We conducted a systematic review of studies using non-invasive brain stimulation(NIBS: repetitive transcranial magnetic stimulation(r TMS) and transcranial direct current stimulation(t DCS)) as a research and c...We conducted a systematic review of studies using non-invasive brain stimulation(NIBS: repetitive transcranial magnetic stimulation(r TMS) and transcranial direct current stimulation(t DCS)) as a research and clinical tool aimed at improving motor and functional recovery or spasticity in patients following spinal cord injury(SCI) under the assumption that if the residual corticospinal circuits could be stimulated appropriately, the changes might be accompanied by functional recovery or an improvement in spasticity. This review summarizes the literature on the changes induced by NIBS in the motor and functional recovery and spasticity control of the upper and lower extremities following SCI.展开更多
Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no s...Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no surgery,and has significant beneficial effects.However,there are various technical approaches for NIBS which influence neuronal networks in significantly different ways.Transcranial direct current stimulation(t DCS),alternating current stimulation(ACS) and repetitive transcranial magnetic stimulation(r TMS) all have been applied to modulate brain activity in animal experiments under normal and pathological conditions.Also clinical trials have shown that t DCS,r TMS and ACS induce significant behavioural effects and can – depending on the parameters chosen – enhance or decrease brain excitability and influence performance and learning as well as rehabilitation and protective mechanisms.The diverse phaenomena and partially opposing effects of NIBS are not yet fully understood and mechanisms of action need to be explored further in order to select appropriate parameters for a given task,such as current type and strength,timing,distribution of current densities and electrode position.In this review,we will discuss the various parameters which need to be considered when designing a NIBS protocol and will put them into context with the envisaged applications in experimental neurobiology and medicine such as vision restoration,motor rehabilitation and cognitive enhancement.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease prog...An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.展开更多
Alcohol use disorder (AUD), mild traumatic brain injury (mTBI), and posttraumatic stress disorder (PTSD) commonly co-occur (AUD + mTBI + PTSD). These conditions have overlapping symptoms which are, in part, ...Alcohol use disorder (AUD), mild traumatic brain injury (mTBI), and posttraumatic stress disorder (PTSD) commonly co-occur (AUD + mTBI + PTSD). These conditions have overlapping symptoms which are, in part, reflective of overlapping neuropathology. These conditions become problematic because their co-occurrence can exacerbate symptoms. Therefore, treatments must be developed that are inclusive to all three conditions. Repetitive transcranial magnetic stimulation (rTMS) is non-invasive and may be an ideal treatment for co-occurring AUD + mTBI + PTSD. There is accumulating evidence on rTMS as a treatment for people with AUD, mTBI, and PTSD each alone. However, there are no published studies to date on rTMS as a treatment for co-occurring AUD + mTBI + PTSD. This review article advances the knowledge base for rTMS as a treatment for AUD + mTBI + PTSD. This review provides background information about these co-occurring conditions as well as rTMS. The existing literature on rTMS as a treatment for people with AUD, TBI, and PTSD each alone is reviewed. Finally, neurobiological findings in support of a theoretical model are discussed to inform TMS as a treatment for co-occurring AUD + mTBI + PTSD. The peer-reviewed literature was identified by targeted literature searches using PubMed and supplemented by cross-referencing the bibliographies of relevant review articles. The existing evidence on rTMS as a treatment for these conditions in isolation, coupled with the overlapping neuropathology and symptomology of these conditions, suggests that rTMS may be well suited for the treatment of these conditions together.展开更多
In the aging brain, cognitive function gradually dedines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel ne...In the aging brain, cognitive function gradually dedines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (〈1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.展开更多
