期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Improved Diurnal Cycle of Precipitation on Land in a Global Non-Hydrostatic Model Using a Revised NSAS Deep Convective Scheme
1
作者 Yifan ZHAO Xindong PENG +1 位作者 Xiaohan LI Siyuan CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1217-1234,共18页
In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the ... In relatively coarse-resolution atmospheric models,cumulus parameterization helps account for the effect of subgridscale convection,which produces supplemental rainfall to the grid-scale precipitation and impacts the diurnal cycle of precipitation.In this study,the diurnal cycle of precipitation was studied using the new simplified Arakawa-Schubert scheme in a global non-hydrostatic atmospheric model,i.e.,the Yin-Yang-grid Unified Model for the Atmosphere.Two new diagnostic closures and a convective trigger function were suggested to emphasize the job of the cloud work function corresponding to the free tropospheric large-scale forcing.Numerical results of the 0.25-degree model in 3-month batched real-case simulations revealed an improvement in the diurnal precipitation variation by using a revised trigger function with an enhanced dynamical constraint on the convective initiation and a suitable threshold of the trigger.By reducing the occurrence of convection during peak solar radiation hours,the revised scheme was shown to be effective in delaying the appearance of early-afternoon rainfall peaks over most land areas and accentuating the nocturnal peaks that were wrongly concealed by the more substantial afternoon peak.In addition,the revised scheme enhanced the simulation capability of the precipitation probability density function,such as increasing the extremely low-and high-intensity precipitation events and decreasing small and moderate rainfall events,which contributed to the reduction of precipitation bias over mid-latitude and tropical land areas. 展开更多
关键词 cumulus parameterization diurnal cycle of precipitation large-scale dynamic forcing global non-hydrostatic atmospheric model performance verification
下载PDF
Analysis and Evaluation of the Global Aerosol Optical Properties Simulated by an Online Aerosol-coupled Non-hydrostatic Icosahedral Atmospheric Model 被引量:3
2
作者 DAI Tie SHI Guangyu Teruyuki NAKAJIMA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第6期743-758,共16页
Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mea... Aerosol optical properties are simulated using the Spectral Radiation Transport Model I~)r Aerosol Species (SPRINTARS) coupled with the Non-hydrostatic ICosahedral Atmospheric Model (NICAM). The 3-year global mean all-sky aerosol optical thickness (AOT) at 550 nm, theAngstr/Sm Exponent (AE) based on AOTs at 440 and 870 nm, and the single scattering albedo (SSA) at 550 nm are estimated at 0.123, 0.657 and 0.944, respectively. For each aerosol species, the mean AOT is within the range of the AeroCom models. Both the modeled all-sky and clear-sky results are compared with observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET). The simulated spatiotemporal distributions of all-sky AOTs can generally reproduce the MODIS retrievals, and the correlation and model skill can be slightly improved using the clear-sky results over most land regions. The differences between clear-sky and all-sky AOTs are larger over polluted regions. Compared with observations from AERONET, the modeled and observed all-sky AOTs and AEs are generally in reasonable agreement, whereas the SSA variation is not well captured. Although the spatiotemporal distributions of all-sky and clear-sky results are similar, the clear-sky results are generally better correlated with the observations. The clear-sky AOT and SSA are generally lower than the all-sky results, especially in those regions where the aerosol chemical composition is contributed to mostly by sulfate aerosol. The modeled clear-sky AE is larger than the all-sky AE over those regions dominated by hydrophilic aerosol, while the'opposite is found over regions dominated by hydrophobic aerosol. 展开更多
关键词 aerosol optical properties non-hydrostatic icosahedral atmospheric model Moderate Resolution Imaging Spec-troradiometer Aerosol Robotic Network
下载PDF
A Hybrid Finite-Volume and Finite Difference Scheme for Depth- Integrated Non-Hydrostatic Model 被引量:1
3
作者 YIN- Jing SUN Jia-wen +2 位作者 WANG Xing-gang YU Yong-hai SUN Zhao-chen 《China Ocean Engineering》 SCIE EI CSCD 2017年第3期261-271,共11页
