The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the coll...The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the collection of wastewater samples. Their analysis revealed specific pollutant loads, including loads of BOD5 3.6966 kgO<sub>2</sub>/day and COD of 12.8775 kgO<sub>2</sub>/day, which were central to the design phase. Following a rigorous assessment of the existing sanitation infrastructure, constructed wetland (CWs) emerged as the most appropriate ecological solution. This system, valued for its ability to effectively remove contaminants, was tailored to the specific needs of the site. Consequently, the final design of the filter extends over 217.16 m<sup>2</sup>, divided into two cells of 108.58 m<sup>2</sup> each, with dimensions of 12.77 m in length and 8.5 m in width. The depth of the filtering medium is approximately 0.60 m, meeting the standards while ensuring maximized purification. Typha, an indigenous and prolific plant known for its purification abilities, was selected as the filtering agent. Concurrently, non-crushed gravel was chosen for its proven filtration capacity. This study is the result of a combination of scientific rigor and design expertise. It provides a holistic view of sanitation for Ndiebene Gandiol. The technical specifications and dimensions of the constructed wetland filter embody an approach that marries indepth analysis and practical application, all aimed at delivering an effective and long-lasting solution to the local sanitation challenges. By integrating precise scientific data with sanitation design expertise, this study delivers a holistic solution for Ndiebene Gandiol. The detailed dimensions and specifications of the constructed wetland filter reflect a methodology that combines meticulous analysis with practical adaptation, aiming to provide an effective and sustainable response to the challenges of rural and school sanitation in the northern region of Senegal.展开更多
The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domai...The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domains,and key technologies.More specifically,we investigate the transformative potential of digital twins for the wastewater treatment engineering sector.Our discussion highlights the application of digital twins to wastewater treatment plants(WWTPs)and sewage networks,hardware(i.e.,facilities and pipes,sensors for water quality and activated sludge,hydrodynamics,and power consumption),and software(i.e.,knowledge-based and data-driven models,mechanistic models,hybrid twins,control methods,and the Internet of Things).Furthermore,two cases are provided,followed by an assessment of current challenges in and perspectives on the application of digital twins in WWTPs.This review serves as an essential primer for wastewater engineers navigating the digital paradigm shift.展开更多
This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging....This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging.Various factors have influence the coagulation/flocculation process,including the effect of pH,coagulant dosage,coagulant type,temperature,initial turbidity,coagulation speed,flocculation speed,coagulation and flocculation time,settling time,colloidal particles,zeta potential,the effects of humic acids,and extraction density are explained.The bio-coagulants derived from plants are outlined.The impact of organic coagulants on water quality,focusing on their effects on the physicochemical parameters of water,heavy metals removal,and bacteriological water quality,is examined.The methods of extraction and purification of plant-based coagulants,highlighting techniques such as solvent extraction and ultrasonic extraction,are discussed.It also examines the parameters that influence these processes.The methods and principles of purification of coagulating agents,including dialysis,freeze-drying,ion exchange,electrophoresis,filtration,and centrifugation,are listed.Finally,it evaluates the sustainability of natural coagulants,focusing on the environmental,technical,and economic aspects of their use.At the end of this review,the readers should have a comprehensive understanding of the mechanisms,selection,extraction,purification,and sustainability of plant-based natural coagulants in water treatment.展开更多
This study presents an assessment of wastewater ecological treatment processes utilizing a horizontal flow bio-reactor at the Ndiebene Gandiol 1 school. It primarily aims to juxtapose the filtration efficacy of two di...This study presents an assessment of wastewater ecological treatment processes utilizing a horizontal flow bio-reactor at the Ndiebene Gandiol 1 school. It primarily aims to juxtapose the filtration efficacy of two distinct vegetative cells, Vetiver and Typha, in the pursuit of sustainable wastewater management strategies for rural scholastic institutions. A synergistic approach was employed, integrating on-site surveys for site-specific insights and laboratory analyses to quantify the pollutant loads pre- and post-treatment. Our findings indicate that both Vetiver and Typha-infused filter beds significantly reduce most contaminants, with particular success in diminishing chemical oxygen demand (COD) and biological oxygen demand (BOD5). Vetiver was notable for its superior reduction of COD, achieving an average effluent concentration of 74 mg/L, in contrast to Typha’s 155 mg/L. Conversely, Typha excelled in suspended solids removal, registering 1 mg/L against Vetiver’s 3 mg/L. While both systems notably surpassed the target metrics across several indicators, including fecal coliform reduction, our results pinpoint the need for refinement in phosphate remediation. Conclusively, the study underscores the efficacy of both Vetiver and Typha systems in rural wastewater treatment contexts, with their integrative application potentially paving the way for enhanced system robustness and efficiency. The outcomes herein highlight the imperative for continued research to further hone these ecological treatment modalities, especially concerning phosphate elimination.展开更多