Previous studies have shown that transcranial pulse current stimulation(tPCS) can increase cerebral neural plasticity and improve patients' locomotor function.However, the precise mechanisms underlying this effect...Previous studies have shown that transcranial pulse current stimulation(tPCS) can increase cerebral neural plasticity and improve patients' locomotor function.However, the precise mechanisms underlying this effect remain unclear.In the present study, rat models of stroke established by occlusion of the right cerebral middle artery were subjected to tPCS, 20 minutes per day for 7 successive days.tPCS significantly reduced the Bederson score, increased the foot print area of the affected limbs, and reduced the standing time of affected limbs of rats with stroke compared with that before intervention.Immunofluorescence staining and western blot assay revealed that tPCS significantly increased the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.This finding suggests that tPCS can improve the locomotor function of rats with stroke by regulating the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.These findings may provide a new method for the clinical treatment of poststroke motor dysfunction and a theoretical basis for clinical application of tPCS.The study was approved by the Animal Use and Management Committee of Shanghai University of Traditional Chinese Medicine of China(approval No.PZSHUTCM190315003) on February 22, 2019.展开更多
BACKGROUND Cognitive impairments are core characteristics of schizophrenia,but are largely resistant to current treatments.Several recent studies have shown that highfrequency repetitive transcranial magnetic stimulat...BACKGROUND Cognitive impairments are core characteristics of schizophrenia,but are largely resistant to current treatments.Several recent studies have shown that highfrequency repetitive transcranial magnetic stimulation(rTMS)of the left dorsolateral prefrontal cortex(DLPFC)can reduce negative symptoms and improve certain cognitive deficits in schizophrenia patients.However,results are inconsistent across studies.AIM To examine if high-frequency rTMS of the DLPFC can improve visual memory deficits in patients with schizophrenia.METHODS Forty-seven chronic schizophrenia patients with severe negative symptoms on stable treatment regimens were randomly assigned to receive active rTMS to the DLPFC(n=25)or sham stimulation(n=22)on weekdays for four consecutive weeks.Patients performed the pattern recognition memory(PRM)task from the Cambridge Neuropsychological Test Automated Battery at baseline,at the end of rTMS treatment(week 4),and 4 wk after rTMS treatment(week 8).Clinical symptoms were also measured at these same time points using the Scale for the Assessment of Negative Symptoms(SANS)and the Positive and Negative Syndrome Scale(PANSS).RESULTS There were no significant differences in PRM performance metrics,SANS total score,SANS subscores,PANSS total score,and PANSS subscores between active and sham rTMS groups at the end of the 4-wk treatment period,but PRM performance metrics(percent correct and number correct)and changes in these metrics from baseline were significantly greater in the active rTMS group at week 8 compared to the sham group(all P<0.05).Active rTMS treatment also significantly reduced SANS score at week 8 compared to sham treatment.Moreover,the improvement in visual memory was correlated with the reduction in negative symptoms at week 8.In contrast,there were no between-group differences in PANSS total score and subscale scores at either week 4 or week 8(all P>0.05).CONCLUSION High-frequency transcranial magnetic stimulation improves visual memory and reduces negative symptoms in schizophrenia,but these effects are delayed,potentially due to the requirement for extensive neuroplastic changes within DLPFC networks.展开更多
The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation(t DCS) has been the subject of great interest among researchers ...The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation(t DCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally,we provide an overview of t DCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding t DCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding t DCS efficacy in psychiatry.展开更多
Random noise stimulation technique involves applying any form of energy(for instance,light,mechanical,electrical,sound)with unpredictable intensities through time to the brain or sensory receptors to enhance sensory,m...Random noise stimulation technique involves applying any form of energy(for instance,light,mechanical,electrical,sound)with unpredictable intensities through time to the brain or sensory receptors to enhance sensory,motor,or cognitive functions.Random noise stimulation initially employed mechanical noise in auditory and cutaneous stimuli,but electrical energies applied to the brain or the skin are becoming more frequent,with a series of clinical applications.Indeed,recent evidence shows that transcranial random noise stimulation can increase corticospinal excitability,improve cognitive/motor performance,and produce beneficial aftereffects at the behavioral and