A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into... A depth-integrated, non-hydrostatic model with hybrid finite difference and finite volume numerical algorithm is proposed in this paper. By utilizing a fraction step method, the governing equations are decomposed into hydrostatic and non-hydrostatic parts. The first part is solved by using the finite volume conservative discretization method, whilst the latter is considered by solving discretized Poisson-type equations with the finite difference method. The second-order accuracy, both in time and space, of the finite volume scheme is achieved by using an explicit predictor-correction step and linear construction of variable state in cells. The fluxes across the cell faces are computed in a Godunov-based manner by using MUSTA scheme. Slope and flux limiting technique is used to equip the algorithm with total variation dimensioning property for shock capturing purpose. Wave breaking is treated as a shock by switching off the non-hydrostatic pressure in the steep wave front locally. The model deals with moving wet/dry front in a simple way. Numerical experiments are conducted to verify the proposed model. 展开更多
关键词 non-hydrostatic model SHOCK-CAPTURING wave breaking finite volume method MUSTA scheme
下载PDF
A Higher-Efficient Non-Hydrostatic Finite Volume Model for Strong Three-Dimensional Free Surface Flows and Sediment Transport 被引量:1
4
作者 LIU Xin MA Dian-guang ZHANG Qing-he 《China Ocean Engineering》 SCIE EI CSCD 2017年第6期736-746,共11页
In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equati... In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement. 展开更多
关键词 higher-efficient non-hydrostatic strong 3-D free surface flows sediment transport 3-D numerical model
下载PDF
Simulation of wave scattering over a floating platform in the ocean with a coupled CFD-IBM model
5
作者 Pengxuan Luo Jingxin Zhang +1 位作者 Yongyong Cao Shaohong Song 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第3期157-161,共5页
A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven botto... A numerical study of linear wave scattering over a floating platform has been simulated by an efficient numericalmodel in this letter.The non-hydrostatic model is used to simulate the free surface and the uneven bottom.For thesolid body modelling,the immersed boundary method(IBM)is implemented by introducing a virtual boundaryforce into the momentum equations to emulate the boundary conditions.This implementation enhances theability of the model to simulate interactions between waves and floating structures.A numerical case involvingwave interactions with a floating platform is studied to validate the numerical model.By simulating the wavepropagation,the numerical model captures the variation of the wave scattering very well,which verifies theperformance of the numerical model and the robust strategy of the IBM. 展开更多
关键词 non-hydrostatic model Immersed boundary method Wave structure interaction Floating platform
下载PDF
Two-Layer Non-Hydrostatic Model for Generation and Propagation of Interfacial Waves
6
作者 S.R.Pudjaprasetya I.Magdalena 《China Ocean Engineering》 SCIE EI CSCD 2019年第1期65-72,共8页
When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant dens... When pycnocline thickness of ocean density is relatively small, density stratification can be well represented as a two-layer system. In this article, a depth integrated model of the two-layer fluid with constant density is considered,and a variant of the edge-based non-hydrostatic numerical scheme is formulated. The resulting scheme is very efficient since it resolves the vertical fluid depth only in two layers. Despite using just two layers, the numerical dispersion is shown to agree with the analytical dispersion curves over a wide range of kd, where k is the wave number and d the water depth. The scheme was tested by simulating an interfacial solitary wave propagating over a flat bottom, as well as over a bottom step. On a laboratory scale, the formation of an interfacial wave is simulated,which also shows the interaction of wave with a triangular bathymetry. Then, a case study using the Lombok Strait topography is discussed, and the results show the development of an interfacial wave due to a strong current passing through a sill. 展开更多
关键词 INTERFACIAL WAVES two-layer non-hydrostatic model DISPERSION RELATION
下载PDF
Non-hydrostatic modelling of regular wave transformation and current circulation in an idealized reef-lagoon-channel system
7
作者 Jian Shi Wei Liu +2 位作者 Jinhai Zheng Chi Zhang Xiangming Cao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第10期1-13,共13页
The wave-induced setup and circulation in a two dimensional horizontal(2DH)reef-lagoon-channel system is investigated by a non-hydrostatic model.The simulated results agree well with observations from the laboratory e... The wave-induced setup and circulation in a two dimensional horizontal(2DH)reef-lagoon-channel system is investigated by a non-hydrostatic model.The simulated results agree well with observations from the laboratory experiments,revealing that the model is valid in simulating wave transformation and currents over reefs.The effects of incident wave height,period,and reef flat water depth on the mean sea level and wave-driven currents are examined.Results show that the distributions of mean sea level and current velocities on the reef flat adjacent to the channel vary significantly from those in the area close to the side walls.From the wave averaged current field,an obvious alongshore flux flowing from the reef flat to the channel is captured.The flux from the reef flat composes the second source of the offshore rip current,while the first source is from the lagoon.A detailed momentum balance analysis shows that the alongshore current is mainly induced by the pressure gradient between the reef flat and the channel.In the lagoon,the momentum balances are between the pressure and radiation stress gradient,which drives flow towards the channel.Along the channel,the offshore current is mainly driven by the pressure gradient. 展开更多