In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed...In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.展开更多
Water is an important material resource for human survival,and with the increasing development of society,the amount of urban industrial wastewater and domestic sewage is gradually increasing.However,wastewater collec...Water is an important material resource for human survival,and with the increasing development of society,the amount of urban industrial wastewater and domestic sewage is gradually increasing.However,wastewater collection and treatment facilities lag behind,so that a large number of wastewater enters urban water,making urban water become gradually black and smelly.In order to provide a good living environment for human beings,a large number of scholars actively explore the treatment technology of black and smelly water.In this paper,the evolution process of black and smelly water was introduced firstly,and then the treatment technology of black and smelly water was summarized.Finally,the prospects for the development of the treatment technology were put forward.展开更多
A multi-faceted Case Area Targeted Intervention (CATI) approach emphasizing the integration of Water, Sanitation and Hygiene (WASH) interventions and Oral Cholera Vaccine (OCV) campaign was employed to respond to the ...A multi-faceted Case Area Targeted Intervention (CATI) approach emphasizing the integration of Water, Sanitation and Hygiene (WASH) interventions and Oral Cholera Vaccine (OCV) campaign was employed to respond to the outbreak of cholera in Garissa County. Drinking water sources in areas heavily impacted by cholera were systematically mapped and tested for microbiological quality. The quality assessment was carried out in April 2023 during an ongoing cholera outbreak in the county. A total of 109 samples were collected and tested for thermotolerant coliforms and other in situ parameters. The finding revealed that more than 87% of the samples did not meet the World Health Organization (WHO) standard for thermotolerant coliforms;and 30% had turbidity values above the recommended threshold values. None of the 109 samples had any traceable residual chlorine. Following these findings, the county government implemented the targeted interventions which resulted in a positive impact in the fight against cholera. The WHO supported key interventions which included capacity building in water quality monitoring and prepositioning of critical WASH commodities to the cholera affected areas.展开更多
A metropolitan city such as Los Angeles (LA) is an ideal study site with a very high population density, and it houses at least 3 treatment plants where sewage is treated preliminarily and then progressing to tertiary...A metropolitan city such as Los Angeles (LA) is an ideal study site with a very high population density, and it houses at least 3 treatment plants where sewage is treated preliminarily and then progressing to tertiary treatment before discharging into the LA River. We will gain a better understanding of the water quality in the LA River and the nitrate load in the watershed system by examining the influence of waste water treatment plants (WWTPs). The goal of this study is to pinpoint the exact source of nitrate in the LA River using the isotope signatures. We have selected sampling locations both upstream and downstream of the WWTP. This serves to monitor nitrate levels, aiding in the assessment of treatment plant effectiveness, pinpointing nitrate pollution sources, and ensuring compliance with environmental regulations. The research explores the isotopic composition of NO3 in relation to atmospheric nitrogen and Vienna Standard Mean Ocean Water, shedding light on the contributions from various sources such as manure, sewage, soil organic nitrogen, and nitrogen fertilizers. Specifically, there is a change in the δ15NAir value between the dry and wet seasons. The isotope values in the Tillman WWTP sample changed between dry and wet seasons. Notably, the presence of nitrate originating from manure and sewage is consistent across seasons, emphasizing the significant impact of anthropogenic and agricultural activities on water quality. This investigation contributes to the broader understanding of nitrogen cycling in urban water bodies, particularly in the context of wastewater effluent discharge. The findings hold implications for water quality management and highlight the need for targeted interventions to mitigate the impact of nitrogen-containing compounds on aquatic ecosystems. Overall, the study provides a valuable framework for future research and environmental stewardship efforts aimed at preserving the health and sustainability of urban water resources. This data informs decisions regarding additional treatment or mitigation actions to safeguard downstream water quality and ecosystem health.展开更多
Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although inten...Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although intensive efforts have been committed to achieve a hydrogen economy,the expensive noble metal-based catalysts remain under consideration.Therefore,the engineering of self-supported electrocatalysts prepared using a direct growth strategy on three-dimensional(3D)nickel foam(NF)as a conductive substrate has garnered significant interest.This is due to the large active surface area and 3D porous network offered by these electrocatalysts,which can enhance the synergistic eff ect between the catalyst and the substrate,as well as improve electrocatalytic performance.Hydrothermal-assisted growth,microwave heating,electrodeposition,and other physical methods(i.e.,chemical vapor deposition and plasma treatment)have been applied to NF to fabricate competitive electrocatalysts with low overpotential and high stability.In this review,recent advancements in the development of self-supported electrocatalysts on 3D NF are described.Finally,we provide future perspectives of self-supported electrode platforms in electrochemical water splitting.展开更多
Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents fo...Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents for natural life.A good state of urban landscape water body is crucial to the ecological environment of the city.However,due to the poor kinetic energy of urban landscape water body and the influence of various human factors,the quality of urban landscape water body often declines,and urban population is threatened by water security problems.Through the study of several water body ecological remediation technologies,relevant suggestions are put forward,in order to provide a reference for water pollution restoration and treatment in urban human settlement environment.展开更多
Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango ke...Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango kernel powder (MKP) as bioadsorbent material for removal of Cr (VI) from water. Uv-visible spectroscopy was used to monitor and quantify Cr (VI) during processing using the Beer-Lambert formula. Some parameters such as pH, mango powder, mass and contact time were optimized to determine adsorption capacity and chromium removal rate. Adsorption kinetics, equilibrium, isotherms and thermodynamic parameters such as ΔG˚, ΔH˚, and ΔS˚, as well as FTIR were studied to better understand the Cr (VI) removal process by MKP. The adsorption capacity reached 94.87 mg/g, for an optimal contact time of 30 min at 298 K. The obtained results are in accordance with a pseudo-second order Freundlich adsorption isotherm model. Finally FTIR was used to monitor the evolution of absorption bands, while Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to evaluate surface properties and morphology of the adsorbent.展开更多
In recent years,extensive research has been conducted on the preparation of high catalytic performance electrodes and the development of electrocatalytic water treatment processes.This article introduces the basic pri...In recent years,extensive research has been conducted on the preparation of high catalytic performance electrodes and the development of electrocatalytic water treatment processes.This article introduces the basic principles of electrochemical water treatment,the preparation of electrode materials,and the research progress of electrocatalytic technology for degrading organic chemical wastewater.It analyzes the problems faced by electrocatalytic degradation of organic chemical wastewater and looks forward to the development trend of electrocatalytic technology in the field of organic chemical wastewater treatment.展开更多
This paper researched a promising biological treatment of methyl violet waste water by methods of activated sludge.Effects of temperature and pH were studied on this process.Kinetic equation ...This paper researched a promising biological treatment of methyl violet waste water by methods of activated sludge.Effects of temperature and pH were studied on this process.Kinetic equation of the substrate biodegradation was investigated in the experimental range.It was studied and simulated that flow within the bubble region of this bioreactor according to the κ ε two fluid equation.Simulation results agree well with experimental data.展开更多
[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make castin...[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make casting solution with different formulations into hollow fiber membrane.The membrane was immersed in 1% NaClO solution for testing its performance changes.[Result]The membrane made by materials with bigger molecular weight had better oxidation resistance performance;the surfactant tween-80 could increase water flux,but lead to lower rupture intension;Pore-forming agent PEG400 do better than PVP in the oxidation resistance of membrane.[Conclusion]This study will provide a good idea for the development of the PVDF membrane with high oxidation resistance.展开更多
The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inh...The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.展开更多
Nowadays, intensive breeding of poultry and livestock of large scale has made the treatment of its waste and wastewater an urgent environmental issue, which motivated this study. A wetland of 688 mz was constructed on...Nowadays, intensive breeding of poultry and livestock of large scale has made the treatment of its waste and wastewater an urgent environmental issue, which motivated this study. A wetland of 688 mz was constructed on an egg duck farm, and water hyacinth (Eichhornia crassipes) was chosen as an aquatic plant for the wetland and used as food for duck production. The objectives of this study were to test the role of water hyacinth in purifying nutrient-rich wastewater and its effects on the ducks' feed intake, egg laying performance and egg quality. This paper shows that the constructed wetland removed as much as 64.44% of chemical oxygen demand (COD), 21.78% of total nitrogen (TN) and 23.02% of total phosphorus (TP). Both dissolved oxygen (DO) and the transparency of the wastewater were remarkably improved, with its transparency 2.5 times higher than that of the untreated wastewater. After the ducks were fed with water hyacinth, the average daily feed intake and the egg-laying ratio in the test group were 5.86% and 9.79% higher, respectively, than in the control group; the differences were both significant at the 0.01 probability level. The egg weight in the test group was 2.36% higher than in the control group (P 〈 0.05), but the feed conversion ratios were almost the same. The eggshell thickness and strength were among the egg qualities significantly increased in ducks fed with water hyacinth. We concluded that a water hyacinth system was effective for purifying wastewater from an intensive duck farm during the water hyacinth growing season, as harvested water hyacinth had an excellent performance as duck feed. We also discussed the limitations of the experiment.展开更多