psychological levels.Here,we present a narrative review about the potential uses of random noise stimulation to treat neurological disorders,including attention deficit hyperactivity disorder,schizophrenia,amblyopia,myopia,tinnitus,multiple sclerosis,post-stroke,vestibular-postural disorders,and sensitivity loss.Many of the reviewed studies reveal that the optimal way to deliver random noise stimulation-based therapies is with the concomitant use of neurological and neuropsychological assessments to validate the beneficial aftereffects.In addition,we highlight the requirement of more randomized controlled trials and more physiological studies of random noise stimulation to discover another optimal way to perform the random noise stimulation interventions.展开更多
BACKGROUND AND OBJECTIVE Non-invasive brain stimulation ( NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown e...BACKGROUND AND OBJECTIVE Non-invasive brain stimulation ( NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown exponentially within the last decade with promising results across a variety of clinical and healthy populations. However, recent work has shown high inter-individual variability and a lack of reproducibility of previous results. Here, we conducted a small preliminary study to explore the effects of three of the most commonly used excitatory NIBS paradigms over the primary motor cortex (Ml) on motor learning ( Sequential Visuomotor Isometric Pinch Force Tracking Task) and secondarily relate changes in motor learning to changes in cortical excitability ( MEP amplitude and SICI).展开更多
The National Natural Science Foundation of China is one of the major funding agencies for neuro rehabilitation research in China.This study reviews the frontier directions and achievements in the field of neurorehabil...The National Natural Science Foundation of China is one of the major funding agencies for neuro rehabilitation research in China.This study reviews the frontier directions and achievements in the field of neurorehabilitation in China and wo rldwide.We used data from the Web of Science Core Collection(WoSCC) database to analyze the publications and data provided by the National Natural Science Foundation of China to analyze funding information.In addition,the prospects for neurorehabilitation research in China are discussed.From 2010 to 2022,a total of 74,220 publications in neurorehabilitation were identified,with there being an overall upward tendency.During this period,the National Natural Science Foundation of China has funded 476 research projects with a total funding of 192.38 million RMB to support neuro rehabilitation research in China.With the support of the National Natural Science Foundation of China,China has made some achievements in neurorehabilitation research.Research related to neurorehabilitation is believed to be making steady and significant progress in China.展开更多
Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulat...Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulating various amyloid-βoligomers in the brain,influenced by complex genetic and environmental factors.The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer’s disease are believed to primarily result from synaptic dysfunction.Throughout life,environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders.These changes,known as epigenetic modifications,also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity.In this context,we highlight recent advances in understanding the roles played by key components of the epigenetic machinery,specifically DNA methylation,histone modification,and microRNAs,in the development of Alzheimer’s disease,synaptic function,and activity-dependent synaptic plasticity.Moreover,we explore various strategies,including enriched environments,exposure to non-invasive brain stimulation,and the use of pharmacological agents,aimed at improving synaptic function and enhancing long-term potentiation,a process integral to epigenetic mechanisms.Lastly,we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer’s disease.We suggest that addressing Alzheimer’s disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.展开更多
文摘We conducted a systematic review of studies using non-invasive brain stimulation(NIBS: repetitive transcranial magnetic stimulation(r TMS) and transcranial direct current stimulation(t DCS)) as a research and clinical tool aimed at improving motor and functional recovery or spasticity in patients following spinal cord injury(SCI) under the assumption that if the residual corticospinal circuits could be stimulated appropriately, the changes might be accompanied by functional recovery or an improvement in spasticity. This review summarizes the literature on the changes induced by NIBS in the motor and functional recovery and spasticity control of the upper and lower extremities following SCI.