关键词 non-hydrostatic model wave setup wave-induced current coral reef reef-lagoon-channel system
下载PDF
Vertical two-dimensional non-hydrostatic pressure model with single layer
8
作者 康玲 郭晓明 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第6期721-730,共10页
The vertical two-dimensional non-hydrostatic pressure models with multiple layers can make prediction more accurate than those obtained by the hydrostatic pres- sure assumption. However, they are time-consuming and un... The vertical two-dimensional non-hydrostatic pressure models with multiple layers can make prediction more accurate than those obtained by the hydrostatic pres- sure assumption. However, they are time-consuming and unstable, which makes them unsuitable for wider application. In this study, an efficient model with a single layer is developed. Decomposing the pressure into the hydrostatic and dynamic components and integrating the x-momentum equation from the bottom to the free surface can yield a horizontal momentum equation, in which the terms relevant to the dynamic pressure are discretized semi-implicitly. The convective terms in the vertical momentum equation are ignored, and the rest of the equation is approximated with the Keller-box scheme. The velocities expressed as the unknown dynamic pressure are substituted into the continuity equation, resulting in a tri-diagonal linear system solved by the Thomas algorithm. The validation of solitary and sinusoidal waves indicates that the present model can provide comparable results to the models with multiple layers but at much lower computation cost. 展开更多
关键词 Key words vertical two-dimensional model non-hydrostatic pressure single layer Thomas algorithm wave
下载PDF
High-resolution tsunami hazard assessment for the Guangdong-Hong Kong-Macao Greater Bay Area based on a non-hydrostatic tsunami model
9
作者 Yifan ZHU Chao AN +2 位作者 Houyun YU Wei ZHANG Xiaofei CHEN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第7期2326-2351,共26页
The Guangdong-Hong Kong-Macao Greater Bay Area(GBA)is threatened by potential tsunami hazards from the Littoral Fault Zone(LFZ)and the Manila subduction zone(MSZ),and may suffer huge damage because of its dense popula... The Guangdong-Hong Kong-Macao Greater Bay Area(GBA)is threatened by potential tsunami hazards from the Littoral Fault Zone(LFZ)and the Manila subduction zone(MSZ),and may suffer huge damage because of its dense population,concentrated infrastructure,and low-lying coasts.Previous tsunami studies for the GBA made simple assumptions on the mechanisms of LFZ earthquakes,and used coarse bathymetry data in tsunami simulation,which limited the prediction of detailed tsunami hazard characteristics.In this paper,we develop a parallel dispersive tsunami model PCOMCOT to efficiently simulate dispersive,nonlinear,and breaking tsunami waves.We also construct large-scale and high-resolution bathymetry models for the GBA by correcting and integrating various data sources.Dynamic rupture simulation is performed for the LFZ to obtain a more reliable earthquake source model.We propose several representative earthquake scenarios for the LFZ and MSZ,and use PCOMCOT to calculate the resulting tsunami waves,currents,and inundation in the GBA.Our results indicate that if an M_(w)7.5 oblique-slip earthquake occurs in the LFZ off the Pearl River Estuary(PRE),the subsequent tsunami will primarily impact Hong Kong,causing maximum positive and negative waves of around 1 m and -2 m,respectively,along with slightly destructive currents(≥1.5 m/s).An M_(w)9.0 MSZ megathrust earthquake can lead to widespread inundation with>1 m depth on the outlying islands of Macao and in the urban areas of Hong Kong around the Victoria Harbour.Besides,it will also cause catastrophic tsunami currents along the narrow waterways in Hong Kong and Macao,and the spatial distribution of strong currents(≥3 m/s)shows a considerable discrepancy from the areas of serious inundation.Thus,more attention should be paid to the potential impacts of tsunami currents on the GBA. 展开更多
关键词 Tsunami hazards Inundation Tsunami currents non-hydrostatic model Guangdong-Hong Kong-Macao Greater Bay Area
原文传递
A New Efficient Finite Volume Modeling of Small Amplitude Free Surface Flows with Unstructured Grid
10
