all over the world including cases of seizures and arrhythmias. In this paper, we focus on the effect of energy drinks on the cardiovascular system and whether the current ongoing call for the products' sales and regulation of their contents should continue.
基金supported by China Postdoctoral Science Foundation (No.20060390702)Anhui Provincial Natural Science Fund of China (No.070411017)
文摘In this study, we found for the first time that silkworm eggs were able to survive in vacuum for a long period of time. Subsequently, 10w energy Ar+ ions with different energies and fluences were used to bombard silkworm eggs so as to explore the resulting biological effects. Results showed that (i) the exposure of silkworm eggs to vacuum within 10 rain did not cause significant impact on the hatching rates, while the irradiation of silkworm eggs by Ar+ ions of 25 keV or 30 keV with fiuences ranging from 2.6×2.6× 10^15 ion/cm2 to 8×2.6 × 10^15 ion/cm2 caused a significant impact on the hatching rates, and the hatching rates decreased with the increase in the fluence and energy level; (ii) the irradiation of silkworm eggs by Ar+ ions of 30 keV with a fluence of 8×2.6 × 10^15 ion/cm2 or 9×2.6 × 10^15 ion/cm2 resulted in a noticeable etching on the egg shell surface which could be observed by a scanning electron microscope; and (iii) the irradiation of silkworm eggs by Ar+ ions of generated several mutant phenotypes which were 30 keV with a fiuence of 9×2.6× 10^15 ion/cm2 observed in the 5th instar silkworms and a moth.
基金financing projects (Grant No. 40771060) of the National Natural Sci-ences Foundationintermediate research achievements of Shandong Natural Sciences Foundation (Grant No. Q2006E02)
文摘Energy is now becoming the bottleneck of urban and regional development. The paper takes Shandong Province, one of the most energy consuming provinces in China, as an example, uses quantity methods such as SPSS (Stastics Package for Social Science) cluster sampling and regression analysis, and applies quantity analysis, to analyze the situation of energy issues in Shandong province. The conflicts between the quick industrialization and increasing extensive economic development, between urban population and energy consuming per head, between the infinite energy consuming desire and the low level of managing system, and between the unstable world energy supply and the limited energy storage in China are the main factors of energy crisis in Shandong, which not only results in energy shortage, but also becomes the barrier of economic and social development. In order to ensure sufficient energy supply for Shandong province in the 21st century, we should take countermeasures, such as changing the economic development model, pursuing a multiple and high quality energy strategy, improving the intensive urbanization strategy, and building a scientific energy system.
基金the Teaching & Researching Foundation for Outstanding Teachers of Southeast University
文摘Isospin effects on particle emission of fissioning isobaric sources and isotopic sources , and its dependence on the excitation energy are studied via Smoluchowski equations. It is shown that with increasing the isospin of fissioning systems, charged-particle emission is not sensitive to the strength of nuclear dissipation. In addition, we have found that increasing the excitation energy not only increases the influence of nuclear dissipation on particle emission but also greatly enhances the sensitivity of the emission of pre-scission neutrons or charged particles to the isospin of the system. Therefore, in order to extract dissipation strength more accurately by taking light particle multiplicities it is important to choose both a highly excited compound nucleus and a proper kind of particles for systems with different isospins.
文摘Currently,energy conservation draws wide attention in industrial manufacturing systems.In recent years,many studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as an effective approach.This paper puts forwards a multi-objective stochastic parallel machine scheduling problem with the consideration of deteriorating and learning effects.In it,the real processing time of jobs is calculated by using their processing speed and normal processing time.To describe this problem in a mathematical way,amultiobjective stochastic programming model aiming at realizing makespan and energy consumption minimization is formulated.Furthermore,we develop a multi-objective multi-verse optimization combined with a stochastic simulation method to deal with it.In this approach,the multi-verse optimization is adopted to find favorable solutions from the huge solution domain,while the stochastic simulation method is employed to assess them.By conducting comparison experiments on test problems,it can be verified that the developed approach has better performance in coping with the considered problem,compared to two classic multi-objective evolutionary algorithms.
基金Supported by King Saud University,College of Science-Research Center,Project Number PHYS/2009/19
文摘Higher order rnultipole potentials and electrostatic screening effects are introduced to incorporate the dan gling bonds on the surface of a metallic nanopaticle and to modify the coulornb like potential energy terms, respectively. The total interaction energy function for any rnetallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terrns are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.
文摘By means of the nuclear parton distribution studied only with lepton deep-inelastic scattering experimental data, the J/ψ "normal nuclear absorption" and energy loss effects are studied in a GIauber formalism at HERA and RHIC energies. Assuming that the absorption cross section σabs increases with the charmonium-nucleon center of mass energy, the results reveal a significant dependence of the aabs on rapidity g at RHIC energies. The initial-state energy loss effect, which is found important only at HERA energies, is also considered, and its influence should be eliminated when we studied the absorption effect at low collision energies. Finally, we also present the theoretical prediction for LHC.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105062,11275003,11265014 and 11275084the Fundamental Research Funds for the Central Universities under Grant No LZUJBKY-2015-119
文摘Recent experimental and theoretical studies show that energy efficiency, which measures the amount of infor- mation processed by a neuron with per unit of energy consumption, plays an important role in the evolution of neural systems. Here we calculate the information rates and energy efficieneies of the Hodgkin-Huxley (HH) neuron model at different temperatures in a noisy environment. It is found that both the information rate and energy efficiency are maximized by certain temperatures. Though the information rate and energy efficiency cannot be maximized simultaneously, the neuron holds a high information processing capacity at the tempera- ture corresponding to the maximal energy efficiency. Our results support the idea that the energy efficiency is a selective pressure that influences the evolution of nervous systems.
文摘During the years 2021 and 2022, the city of Maroua experienced repeated power blackouts. However, this locality has significant photovoltaic energy potential. Nevertheless, the evaluation of the electrical performance showed the dependence of the population on these fluctuations, which could be bypassed or suppressed. In most cases, the blackout occurs during high energy demand. In this paper, a method for evaluating electrical efficiency is proposed and its credibility has been demonstrated on the one hand, and on the other hand, a renewable energy production system is proposed. The Homer software has made possible the analysis of the proposed system and its impact on the environment has also been carried out. The techno-economic study of the system has proved that a solar photovoltaic farm associated with an energy storage system, with a capacity of 47 MW, can meet the energy demand of the town of Maroua. This alternative is profitable for this locality which lives in a precarious situation and a continuous need.
文摘In the context of global carbon neutrality,new energy vehicle promotion(NEVP)has become an important means of reducing carbon emissions.This paper constructs a theoretical model and uses panel data on NEVP in 21 countries from 2012 to 2018 to empirically examine the green effect of NEVP.The results indicate the following:(1)NEVP significantly reduces greenhouse gases emissions,and the green effect can be transmitted and diffused through a direct path.(2)Replacing fuel-fired vehicles and accelerating the end-of-life vehicle scrapping process significantly conducted the green effect,and aggravating traffic congestion was not statistically significant.(3)The transmission mechanism of the green effect is regulated by regional economic heterogeneity.In regions with better development of fuel-fired vehicles,the transmission of the green effect is subject to the elimination of fuel-fired vehicles and traffic congestion governance,and the transmission efficiency is low.However,regions with a relatively weak fuel-fired automobile industry foundation show a strong“advantage of backwardness”,and the green effect is more prominent.This means that global NEVP should be further accelerated to achieve the green effect and the goal of global carbon neutrality.