The efficiencies of two types of constructed wetlands for the treatment of low-concentration polluted eutrophic land- scape river water were studied in the western section of the Qingyuan River at the Minhang campus o...The efficiencies of two types of constructed wetlands for the treatment of low-concentration polluted eutrophic land- scape river water were studied in the western section of the Qingyuan River at the Minhang campus of Shanghai Jiaotong University.The first wetland was a single-stage system using gravel as a filtration medium,and the second was a three- stage system filled with combinations of gravel,zeolite,and fly ash.Results from parallel operations of the wetlands showed that the three-stage constructed wetland could remove organics,nitrogen, and phosphorus successfully.At the same time,it could also decrease ammoniacal odour in the effluent.Compared to the single-stage constructed wetland,it had better nutrient removal efficiencies with a higher removal of 19.37%-65.27% for total phosphorus (TP) and 21.56%- 62.94% for total nitrogen (TN),respectively,during the operation period of 14 weeks.In terms of removal of chemical oxygen demand (COD), turbidity,and blue-green algae,these two wetland systems had equivalent performances.It was also found that in the western section of the test river,in which the two constructed wetlands were located, the water quality was much better than that in the eastern and middle sections without constructed wetland because COD,TN, and TP were all in a relatively lower level and the eutrophication could be prevented completely in the western section.展开更多
The elemental composition and bacteria attached in particles were investigated during granular activated carbon (GAC) filtration.The experimental results showed that trapped influent particles could form new,larger ...The elemental composition and bacteria attached in particles were investigated during granular activated carbon (GAC) filtration.The experimental results showed that trapped influent particles could form new,larger particles on GAC surface.The sloughing of individuals off GAC surface caused an increase in effluent particles in the size range from 5 to 25 μm.The selectivity for element removal in GAC filters caused an increasing proportion of metallic elements in the effluent particles.The distribution of molar ratio indicated a complicated composition for large particles,involving organic and inorganic substances.The organic proportion accounted for 40% of total carbon attached to the particles.Compared with dissolved carbon,there was potential for the formation of trihalomethanes by organic carbon attached to particles,especially for those with size larger than 10 μm.The pure carbon energy spectrum was found only in the GAC effluent and the size distribution of carbon fines was mainly above 10 μm.The larger carbon fines provided more space for bacterial colonization and stronger protection for attached bacteria against disinfection.The residual attached bacteria after chorine disinfection was increased to 10 2-10 3 CFU/mL within 24 hours at 25°C.展开更多
The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, re...The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates.展开更多
The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6...The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650℃ and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CFL and CO, among which the total molar percentage of H2 and CFL was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.展开更多
文摘The primary objective of this study was to design and size a sustainable sanitation solution for the Ndiebene Gandiol 1 school located in the eponymous commune in northern Senegal. Field investigations led to the collection of wastewater samples. Their analysis revealed specific pollutant loads, including loads of BOD5 3.6966 kgO<sub>2</sub>/day and COD of 12.8775 kgO<sub>2</sub>/day, which were central to the design phase. Following a rigorous assessment of the existing sanitation infrastructure, constructed wetland (CWs) emerged as the most appropriate ecological solution. This system, valued for its ability to effectively remove contaminants, was tailored to the specific needs of the site. Consequently, the final design of the filter extends over 217.16 m<sup>2</sup>, divided into two cells of 108.58 m<sup>2</sup> each, with dimensions of 12.77 m in length and 8.5 m in width. The depth of the filtering medium is approximately 0.60 m, meeting the standards while ensuring maximized purification. Typha, an indigenous and prolific plant known for its purification abilities, was selected as the filtering agent. Concurrently, non-crushed gravel was chosen for its proven filtration capacity. This study is the result of a combination of scientific rigor and design expertise. It provides a holistic view of sanitation for Ndiebene Gandiol. The technical specifications and dimensions of the constructed wetland filter embody an approach that marries indepth analysis and practical application, all aimed at delivering an effective and long-lasting solution to the local sanitation challenges. By integrating precise scientific data with sanitation design expertise, this study delivers a holistic solution for Ndiebene Gandiol. The detailed dimensions and specifications of the constructed wetland filter reflect a methodology that combines meticulous analysis with practical adaptation, aiming to provide an effective and sustainable response to the challenges of rural and school sanitation in the northern region of Senegal.