作者 吕彪 《China Ocean Engineering》 SCIE EI CSCD 2013年第4期509-522,共14页
A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing t... A staggered finite-volume technique for non-hydrostatic, small amplitude free surface flow governed by the incompressible Navier-Stokes equations is presented there is a proper balance between accuracy and computing time. The advection and horizontal diffusion terms in the momentum equation are discretized by an integral interpolation method on the orthogonal unstructured staggered mesh and, while it has the attractive property of being conservative. The pressure-correction algorithm is employed for the non-hydrostatic pressure in order to achieve second-order temporal accuracy. A conservative scalar transport algorithm is also applied to discretize k - c equations in this model. The eddy viscosity is calculated from the k-c turbulent model. The resulting model is mass and momentum conservative. The model is verified by two examples to simulate unsteady small amplitude free surface flows where non-hydrostatic pressures have a considerable effect on the velocity field, and then applied to simulate the tidal flow in the Bohai Sea. 展开更多
关键词 orthogonal unstructured grid non-hydrostatic small amplitude free surface flows 3-D numerical model k - ~ turbulent model
下载PDF
A Higher-Efficient Three-Dimensional Numerical Model for Small Amplitude Free Surface Flows
11
作者 吕彪 《China Ocean Engineering》 SCIE EI CSCD 2014年第5期617-628,共12页
A higher-efficient three-dimensional non-hydrostatic model is developed to simulate small amplitude free surface flows based on a staggered unstructured grid. In this model, a fractional step algorithm is adopted to s... A higher-efficient three-dimensional non-hydrostatic model is developed to simulate small amplitude free surface flows based on a staggered unstructured grid. In this model, a fractional step algorithm is adopted to solve the Navier-Stokes equations in two major steps. A top-layer pressure method is proposed to minimize the number of vertical layers and subsequently the computational cost. Three classical examples of small amplitude free surface flows are used to demonstrate the capability and efficiency of the model. The satisfactory results demonstrated the capability and efficiency of modelling a range of small amplitude free surface flows with only a small number of vertical layers. 展开更多
关键词 higher-efficient non-hydrostatic small amplitude free surface flows 3D numerical model
下载PDF
THREE-DIMENSIONAL NON-HYDROSTATIC MODEL FOR FREE-SURFACE FLOWS WITH UNSTRUCTURED GRID 被引量:16
12
作者 AI Cong-fang JIN Sheng 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第1期108-116,共9页
The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed... The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The eddy viscosity was calculated from the efficient k-ε turbulence model. The resulting model is computationally efficient and unrestricted to the CFL condition. Computations with and without hydrostatic approximation were compared for the same cases to test the validity of the conventional hydrostatic pressure assumption. The model was verified against analytical solutions and experimental data, with excellent agreement. 展开更多
关键词 unstructured grid non-hydrostatic k-ε turbulence model free surface flow
原文传递
A SEMI-IMPLICIT 3-D NUMERICAL MODEL USING SIGAM-COORDINATE FOR NON-HYDROSTATIC PRESSURE FREE-SURFACE FLOWS 被引量:4
13
作者 HU De-chao FAN Bei-lin +1 位作者 WANG Guang-qian ZHANG Hong-wu 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第2期212-223,共12页
A 3-D numerical formulation is proposed on the horizontal Cartesian, vertical sigma-coordinate grid for modeling non-hydrostatic pressure flee-surface flows. The pressure decomposition technique and 0 semi-implicit me... A 3-D numerical formulation is proposed on the horizontal Cartesian, vertical sigma-coordinate grid for modeling non-hydrostatic pressure flee-surface flows. The pressure decomposition technique and 0 semi-implicit method are used, with the solution procedure being split into two steps. First, with the implicit parts of non-hydrostatic pressures excluded, the provisional velocity field and free surface are obtained by solving a 2-D Poisson equation. Second, the theory of the differential operator is employed to derive the 3-D Poisson equation for non-hydrostatic pressures, which is solved to obtain the non-hydrostatic pressures and to update the provisional velocity field. When the non-orthogonal sigma-coordinate transformation is introduced, additional terms come into being, resulting in a 15-diagonal, diagonally dominant but unsymmetric linear system in the 3-D Poisson equation for non-hydrostatic pressures. The Biconjugate Gradient Stabilized (BiCGstab) method is used to solve the resulting 3-D unsymmetric linear system instead of the conjugate gradient method, which can only be used for symmetric, positive-definite linear systems. Three test cases are used for validations. The successful simulations of the small-amplitude wave, a supercritical flow over a ramp and a turbulent flow in the open channel indicate that the new model can simulate well non-hydrostatic flows, supercritical flows and turbulent flows. 展开更多