文摘Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no surgery,and has significant beneficial effects.However,there are various technical approaches for NIBS which influence neuronal networks in significantly different ways.Transcranial direct current stimulation(t DCS),alternating current stimulation(ACS) and repetitive transcranial magnetic stimulation(r TMS) all have been applied to modulate brain activity in animal experiments under normal and pathological conditions.Also clinical trials have shown that t DCS,r TMS and ACS induce significant behavioural effects and can – depending on the parameters chosen – enhance or decrease brain excitability and influence performance and learning as well as rehabilitation and protective mechanisms.The diverse phaenomena and partially opposing effects of NIBS are not yet fully understood and mechanisms of action need to be explored further in order to select appropriate parameters for a given task,such as current type and strength,timing,distribution of current densities and electrode position.In this review,we will discuss the various parameters which need to be considered when designing a NIBS protocol and will put them into context with the envisaged applications in experimental neurobiology and medicine such as vision restoration,motor rehabilitation and cognitive enhancement.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金supported by a grant from Ministry of Science,Technological Development and Innovation,Serbia,No.451-03-68/2022-14/200178(to NN)University of Defence,No.MFVMA/02/22-24(to MN)。
文摘An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control.
基金supported with resources by Department of Veterans Affairs(VA),Health Services Research and Development Service and the Office of Academic Affiliations(TPP 42-013)at Edward Hines VA Hospitalsupported by the following:VA OAA Polytrauma Fellowship to AAH,NIDRR Merit Switzer Research Fellowship Award H133F130011to AAH and the VA RR&D CDA-II RX000949-01A2 to AAH
文摘Alcohol use disorder (AUD), mild traumatic brain injury (mTBI), and posttraumatic stress disorder (PTSD) commonly co-occur (AUD + mTBI + PTSD). These conditions have overlapping symptoms which are, in part, reflective of overlapping neuropathology. These conditions become problematic because their co-occurrence can exacerbate symptoms. Therefore, treatments must be developed that are inclusive to all three conditions. Repetitive transcranial magnetic stimulation (rTMS) is non-invasive and may be an ideal treatment for co-occurring AUD + mTBI + PTSD. There is accumulating evidence on rTMS as a treatment for people with AUD, mTBI, and PTSD each alone. However, there are no published studies to date on rTMS as a treatment for co-occurring AUD + mTBI + PTSD. This review article advances the knowledge base for rTMS as a treatment for AUD + mTBI + PTSD. This review provides background information about these co-occurring conditions as well as rTMS. The existing literature on rTMS as a treatment for people with AUD, TBI, and PTSD each alone is reviewed. Finally, neurobiological findings in support of a theoretical model are discussed to inform TMS as a treatment for co-occurring AUD + mTBI + PTSD. The peer-reviewed literature was identified by targeted literature searches using PubMed and supplemented by cross-referencing the bibliographies of relevant review articles. The existing evidence on rTMS as a treatment for these conditions in isolation, coupled with the overlapping neuropathology and symptomology of these conditions, suggests that rTMS may be well suited for the treatment of these conditions together.
基金supported by the Natural Science Foundation of Hebei Province of China,No.H2015206409Science and Technology Research Youth Fund Project of Hebei Colleges and Universities in China,No.QN20131068,QN2014140+1 种基金a grant from Health and Family Planning Commission Medical Scientific Research Project in Hebei Province of China,No.ZL20140017a grant from Hebei Science and Technology Support Program Project of China,No.132777209,132777135
文摘In the aging brain, cognitive function gradually dedines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (〈1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.