基金supported by the National Natural Science Foundation of China(52321005,52293443,and 52230004)the Shenzhen Science and Technology Program(KQTD20190929172630447)+1 种基金the Shenzhen Key Research Project(GXWD20220817145054002)the Talent Recruitment Project of Guandong(2021QN020106).
文摘The digital twins concept enhances modeling and simulation through the integration of real-time data and feedback.This review elucidates the foundational elements of digital twins,covering their concept,entities,domains,and key technologies.More specifically,we investigate the transformative potential of digital twins for the wastewater treatment engineering sector.Our discussion highlights the application of digital twins to wastewater treatment plants(WWTPs)and sewage networks,hardware(i.e.,facilities and pipes,sensors for water quality and activated sludge,hydrodynamics,and power consumption),and software(i.e.,knowledge-based and data-driven models,mechanistic models,hybrid twins,control methods,and the Internet of Things).Furthermore,two cases are provided,followed by an assessment of current challenges in and perspectives on the application of digital twins in WWTPs.This review serves as an essential primer for wastewater engineers navigating the digital paradigm shift.
文摘This review describes the mechanisms of natural coagulants.It provides a good understanding of the two key processes of coagulation-flocculation:adsorption and charge neutralization,as well as adsorption and bridging.Various factors have influence the coagulation/flocculation process,including the effect of pH,coagulant dosage,coagulant type,temperature,initial turbidity,coagulation speed,flocculation speed,coagulation and flocculation time,settling time,colloidal particles,zeta potential,the effects of humic acids,and extraction density are explained.The bio-coagulants derived from plants are outlined.The impact of organic coagulants on water quality,focusing on their effects on the physicochemical parameters of water,heavy metals removal,and bacteriological water quality,is examined.The methods of extraction and purification of plant-based coagulants,highlighting techniques such as solvent extraction and ultrasonic extraction,are discussed.It also examines the parameters that influence these processes.The methods and principles of purification of coagulating agents,including dialysis,freeze-drying,ion exchange,electrophoresis,filtration,and centrifugation,are listed.Finally,it evaluates the sustainability of natural coagulants,focusing on the environmental,technical,and economic aspects of their use.At the end of this review,the readers should have a comprehensive understanding of the mechanisms,selection,extraction,purification,and sustainability of plant-based natural coagulants in water treatment.
文摘This study presents an assessment of wastewater ecological treatment processes utilizing a horizontal flow bio-reactor at the Ndiebene Gandiol 1 school. It primarily aims to juxtapose the filtration efficacy of two distinct vegetative cells, Vetiver and Typha, in the pursuit of sustainable wastewater management strategies for rural scholastic institutions. A synergistic approach was employed, integrating on-site surveys for site-specific insights and laboratory analyses to quantify the pollutant loads pre- and post-treatment. Our findings indicate that both Vetiver and Typha-infused filter beds significantly reduce most contaminants, with particular success in diminishing chemical oxygen demand (COD) and biological oxygen demand (BOD5). Vetiver was notable for its superior reduction of COD, achieving an average effluent concentration of 74 mg/L, in contrast to Typha’s 155 mg/L. Conversely, Typha excelled in suspended solids removal, registering 1 mg/L against Vetiver’s 3 mg/L. While both systems notably surpassed the target metrics across several indicators, including fecal coliform reduction, our results pinpoint the need for refinement in phosphate remediation. Conclusively, the study underscores the efficacy of both Vetiver and Typha systems in rural wastewater treatment contexts, with their integrative application potentially paving the way for enhanced system robustness and efficiency. The outcomes herein highlight the imperative for continued research to further hone these ecological treatment modalities, especially concerning phosphate elimination.
文摘In Saint-Louis, Senegal, a constructed wetland with horizontal flow reed beds (FHa and FHb) has demonstrated significant efficacy in treating municipal wastewater. Analyzing various treatment stages, the system showed only a slight temperature variation, from an influent average of 26.3°C to an effluent of 24.7°C. Electrical conductivity decreased from 1331 mS/cm to 974.5 mS/cm post-primary treatment, with suspended solids (SS) dramatically reduced from 718.9 mg/L to 5.7 mg/L in the final effluent. Biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) saw a notable decrease, from initial levels of 655.6 mg/L and 1240 mg/L to 2.3 mg/L and 71.3 mg/L, respectively. Nitrogenous compounds (N-TN) and phosphates () also decreased significantly, indicating the system’s nutrient removal capacity. Microbiological analysis revealed a reduction in fecal coliforms from 7.5 Ulog/100ml to 1.8 Ulog/100ml and a complete elimination of helminth eggs. The presence of Phragmites and Typha was instrumental in enhancing these reductions. The system’s compliance with the Senegalese standards for disposal into natural environments, WHO recommendations for unrestricted water reuse in irrigation, and the European legislation for water reuse was established. The effluent quality met the stringent criteria for various classes of agricultural reuse, illustrating the system’s potential for sustainable water management. This wetland model presents a robust solution for water-stressed regions, ensuring environmental protection while supporting agricultural needs. The study calls for ongoing research to further refine the system for optimal, reliable wastewater treatment and water resource sustainability.
