BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from mode...BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from modern approaches of proteomic analysis of liquid biopsies(serum,urine)represent a promising innovation in the monitoring of kidney transplant recipients.AIM To investigate the diagnostic utility of protein biomarkers derived from proteomics approaches in renal allograft assessment.METHODS A systematic review was conducted in accordance with PRISMA guidelines,based on research results from the PubMed and Scopus databases.The primary focus was on evaluating the role of biomarkers in the non-invasive diagnosis of transplant-related com-plications.Eligibility criteria included protein biomarkers and urine and blood samples,while exclusion criteria were language other than English and the use of low resolution and sensitivity methods.The selected research articles,were categorized based on the biological sample,condition and methodology and the significantly and reproducibly differentiated proteins were manually selected and extracted.Functional and network analysis of the selected proteins was performed.RESULTS In 17 included studies,58 proteins were studied,with the cytokine CXCL10 being the most investigated.Biological pathways related to immune response and fibrosis have shown to be enriched.Applications of biomarkers for the assessment of renal damage as well as the prediction of short-term and long-term function of the graft were reported.Overall,all studies have shown satisfactory diagnostic accuracy of proteins alone or in combination with conventional methods,as far as renal graft assessment is concerned.CONCLUSION Our review suggests that protein biomarkers,evaluated in specific biological fluids,can make a significant contribution to the timely,valid and non-invasive assessment of kidney graft.展开更多
This article evaluates the performance of 20 Coupled Model Intercomparison Project phase 6(CMIP6)models in simulating temperature and precipitation over China through comparisons with gridded observation data for the ...This article evaluates the performance of 20 Coupled Model Intercomparison Project phase 6(CMIP6)models in simulating temperature and precipitation over China through comparisons with gridded observation data for the period of 1995–2014,with a focus on spatial patterns and interannual variability.The evaluations show that the CMIP6 models perform well in reproducing the climatological spatial distribution of temperature and precipitation,with better performance for temperature than for precipitation.Their interannual variability can also be reasonably captured by most models,however,poor performance is noted regarding the interannual variability of winter precipitation.Based on the comprehensive performance for the above two factors,the“highest-ranked”models are selected as an ensemble(BMME).The BMME outperforms the ensemble of all models(AMME)in simulating annual and winter temperature and precipitation,particularly for those subregions with complex terrain but it shows little improvement for summer temperature and precipitation.The AMME and BMME projections indicate annual increases for both temperature and precipitation across China by the end of the 21st century,with larger increases under the scenario of the Shared Socioeconomic Pathway 5/Representative Concentration Pathway 8.5(SSP585)than under scenario of the Shared Socioeconomic Pathway 2/Representative Concentration Pathway 4.5(SSP245).The greatest increases of annual temperature are projected for higher latitudes and higher elevations and the largest percentage-based increases in annual precipitation are projected to occur in northern and western China,especially under SSP585.However,the BMME,which generally performs better in these regions,projects lower changes in annual temperature and larger variations in annual precipitation when compared to the AMME projections.展开更多
With its amplification simultaneously emerging in cryospheric regions,especially in the Tibetan Plateau,global warming is undoubtedly occurring.In this study,we utilized 28 global climate models to assess model perfor...With its amplification simultaneously emerging in cryospheric regions,especially in the Tibetan Plateau,global warming is undoubtedly occurring.In this study,we utilized 28 global climate models to assess model performance regarding surface air temperature over the Tibetan Plateau from 1961 to 2014,reported spatiotemporal variability in surface air temperature in the future under four scenarios(SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5),and further quantified the timing of warming levels(1.5,2,and 3℃)in the region.The results show that the multimodel ensemble means depicted the spatiotemporal patterns of surface air temperature for the past decades well,although with differences across individual models.The projected surface air temperature,by 2099,would warm by 1.9,3.2,5.2,and 6.3℃relative to the reference period(1981–2010),with increasing rates of 0.11,0.31,0.53,and 0.70℃/decade under the SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5 scenarios for the period 2015–2099,respectively.Compared with the preindustrial periods(1850–1900),the mean annual surface air temperature over the Tibetan Plateau has hit the 1.5℃threshold and will break 2℃in the next decade,but there is still a chance to limit the temperature below 3℃in this century.Our study provides a new understanding of climate warming in high mountain areas and implies the urgent need to achieve carbon neutrality.展开更多