基金supported by the National Key R&D Program of China, No.2018 YFC2001600(to CLS)the Shanghai Health Commission Accelerated the Development of Traditional Chinese Medicine Three-Year Action Plan Project, No.ZY(2018-2020)-CCCX-2001-06/2004-05(to CLS)+1 种基金the Program of Shanghai Academic Research Leader, No.19 XD1403600(to CLS)the National Natural Science Foundation of China for the Youth Project, No.81704163(to JJZ)。
文摘Previous studies have shown that transcranial pulse current stimulation(tPCS) can increase cerebral neural plasticity and improve patients' locomotor function.However, the precise mechanisms underlying this effect remain unclear.In the present study, rat models of stroke established by occlusion of the right cerebral middle artery were subjected to tPCS, 20 minutes per day for 7 successive days.tPCS significantly reduced the Bederson score, increased the foot print area of the affected limbs, and reduced the standing time of affected limbs of rats with stroke compared with that before intervention.Immunofluorescence staining and western blot assay revealed that tPCS significantly increased the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.This finding suggests that tPCS can improve the locomotor function of rats with stroke by regulating the expression of microtubule-associated protein-2 and growth-associated protein-43 around the ischemic penumbra.These findings may provide a new method for the clinical treatment of poststroke motor dysfunction and a theoretical basis for clinical application of tPCS.The study was approved by the Animal Use and Management Committee of Shanghai University of Traditional Chinese Medicine of China(approval No.PZSHUTCM190315003) on February 22, 2019.
基金Supported by Key Diagnosis and Treatment Program of Suzhou,No.LCZX201919 and No.LCZX202016The Scientific and Technological Program of Suzhou,No.SS201752 and No.SS202069Introduction Project of Suzhou Clinical Expert Team,No.SZYJTD201715。
文摘BACKGROUND Cognitive impairments are core characteristics of schizophrenia,but are largely resistant to current treatments.Several recent studies have shown that highfrequency repetitive transcranial magnetic stimulation(rTMS)of the left dorsolateral prefrontal cortex(DLPFC)can reduce negative symptoms and improve certain cognitive deficits in schizophrenia patients.However,results are inconsistent across studies.AIM To examine if high-frequency rTMS of the DLPFC can improve visual memory deficits in patients with schizophrenia.METHODS Forty-seven chronic schizophrenia patients with severe negative symptoms on stable treatment regimens were randomly assigned to receive active rTMS to the DLPFC(n=25)or sham stimulation(n=22)on weekdays for four consecutive weeks.Patients performed the pattern recognition memory(PRM)task from the Cambridge Neuropsychological Test Automated Battery at baseline,at the end of rTMS treatment(week 4),and 4 wk after rTMS treatment(week 8).Clinical symptoms were also measured at these same time points using the Scale for the Assessment of Negative Symptoms(SANS)and the Positive and Negative Syndrome Scale(PANSS).RESULTS There were no significant differences in PRM performance metrics,SANS total score,SANS subscores,PANSS total score,and PANSS subscores between active and sham rTMS groups at the end of the 4-wk treatment period,but PRM performance metrics(percent correct and number correct)and changes in these metrics from baseline were significantly greater in the active rTMS group at week 8 compared to the sham group(all P<0.05).Active rTMS treatment also significantly reduced SANS score at week 8 compared to sham treatment.Moreover,the improvement in visual memory was correlated with the reduction in negative symptoms at week 8.In contrast,there were no between-group differences in PANSS total score and subscale scores at either week 4 or week 8(all P>0.05).CONCLUSION High-frequency transcranial magnetic stimulation improves visual memory and reduces negative symptoms in schizophrenia,but these effects are delayed,potentially due to the requirement for extensive neuroplastic changes within DLPFC networks.
文摘The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation(t DCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally,we provide an overview of t DCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding t DCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding t DCS efficacy in psychiatry.