文摘Water is an important material resource for human survival,and with the increasing development of society,the amount of urban industrial wastewater and domestic sewage is gradually increasing.However,wastewater collection and treatment facilities lag behind,so that a large number of wastewater enters urban water,making urban water become gradually black and smelly.In order to provide a good living environment for human beings,a large number of scholars actively explore the treatment technology of black and smelly water.In this paper,the evolution process of black and smelly water was introduced firstly,and then the treatment technology of black and smelly water was summarized.Finally,the prospects for the development of the treatment technology were put forward.
文摘A multi-faceted Case Area Targeted Intervention (CATI) approach emphasizing the integration of Water, Sanitation and Hygiene (WASH) interventions and Oral Cholera Vaccine (OCV) campaign was employed to respond to the outbreak of cholera in Garissa County. Drinking water sources in areas heavily impacted by cholera were systematically mapped and tested for microbiological quality. The quality assessment was carried out in April 2023 during an ongoing cholera outbreak in the county. A total of 109 samples were collected and tested for thermotolerant coliforms and other in situ parameters. The finding revealed that more than 87% of the samples did not meet the World Health Organization (WHO) standard for thermotolerant coliforms;and 30% had turbidity values above the recommended threshold values. None of the 109 samples had any traceable residual chlorine. Following these findings, the county government implemented the targeted interventions which resulted in a positive impact in the fight against cholera. The WHO supported key interventions which included capacity building in water quality monitoring and prepositioning of critical WASH commodities to the cholera affected areas.
文摘A metropolitan city such as Los Angeles (LA) is an ideal study site with a very high population density, and it houses at least 3 treatment plants where sewage is treated preliminarily and then progressing to tertiary treatment before discharging into the LA River. We will gain a better understanding of the water quality in the LA River and the nitrate load in the watershed system by examining the influence of waste water treatment plants (WWTPs). The goal of this study is to pinpoint the exact source of nitrate in the LA River using the isotope signatures. We have selected sampling locations both upstream and downstream of the WWTP. This serves to monitor nitrate levels, aiding in the assessment of treatment plant effectiveness, pinpointing nitrate pollution sources, and ensuring compliance with environmental regulations. The research explores the isotopic composition of NO3 in relation to atmospheric nitrogen and Vienna Standard Mean Ocean Water, shedding light on the contributions from various sources such as manure, sewage, soil organic nitrogen, and nitrogen fertilizers. Specifically, there is a change in the δ15NAir value between the dry and wet seasons. The isotope values in the Tillman WWTP sample changed between dry and wet seasons. Notably, the presence of nitrate originating from manure and sewage is consistent across seasons, emphasizing the significant impact of anthropogenic and agricultural activities on water quality. This investigation contributes to the broader understanding of nitrogen cycling in urban water bodies, particularly in the context of wastewater effluent discharge. The findings hold implications for water quality management and highlight the need for targeted interventions to mitigate the impact of nitrogen-containing compounds on aquatic ecosystems. Overall, the study provides a valuable framework for future research and environmental stewardship efforts aimed at preserving the health and sustainability of urban water resources. This data informs decisions regarding additional treatment or mitigation actions to safeguard downstream water quality and ecosystem health.
基金supported by The Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (No. 2023VCB0014)The National Natural Science Foundation of China (No. 52203284)Shenzhen Science and Technology Program (Nos. GJHZ20220913143801003 and RCBS20221008093057026)
文摘Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although intensive efforts have been committed to achieve a hydrogen economy,the expensive noble metal-based catalysts remain under consideration.Therefore,the engineering of self-supported electrocatalysts prepared using a direct growth strategy on three-dimensional(3D)nickel foam(NF)as a conductive substrate has garnered significant interest.This is due to the large active surface area and 3D porous network offered by these electrocatalysts,which can enhance the synergistic eff ect between the catalyst and the substrate,as well as improve electrocatalytic performance.Hydrothermal-assisted growth,microwave heating,electrodeposition,and other physical methods(i.e.,chemical vapor deposition and plasma treatment)have been applied to NF to fabricate competitive electrocatalysts with low overpotential and high stability.In this review,recent advancements in the development of self-supported electrocatalysts on 3D NF are described.Finally,we provide future perspectives of self-supported electrode platforms in electrochemical water splitting.