[Objective] The paper was to understand the physiological response of space flight mutation new strains of Festuca arundinacea to high temperature stress. [Method] The influence of high temperature stress on eco-physi...[Objective] The paper was to understand the physiological response of space flight mutation new strains of Festuca arundinacea to high temperature stress. [Method] The influence of high temperature stress on eco-physiological characteristics of 11 F. arundinacea materials was studied in a pot experiment.Physiological and biochemical indexes,including soluble protein content,superoxide dismutase( SOD),peroxidase( POD) and catalase( CAT) activities,were measured and analyzed once every 4 d for a total of three times. Subordinate function and grey rational analysis were used to comprehensively evaluate the heat resistance of 11 materials. [Result] The soluble protein content decreased with the extension of heat resistance stress,while SOD,POD and CAT activities showed an upward trend. The high temperature resistance of 11 F. arundinacea materials was evaluated by subordinate function method. The resistance order was SP5-85> SP5-60 > SP5-71 > SP5-42 > SP5-94 > SP5-7 > SP5-88 > F. arundinacea cv Shuicheng > SP5-5 > SP5-89 = F. arundinacea cv Qiancao No. 1. The relational order of various heat resistance indexes and heat resistance obtained by grey rational analysis was SOD > CAT > POD > soluble protein content. [Conclusion]The result provides a theoretical basis for stress physiology and stress breeding of cold season grass in southwest region.展开更多
Based on the parallel air temperature data of automatic sounding and manual observations at 16 weather stations in Hainan province from 2004 to 2005, a comparative analysis and evaluation is made for validity accordin...Based on the parallel air temperature data of automatic sounding and manual observations at 16 weather stations in Hainan province from 2004 to 2005, a comparative analysis and evaluation is made for validity according to relevant standards. The results indicate that there are daily and seasonal differences between temperature observations recorded by automatic weather stations (AWSs) and with conventional methods. The reasons for the differences are the systematic error, the sensitivity of the two types of instruments to the environmental temperature change, the difference of the observation time and the effect of solar radiation. Because the long-range data were obtained from manual observation, an empirical conversion formula between the temperature records obtained by the instruments is provided for continuous use of the climate data after the changes in instruments.展开更多
The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive...The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive index of films is determined from transmittance spectra. Three different regimes are identified, T 〈 500℃, 500℃ 〈 T 〈 800℃ and T 〉 800℃. The Rutherford baekscattering spectra show that with increasing the annealing temperature, the concentration of nickel atoms into films decreases. It is shown that the effect of annealing temperatures for increasing films densification at T 〈 500℃ and T 〉 800℃ is greater than the effect of nickel concentrations. It is observed that the effect of decreasing nickel atoms into films at 500℃ 〈 T 〈 800℃ strongly causes improving porosity and decreasing densification. The fractal dimensions of carbon-nickel films annealed from 300 to 500℃ are increased, while from 500 to 1000℃ these characteristics are decreased. It can be seen that at 800℃, films have maximum values of porosity and roughness.展开更多
Training in acupuncture techniques has a long history of thousands of years. It has been individually handed down from person (teacher) to person (student). However, techniques and training have not been scientificall...Training in acupuncture techniques has a long history of thousands of years. It has been individually handed down from person (teacher) to person (student). However, techniques and training have not been scientifically evaluated because individual differences may exist among evaluators. In animal studies, some researchers have reported that acupuncture stimulation dilates blood vessels of the skin and skeletal muscles. These studies also reveal an association between skin temperature (ST) and blood circulation volume on the skin. Our previous studies have reported that acupuncture stimulation, especially that of electroacupuncture (EA), can elevate ST. Therefore, we monitored the instructive effects and level of EA techniques with ST and propose that we can bring monitoring ST into training/education of EA as a new index of technical assessment. Moreover, ratio of