基金supported by Cátedra Marcos Moshinsky (to EM)CONACyT Fronteras de la Ciencia#536 (to EM)+1 种基金VIEP-PIFI-FOMES-PROMEP-BUAP-Puebla (to EM)Comitéde Internacionalización de la Investigación (to EM),México
文摘Random noise stimulation technique involves applying any form of energy(for instance,light,mechanical,electrical,sound)with unpredictable intensities through time to the brain or sensory receptors to enhance sensory,motor,or cognitive functions.Random noise stimulation initially employed mechanical noise in auditory and cutaneous stimuli,but electrical energies applied to the brain or the skin are becoming more frequent,with a series of clinical applications.Indeed,recent evidence shows that transcranial random noise stimulation can increase corticospinal excitability,improve cognitive/motor performance,and produce beneficial aftereffects at the behavioral and psychological levels.Here,we present a narrative review about the potential uses of random noise stimulation to treat neurological disorders,including attention deficit hyperactivity disorder,schizophrenia,amblyopia,myopia,tinnitus,multiple sclerosis,post-stroke,vestibular-postural disorders,and sensitivity loss.Many of the reviewed studies reveal that the optimal way to deliver random noise stimulation-based therapies is with the concomitant use of neurological and neuropsychological assessments to validate the beneficial aftereffects.In addition,we highlight the requirement of more randomized controlled trials and more physiological studies of random noise stimulation to discover another optimal way to perform the random noise stimulation interventions.
文摘BACKGROUND AND OBJECTIVE Non-invasive brain stimulation ( NIBS) has been widely explored as a way to safely modulate brain activity and alter human performance for nearly three decades. Research using NIBS has grown exponentially within the last decade with promising results across a variety of clinical and healthy populations. However, recent work has shown high inter-individual variability and a lack of reproducibility of previous results. Here, we conducted a small preliminary study to explore the effects of three of the most commonly used excitatory NIBS paradigms over the primary motor cortex (Ml) on motor learning ( Sequential Visuomotor Isometric Pinch Force Tracking Task) and secondarily relate changes in motor learning to changes in cortical excitability ( MEP amplitude and SICI).
文摘The National Natural Science Foundation of China is one of the major funding agencies for neuro rehabilitation research in China.This study reviews the frontier directions and achievements in the field of neurorehabilitation in China and wo rldwide.We used data from the Web of Science Core Collection(WoSCC) database to analyze the publications and data provided by the National Natural Science Foundation of China to analyze funding information.In addition,the prospects for neurorehabilitation research in China are discussed.From 2010 to 2022,a total of 74,220 publications in neurorehabilitation were identified,with there being an overall upward tendency.During this period,the National Natural Science Foundation of China has funded 476 research projects with a total funding of 192.38 million RMB to support neuro rehabilitation research in China.With the support of the National Natural Science Foundation of China,China has made some achievements in neurorehabilitation research.Research related to neurorehabilitation is believed to be making steady and significant progress in China.
基金supported by a grant from the Massachusetts Alzheimer’s Disease Research Center(5P50 AG 005134)(to SL).
文摘Alzheimer’s disease is a prominent chronic neurodegenerative condition characterized by a gradual decline in memory leading to dementia.Growing evidence suggests that Alzheimer’s disease is associated with accumulating various amyloid-βoligomers in the brain,influenced by complex genetic and environmental factors.The memory and cognitive deficits observed during the prodromal and mild cognitive impairment phases of Alzheimer’s disease are believed to primarily result from synaptic dysfunction.Throughout life,environmental factors can lead to enduring changes in gene expression and the emergence of brain disorders.These changes,known as epigenetic modifications,also play a crucial role in regulating the formation of synapses and their adaptability in response to neuronal activity.In this context,we highlight recent advances in understanding the roles played by key components of the epigenetic machinery,specifically DNA methylation,histone modification,and microRNAs,in the development of Alzheimer’s disease,synaptic function,and activity-dependent synaptic plasticity.Moreover,we explore various strategies,including enriched environments,exposure to non-invasive brain stimulation,and the use of pharmacological agents,aimed at improving synaptic function and enhancing long-term potentiation,a process integral to epigenetic mechanisms.Lastly,we deliberate on the development of effective epigenetic agents and safe therapeutic approaches for managing Alzheimer’s disease.We suggest that addressing Alzheimer’s disease may require distinct tailored epigenetic drugs targeting different disease stages or pathways rather than relying on a single drug.