文摘Urban landscape water body is not only an important part of urban landscape construction,but also an important way to maintain landscape diversity and biodiversity,carrying the beautiful yearning of urban residents for natural life.A good state of urban landscape water body is crucial to the ecological environment of the city.However,due to the poor kinetic energy of urban landscape water body and the influence of various human factors,the quality of urban landscape water body often declines,and urban population is threatened by water security problems.Through the study of several water body ecological remediation technologies,relevant suggestions are put forward,in order to provide a reference for water pollution restoration and treatment in urban human settlement environment.
文摘Metal trace elements (MTE) are among the most harmful micropollutants of natural waters. Eliminating them helps improve the quality and safety of drinking water and protect human health. In this work, we used mango kernel powder (MKP) as bioadsorbent material for removal of Cr (VI) from water. Uv-visible spectroscopy was used to monitor and quantify Cr (VI) during processing using the Beer-Lambert formula. Some parameters such as pH, mango powder, mass and contact time were optimized to determine adsorption capacity and chromium removal rate. Adsorption kinetics, equilibrium, isotherms and thermodynamic parameters such as ΔG˚, ΔH˚, and ΔS˚, as well as FTIR were studied to better understand the Cr (VI) removal process by MKP. The adsorption capacity reached 94.87 mg/g, for an optimal contact time of 30 min at 298 K. The obtained results are in accordance with a pseudo-second order Freundlich adsorption isotherm model. Finally FTIR was used to monitor the evolution of absorption bands, while Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to evaluate surface properties and morphology of the adsorbent.
文摘In recent years,extensive research has been conducted on the preparation of high catalytic performance electrodes and the development of electrocatalytic water treatment processes.This article introduces the basic principles of electrochemical water treatment,the preparation of electrode materials,and the research progress of electrocatalytic technology for degrading organic chemical wastewater.It analyzes the problems faced by electrocatalytic degradation of organic chemical wastewater and looks forward to the development trend of electrocatalytic technology in the field of organic chemical wastewater treatment.
文摘This paper researched a promising biological treatment of methyl violet waste water by methods of activated sludge.Effects of temperature and pH were studied on this process.Kinetic equation of the substrate biodegradation was investigated in the experimental range.It was studied and simulated that flow within the bubble region of this bioreactor according to the κ ε two fluid equation.Simulation results agree well with experimental data.
基金Supported by Sichuan Provincial International S&T Cooperation Program(No.2008HH0012)Cooperation Research Program of Sichuan University and Hitachi Company(No.07H372)~~
文摘[Objective] The aim was to research the influences of different formulations on oxidation resistance of PVDF hollow fiber membrane.[Method]The immersion precipitation phase inversion method was employed to make casting solution with different formulations into hollow fiber membrane.The membrane was immersed in 1% NaClO solution for testing its performance changes.[Result]The membrane made by materials with bigger molecular weight had better oxidation resistance performance;the surfactant tween-80 could increase water flux,but lead to lower rupture intension;Pore-forming agent PEG400 do better than PVP in the oxidation resistance of membrane.[Conclusion]This study will provide a good idea for the development of the PVDF membrane with high oxidation resistance.
文摘The emulsion stability of oilfield produced water is related to the oil-water interfacial film strength and the zeta potential of the oil droplets. We investigated the effects of water treatment agents (corrosion inhibitor SL-2, scale inhibitor HEDP, germicide 1227, and flocculant polyaluminium chloride PAC) on the stability of oilfield produced water. The influence of these treatment agents on oil-water interfacial properties and the mechanism of these agents acting on the oilfield produced water were studied by measuring the interfacial shear viscosity, interfacial tension and zeta electric potential. The results indicated that the scale inhibitor HEDP could increase the oil-water interfacial film strength, and it could also increase the absolute value of the zeta potential of oil droplets. HEDP played an important role in the stability of the emulsion. Polyaluminum chloride (PAC) reduced the stability of the emulsion by considerably decreasing the absolute value of the zeta potential of oil droplets. Corrosion inhibitor SL-2 and germicide 1227 could decrease the oil-water interfacial tension, whereas they had little influence on oil-water interfacial shear viscosity and oil-water interfacial electricity properties.