changes might be used as new criteria for retraining. Healthy students (n = 14) were given with 10 minutes of EA stimulation on the tibialis anterior: Zusanli (ST36) and Tiaokou (ST38). Their ST was monitored before and during stimulation as well as for 30 minutes after stimulation. All subjects showed a nominal increase in ST. At the time, ratios of changes were also calculated. Two subjects did not reach the average of 1.3%. This suggests that the technical level of the therapist was inadequate. Thus, observation of ST elevation and calculation of the average ratio of ST change (elevation) could be applied to a new scientific index of technical assessment in acupuncture treatment training. However, further research (e.g., larger-scale studies, adjustment for gender differences, or other age subjects) is required to support these findings.展开更多
Given that climate extremes in China might have serious regional and global consequences, an increasing number of studies are examining temperature extremes in China using the Coupled Model Intercomparison Project Pha...Given that climate extremes in China might have serious regional and global consequences, an increasing number of studies are examining temperature extremes in China using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. This paper investigates recent changes in temperature extremes in China using 25 state-of-the-art global climate models participating in CMIP5. Thirteen indices that represent extreme temperature events were chosen and derived by daily maximum and minimum temperatures, including those representing the intensity (absolute indices and threshold indices), duration (duration indices), and frequency (percentile indices) of extreme temperature. The overall performance of each model is summarized by a "portrait" diagram based on relative root-mean-square error, which is the RMSE relative to the median RMSE of all models, revealing the multi-model ensemble simulation to be better than individual model for most indices. Compared with observations, the models are able to capture the main features of the spatial distribution of extreme temperature during 1986-2005. Overall, the CMIP5 models are able to depict the observed indices well, and the spatial structure of the ensemble result is better for threshold indices than frequency indices. The spread amongst the CMIP5 models in different subregions for intensity indices is small and the median CMIP5 is close to observations; however, for the duration and frequency indices there can be wide disagreement regarding the change between models and observations in some regions. The model ensemble also performs well in reproducing the observational trend of temperature extremes. All absolute indices increase over China during 1961-2005.展开更多
Using the historical simulations from 27 models in phase 5 of the Coupled Model Intercomparison Project(CMIP5)and 27 models in phase 6(CMIP6),the authors evaluated the differences between CMIP5 and CMIP6 models in sim...Using the historical simulations from 27 models in phase 5 of the Coupled Model Intercomparison Project(CMIP5)and 27 models in phase 6(CMIP6),the authors evaluated the differences between CMIP5 and CMIP6 models in simulating the climate mean of extreme temperature over China through comparison with observations during 1979–2005.The CMIP6 models reproduce well the spatial distribution of annual maxima of daily maximum temperature(TXx),annual minima of daily minimum temperature(TNn),and frost days(FD).The model spread in CMIP6 is reduced relative to CMIP5 for some temperature indices,such as TXx,warm spell duration index(WSDI),and warm days(TX90 p).The multimodel median ensembles also capture the observed trend of extreme temperature.However,the CMIP6 models still have low skill in capturing TX90 p and cold nights(TN10 p)and have obvious cold biases or warm biases over the Tibetan Plateau.The ability of individual models varies for different indices,although some models outperform the others in terms of the average of all indices considered for different models.By comparing different version models from the same organization,the updated CMIP6 models show no significant difference from their counterparts from CMIP5 for some models.Compared with individual models,the median ensembles show better agreement with the observations for temperature indices and their means.展开更多