关键词 3-D numerical model non-hydrostatic sigma-coordinate SEMI-IMPLICIT pressure-splitting
原文传递
Long-Term Integration of a Global Non-Hydrostatic Atmospheric Model on an Aqua Planet 被引量:5
14
作者 Xiaohan LI Xindong PENG 《Journal of Meteorological Research》 SCIE CSCD 2018年第4期517-533,共17页
A global non-hydrostatic atmospheric model, i.e., GRAPES_YY (Global/Regional Assimilation and Prediction System on the Yin-Yang grid), with a semi-implicit semi-Lagrangian (SISL) dynamical core developed on the Yi... A global non-hydrostatic atmospheric model, i.e., GRAPES_YY (Global/Regional Assimilation and Prediction System on the Yin-Yang grid), with a semi-implicit semi-Lagrangian (SISL) dynamical core developed on the Yin-Yang grid was coupled with the physical parameterization package of the operational version of GRAPES. A 3.5-yr integration was carried out on an aqua planet to assess the numerical performance of this non-hydrostatic mo- del relative to other models. Specific aspects of precipitation and general circulation under two different sea surface temperature (SST) conditions (CONTROL and FLAT) were analyzed. The CONTROL SST peaked at the equator. The FLAT SST had its maximum gradient at about 20~ latitude, giving a broad equatorial SST maximum in the trop- ics and flat profile approaching the equator. The tropical precipitation showed different propagation features in the CONTROL and FLAT simulations. The CONTROL showed tropical precipitation bands moving eastward with some envelopes of westward convective-scale disturbance. Less organized westward-propagating rainfall cells and bands were seen in the FLAT and the propagation of the tropical wave varied with the SST gradient. The Inter Tropical Convergence Zone (ITCZ), Hadley cell, and westerly jet core were weaker and more poleward as the SST profile flattened from the CONTROL to FLAT. The climatological structures simulated by GRAPES_YY, such as the distri- bution of precipitation and the large-scale circulation, fell within the bounds from other models. The stronger ITCZ precipitation, accompanied with stronger Hadley cells and convective heating in the CONTROL simulation, may be summed up as a result of stronger parameterized convection and the non-hydrostatic effects in GRAPES_YY. In ad- dition, mechanism of the zonal mean circulation maintaining is analyzed for the different SST patterns referring the transient eddy flux. 展开更多
关键词 non-hydrostatic model Yin-Yang grid physical parameterizations aqua planet experiment
原文传递
ATMOSPHERIC NON-HYDROSTATIC MODEL AND ELASTIC ADAPTATION 被引量:1
15
作者 胡志晋 邹光源 《Science China Chemistry》 SCIE EI CAS 1992年第4期463-475,共13页
In this paper, various forms of non-hydrostatic model with different handling of the elastic adaptation process are analysed and compared. Some new models are suggested, among which the quasi-elastic model has the adv... In this paper, various forms of non-hydrostatic model with different handling of the elastic adaptation process are analysed and compared. Some new models are suggested, among which the quasi-elastic model has the advantage of faster calculation and satisfactory accuracy. 展开更多
关键词 non-hydrostatic model ELASTIC adaptation.
原文传递
Prediction of ship-ship interactions in ports by a non-hydrostatic model
16
作者 周明贵 邹早建 ROELVINK Dano 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第6期824-834,共11页
Complicated channel geometry and currents may aggravate the interactions between passing ships and berthed ships, which should be evaluated and taken into account in a port design. A method for predicting the ship-shi... Complicated channel geometry and currents may aggravate the interactions between passing ships and berthed ships, which should be evaluated and taken into account in a port design. A method for predicting the ship-ship interactions, based on a non-hydrostatic shallow water flow model, is presented in this paper and is validated by comparing the numerical results with experimental data. The method is subsequently applied to predict the interaction forces acting on a berthed ship due to a passing ship in ports. The influences of the difference of the water depths between the dock and the main channel, the dock geometry, the current and another berthed ship in the dock on the ship-ship interactions are studied. Analysis based on the numerical results is carried out, which is useful for the port design. 展开更多
关键词 ship-ship interactions non-hydrostatic model numerical prediction port design
原文传递
一次华南暴雨降水过程的模拟分析 被引量:6
17
作者 楼小凤 胡志晋 +2 位作者 史月琴 王鹏云 周秀骥 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第1期128-138,共11页