文摘Nowadays, intensive breeding of poultry and livestock of large scale has made the treatment of its waste and wastewater an urgent environmental issue, which motivated this study. A wetland of 688 mz was constructed on an egg duck farm, and water hyacinth (Eichhornia crassipes) was chosen as an aquatic plant for the wetland and used as food for duck production. The objectives of this study were to test the role of water hyacinth in purifying nutrient-rich wastewater and its effects on the ducks' feed intake, egg laying performance and egg quality. This paper shows that the constructed wetland removed as much as 64.44% of chemical oxygen demand (COD), 21.78% of total nitrogen (TN) and 23.02% of total phosphorus (TP). Both dissolved oxygen (DO) and the transparency of the wastewater were remarkably improved, with its transparency 2.5 times higher than that of the untreated wastewater. After the ducks were fed with water hyacinth, the average daily feed intake and the egg-laying ratio in the test group were 5.86% and 9.79% higher, respectively, than in the control group; the differences were both significant at the 0.01 probability level. The egg weight in the test group was 2.36% higher than in the control group (P 〈 0.05), but the feed conversion ratios were almost the same. The eggshell thickness and strength were among the egg qualities significantly increased in ducks fed with water hyacinth. We concluded that a water hyacinth system was effective for purifying wastewater from an intensive duck farm during the water hyacinth growing season, as harvested water hyacinth had an excellent performance as duck feed. We also discussed the limitations of the experiment.
基金the National High Technology Research and Development Program of China (863 Program)(No.2002AA601013).
文摘The efficiencies of two types of constructed wetlands for the treatment of low-concentration polluted eutrophic land- scape river water were studied in the western section of the Qingyuan River at the Minhang campus of Shanghai Jiaotong University.The first wetland was a single-stage system using gravel as a filtration medium,and the second was a three- stage system filled with combinations of gravel,zeolite,and fly ash.Results from parallel operations of the wetlands showed that the three-stage constructed wetland could remove organics,nitrogen, and phosphorus successfully.At the same time,it could also decrease ammoniacal odour in the effluent.Compared to the single-stage constructed wetland,it had better nutrient removal efficiencies with a higher removal of 19.37%-65.27% for total phosphorus (TP) and 21.56%- 62.94% for total nitrogen (TN),respectively,during the operation period of 14 weeks.In terms of removal of chemical oxygen demand (COD), turbidity,and blue-green algae,these two wetland systems had equivalent performances.It was also found that in the western section of the test river,in which the two constructed wetlands were located, the water quality was much better than that in the eastern and middle sections without constructed wetland because COD,TN, and TP were all in a relatively lower level and the eutrophication could be prevented completely in the western section.
基金supported by the National Natural Science Foundation of China (No. 50778062)the Hi-Tech Research and Development Program (863) of China (No.2006AA06Z311)
文摘The elemental composition and bacteria attached in particles were investigated during granular activated carbon (GAC) filtration.The experimental results showed that trapped influent particles could form new,larger particles on GAC surface.The sloughing of individuals off GAC surface caused an increase in effluent particles in the size range from 5 to 25 μm.The selectivity for element removal in GAC filters caused an increasing proportion of metallic elements in the effluent particles.The distribution of molar ratio indicated a complicated composition for large particles,involving organic and inorganic substances.The organic proportion accounted for 40% of total carbon attached to the particles.Compared with dissolved carbon,there was potential for the formation of trihalomethanes by organic carbon attached to particles,especially for those with size larger than 10 μm.The pure carbon energy spectrum was found only in the GAC effluent and the size distribution of carbon fines was mainly above 10 μm.The larger carbon fines provided more space for bacterial colonization and stronger protection for attached bacteria against disinfection.The residual attached bacteria after chorine disinfection was increased to 10 2-10 3 CFU/mL within 24 hours at 25°C.
基金Supported by the National Natural Science Foundation of China (No.59978020).
文摘The biological aerated filter (BAF) was used to treat the oil-field produced water. The removal efficiency for oil, COD, BOD and suspended solids (SS) was 76.3%-80.3%, 31.6%-57.9%, 8.6.3%-96.3% and76.4%--82.7%, respectively when the hydraulic loading rates varied from 016m·h^-1 to 1.4m·h^-1. The greatest partof removal, for example more than 80% of COD removal, occurred on the top 100cm of the media in BAF. The kinetic .performance of BAF indicated that the relationship of BOD removal efficiency with the hydraulic loadingrates, in biological aerated filters could be described by c1/c1=l-exp(-2.44/L^0.59). This equation could be used topredict the B OD.removal efficiency at different hydraulic loading rates.
文摘The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650℃ and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650℃ and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CFL and CO, among which the total molar percentage of H2 and CFL was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.