The Grand Shangri-La(GSL) region has strong international tourist appeal. GSL has considerable international eco-tourist potential as well as being attractive for leisure, vacation, health, explorative, and scientific...The Grand Shangri-La(GSL) region has strong international tourist appeal. GSL has considerable international eco-tourist potential as well as being attractive for leisure, vacation, health, explorative, and scientific research activities in addition to high-end tourism experiences. These factors could promote the development of its regional tourism. GSL has been identified as a key area for tourism development in China. In this study, we investigated tourism climate conditions in GSL from 1980 to 2016 using a tourism climate index(TCI). We found that through global warming, the number of annual and monthly good-weather days, as assessed with the TCI, showed an increase over most of GSL;that trend was especially true for very good, excellent, and ideal days. The optimal travel period was May–October. We obtained the same result using cluster heat maps, in which we categorized 31 studied meteorological stations into eight types. However, heavy rainfall tended to occur during that optimal period, and it was concentrated at certain times. The annual total number of comfortable days greater than 300 was mainly located in southern GSL. We observed significant correlations between monthly and annual excellent and ideal days with latitude and elevation;in particular, we identified a significant nonlinear correlation between excellent(and ideal) days and elevation.展开更多
In this study,the authors evaluate the skill of 42 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6)in reproducing the climatological temperature and precipitation in Xinjiang during the ...In this study,the authors evaluate the skill of 42 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6)in reproducing the climatological temperature and precipitation in Xinjiang during the period 1995–2014.The results indicate that the models can reliably capture the geographical distributions of the two variables.The regionally averaged bias of temperature is 0.1℃ for the annual mean,-1.6℃ in spring,0.5℃ in summer,-0.2℃ in autumn,and 1.3℃ in winter.Regionally averaged annual and seasonal precipitation in Xinjiang is generally overestimated by the CMIP6 models.The simulated annual precipitation is 89%more than the observation over Xinjiang,with a regionally averaged bias of 256%in spring,-3%in summer,84%in autumn,and 258%in winter.Quantitative analysis indicates that most models overestimate the spatial variability of both climatological temperature and precipitation.The models show smaller discrepancies in simulating the temperature than the precipitation in Xinjiang.In comparison,both the median and arithmetic mean of the 42 models have similar skills to those of 29 selected good models,and outperform most individual models.展开更多
In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient tempera...In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient temperature fields of cylindrical and hemispherical UVCEs with same methane concentration and mass were numerically studied by computational fluid dynamics(CFD)technology.According to numerical simulation results, the concepts of UVCE’s temperature-near-field and temperature-far-field were proposed,the corresponding ranges were given,and the temperature attenuation laws and differences in corresponding regions with different vapor cloud shapes were presented.Through comparing with Baker fireball model,the accuracy and visualizability in acquisition of entire temperature effect based on numerical simulation were further validated.The functional relations among maximum temperature,horizontal distance,initial temperature and vapor cloud mass in temperature-near-field and temperature-far-field were deduced by means of data fitting,respectively.These conclusions provided quantitative basis for forecast and protection of UVCE disaster.展开更多
The dynamic changes in the malondialdehyde(MDA), superoxide dismutase(SOD), soluble sugar, proline, and soluble protein contents, as well as the relative electrolyte conductivity and the corresponding cold resista...The dynamic changes in the malondialdehyde(MDA), superoxide dismutase(SOD), soluble sugar, proline, and soluble protein contents, as well as the relative electrolyte conductivity and the corresponding cold resistance, of Cinnamomum bodinieri Level., C. camphora L., and C. caudiferum Kisterm were investigated during the winter months of October 2009 to April 2010. During the short period of temperature decline that lasted until mid-December, the changes in the relative electrolyte conductivity and MDA content with temperature were insignificant. In January, SOD activity continued to increase and then peaked as a result of rapid increases in soluble sugar, proline, soluble protein, as well as the inhibition of the relative electrolyte conductivity and decrease in MDA content. These physiological changes protected the camphor trees from cold damage during winter. From February to March, SOD activity and the soluble protein and proline contents increased with the increase in temperature. However, the relative electrolyte conductivity and MDA content decreased, indicating that the cell membrane damaged by low temperature was gradually being repaired. The cold dip in April led to slight increases in the relative electrolyte conductivity and MDA content. Using a fuzzy mathematics method, the cold resistance adaptability of the camphor trees was divided into three periods namely, the enhancement setting stage, the vigorous stage, and the reducing stage. The cold tolerance abilities were ranked as the following order: C. bodinieri Level〉C. camphora L.〉C. caudiferum Kisterm.展开更多