Using a double-parameter non-hydrostatic elastic three-dimensional model with detailed microphysical processes, the authors simulate the heavy rainfall event in South China which occurred on 9 June 1998 and lasted Tor... Using a double-parameter non-hydrostatic elastic three-dimensional model with detailed microphysical processes, the authors simulate the heavy rainfall event in South China which occurred on 9 June 1998 and lasted Tor more than 3 hours. This case is a supercell, and the upward and downward drafts interact with each other, which transfers rich water vapor at the converging position to upper levels, and the two drafts together maintain the convective course. The vertical heating profiles and contributions to water matter of five kinds of micro-phase processes are revealed quantitatively in the results. Condensation releases the most heat, which is more than that of the absorption by evaporation and melting. The rain particles first come from the autoconversion of cloud particles, the warm-rain process; later from the cold-rain process, the melting of grauple particles. The precipitation intensity reaches 75 mm h?1 while its efficiency remains high. The total amount of rain is 32 mm, a value close to the observations of nearby stations. 展开更多
关键词 non-hydrostatic atmospheric model microphysics processes rain mechanism
下载PDF
Numerical Study of Flow Near River Outlet in Namtso Lake
18
作者 德吉玉珍 Jarle Berntsen 《Journal of Southwest Jiaotong University(English Edition)》 2008年第4期404-413,共10页
A river plume dynamics analysis was made in Namtso Lake by using a sigma coordinate non-hydrostatic numerical ocean model, the Bergen Ocean Model. Simulations were carried out by hydrostatic and non-hydrostatic models... A river plume dynamics analysis was made in Namtso Lake by using a sigma coordinate non-hydrostatic numerical ocean model, the Bergen Ocean Model. Simulations were carried out by hydrostatic and non-hydrostatic models with horizontal resolution of 5.00 m, 2.50 m and 1, 25 m, respectively. The simulation results for the homogeneous lake are robust to the grid size, and the non-hydrostatic pressure effect is not important in this ease. For the stratified case, the results are sensitive to both the grid size and non-hydrostatic pressure corrections. 展开更多
关键词 non-hydrostatics River plume Numerical ocean model Σ-COORDINATE STRATIFIED
下载PDF
A VERTICAL 2D MATHEMATICAL MODEL FOR HYDRODYNAMIC FLOWS WITH FREE SURFACE IN σ COORDINATE 被引量:15
19
作者 ZHANG Jing-xin LIU Hua XUE Lei-ping 《Journal of Hydrodynamics》 SCIE EI CSCD 2006年第1期82-90,共9页
Numerical models with hydrostatic pressure have been widely utilized in studying flows in rivers, estuaries and coastal areas. The hydrostatic assumption is valid for the large-scale surface flows where the vertical a... Numerical models with hydrostatic pressure have been widely utilized in studying flows in rivers, estuaries and coastal areas. The hydrostatic assumption is valid for the large-scale surface flows where the vertical acceleration can be ignored, but for some particular cases the hydrodynamic pressure is important. In this paper, a vertical 2t) mathematical model with non-hydrostatic pressure was implemented in the σ coordinate. A fractional step method was used to enable the pressure to be decomposed into hydrostatic and hydrodynamic components and the predictor-corrector approach was applied to integration in time domain. Finally, several computational cases were studied to validate the importance of contributions of the hydrodynamic pressure. 展开更多
关键词 vertical 2D model free surface flow semiimplicit non-hydrostatic
原文传递
NUMERICAL MODELLING OF FREE-SURFACE FLOWS WITH BOTTOM AND SURFACE-LAYER PRESSURE TREATMENT 被引量:18
20
作者 WANG Kun 《Journal of Hydrodynamics》 SCIE EI CSCD 2009年第3期352-359,共8页
A new non-hydrostatic numerical model with the three-dimensional Navier-Stokes equations on structured grids was constructed and discussed. The algorithm is based upon a staggered finite difference Crank-Nicholson sch... A new non-hydrostatic numerical model with the three-dimensional Navier-Stokes equations on structured grids was constructed and discussed. The algorithm is based upon a staggered finite difference Crank-Nicholson scheme on a Cartesian grid. The eddy viscosity coefficient was calculated by the efficient k-ε turbulence model. A new surface-layer non-hydrostatic treatment and a local cell bottom treatment were introduced so that the three-dimensional model is fully non-hydrostatic and is free of any hydrostatic assumption. The developed model is second-order accuracy in both time and space when semi-implicit coefficient is set to 0.5. The validity of the present solution algorithm was demonstrated from its application to the three-dimension channel flow and the wave propagation over a submerged bar problems. 展开更多
关键词 Navier-Stokes equations IMPLICIT k turbulence model surface-layer non-hydrostatic treatment local cell bottom treatment
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部