The Lancang–Mekong River basin(LMRB) is under increasing threat from global warming. In this paper, the projection of future climate in the LMRB is explored by focusing on the temperature change and extreme temperatu...The Lancang–Mekong River basin(LMRB) is under increasing threat from global warming. In this paper, the projection of future climate in the LMRB is explored by focusing on the temperature change and extreme temperature events. First, the authors evaluate the bias of temperature simulated by the Weather Research and Forecasting model. Then, correction is made for the simulation by comparing with observation based on the non-parametric quantile mapping using robust empirical quantiles(RQUANT) method. Furthermore, using the corrected model results, the future climate projections of temperature and extreme temperature events in this basin during 2016–35, 2046–65, and 2080–99 are analyzed. The study shows that RQUANT can effectively reduce the bias of simulation results. After correction, the simulation can capture the spatial features and trends of mean temperature over the LMRB, as well as the extreme temperature events. Besides, it can reproduce the spatial and temporal distributions of the major modes. In the future, the temperature will keep increasing, and the warming in the southern basin will be more intense in the wet season than the dry season. The number of extreme high-temperature days exhibits an increasing trend, while the number of extreme low-temperature days shows a decreasing trend. Based on empirical orthogonal function analysis, the dominant feature of temperature over this basin shows a consistent change. The second mode shows a seesaw pattern.展开更多
This work reports spectroscopic studies of uranium containing plasma generated in air and argon environments. The 532 nm Q-switched Nd:YAG laser generates the optical breakdown plasma, which was recorded by a spectro...This work reports spectroscopic studies of uranium containing plasma generated in air and argon environments. The 532 nm Q-switched Nd:YAG laser generates the optical breakdown plasma, which was recorded by a spectrometer and an intensified charge coupled device having a resolution of 25 pm. Neutral and ionized uranium lines in the wavelength range of 385.8-391.9 nm indicate significant width and shift variations during the first few microseconds. Electron temperature and density of the plasma are determined using the Boltzmann plot and the Saha-Boltzmann equation at various time delay. The study reveals the power law decay pattern of electron temperature and density, which changes to exponential decay pattern if large gate- width is used to acquire the signal, due to an averaging effect.展开更多
Evaluation of high temperature performance of SBS-modified asphalt mixture was presented.Both wheel loaded method and creep method were adopted for two different mixtures and two kinds of specimens with different heig...Evaluation of high temperature performance of SBS-modified asphalt mixture was presented.Both wheel loaded method and creep method were adopted for two different mixtures and two kinds of specimens with different height,and corresponding indicators were measured.Meanwhile,the correlation between these indicators was thoroughly analyzed and two kinds of mixtures were compared.The experimental results show that there is a good linear relationship between LWT indicators and CT indicators for M-13,while a relatively poor relationship for M-25,especially that between dynamic stiffness and static stiffness and that between dynamic stability and static creep stiffness.Besides,logarithmic relationship between DS and RD has a higher determination coefficient than that for linear relationship.Thus,multi-index evaluation should be taken for synthetically assessing high temperature performance of asphalt mixture.展开更多
Low temperature cracking(LTC)distress on pavement seriously affects road life.This paper finished a literature review of the research on the mechanism of LTC of asphalt composites(asphalt composites refers to asphalt ...Low temperature cracking(LTC)distress on pavement seriously affects road life.This paper finished a literature review of the research on the mechanism of LTC of asphalt composites(asphalt composites refers to asphalt binder and asphalt mixture in this article),test methods,factors contributing to LTC,measures to prevent and control the distress,and prediction of LTC in asphalt pavements.The following conclusions were obtained:the cracking mechanism of asphalt mixtures needs to be further revealed by means of simulation at the micro level,the BBR and 4 mm plate test(by DSR)methods are currently optimal,and a correlation between asphalt and asphalt mixture evaluation indexes needs to be established.Sensitivity analyses are needed for the factors affecting LTC of asphalt mixtures.It is necessary to calculate the contribution of each factor to the LTC of asphalt mixtures.The aim is to propose targeted improvement measures for the most unfavourable factors,as well as to carry out research and development of key materials for anti-cracking.Measures for the prevention and control of LTC of asphalt pavement are analyzed and discussed.Existing researches on the prediction of LTC of asphalt pavements is discussed.It is necessary to analyse the mechanical response of asphalt pavement,the damage process and the sensitivity of anti-cracking parameters on the basis of considering the complex geometrical characteristics and material properties of asphalt pavement materials.Finally,the mechanism of LTC,evaluation methods,factors influencing LTC,and remedial measures for asphalt composites were summarized,and future research prospects were suggested.This paper provides theoretical support for the further solution of LTC distress of asphalt pavement,which is effective on the improvement of pavement life.展开更多
BACKGROUND: Olfactory ensheathing cell transplantation may transiently raise body temperature in some patients with old spinal cord injury. OBJECTIVE: To analyze the influence of olfactory ensheathing cell transplan...BACKGROUND: Olfactory ensheathing cell transplantation may transiently raise body temperature in some patients with old spinal cord injury. OBJECTIVE: To analyze the influence of olfactory ensheathing cell transplantation on body temperature changes and neurological functional recovery in patients with old spinal cord injury. DESIGN, TIME AND SETTING: A non-randomized self-controlled study, which was performed in the wards of the Department of Surgery, Taian Disabled Soldier's Hospital of Shandong Province, between June 2004 and July 2007. PARTICIPANTS: 119 inpatients with old spinal cord injury were selected for this study, including 110 males and 9 females, aged 5-58 years. METHODS: The olfactory bulb of an aborted fetus was digested into a single-cell suspension of olfactory ensheathing cells, which were then cultured and purified for 7-10 days, and once again made into a single-cell suspension. The olfactory ensheathing cell suspension was then transplanted in the juncture of the normal spinal cord and the abnormal spinal cord under surgical microscopy, with 1 × 10^6 cells per target point, with 2-5 target points in total. According to changes in postoperative temperature, 119 patients were divided into three groups: body temperature (T) ≤ 38.0 ℃ (n = 40), 38.0 ℃ 〈 T ≤ 39.0 ℃ (n = 67), T 〉 39.0℃ (n = 12). In particular, T 〉 38℃ (n = 79) patients were divided into two subgroups according to duration of fever: ≤3 days (n = 61) and ≥ 4 days (n = 18). MAIN OUTCOME MEASURES: Neurological function was evaluated by the American Spinal Cord Injury (ASIA) scale set by American Spinal Cord Injury Academy in 2000 one day prior to transplantation and one or two months after transplantation. RESULTS: 119 patients were included in the final analysis, without any loss. Following olfactory ensheathing cell transplantation, body temperatures changed as follows: T ≤ 38.0 ℃ (n = 40, 33.6%), 38.0 ℃ 〈 T ≤ 39.0 ℃ (n = 67, 56.3%), 〉 39.0 ℃ (n = 12, 10.1%). Moreover, among 79 patients (T 〉 38 ℃), the febrile time of 61 cases (77%) was ≤ 3 days, and that of 18 cases (23%) ≥ 4 days. ASIA scores increased after olfactory ensheathing cell transplantation (P 〈 0.05-0.01). CONCLUSION: Moderate febricity frequently occurred in patients that received olfactory ensheathing cell transplantation, and febrile time lasted for more than 3 days. Additionally, olfactory ensheathing cell transplantation can remarkably improve neurological functional recovery.展开更多
An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dyna...An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dynamical-only downscaling method are applied to daily mean,minimum and maximum air temperatures to investigate the quality of localscale estimates produced by downscaling.These two downscaling approaches are evaluated using station observation data obtained from the Finnish Meteorological Institute over a near-coastal region of western Finland.The dynamical downscaling is performed with the Weather Research and Forecasting(WRF)model,and the statistical downscaling method implemented is the Cumulative Distribution Function-transform(CDF-t).The CDF-t is trained using 20 years of WRF-downscaled Climate Forecast System Reanalysis data over the region at a 3-km spatial resolution for the central month of each season.The performance of the two methods is assessed qualitatively,by inspection of quantile-quantile plots,and quantitatively,through the Cramer-von Mises,mean absolute error,and root-mean-square error diagnostics.The hybrid approach is found to provide significantly more skillful forecasts of the observed daily mean and maximum air temperatures than those of the dynamical-only downscaling(for all seasons).The hybrid method proves to be less computationally expensive,and also to give more skillful temperature forecasts(at least for the Finnish near-coastal region).展开更多
Transmitting a longitudinal wave and a traverse wave into a composite material in a molten state has been studied in the online control of the composite material which cannot be evaluated by a conventional ultrasonic ...Transmitting a longitudinal wave and a traverse wave into a composite material in a molten state has been studied in the online control of the composite material which cannot be evaluated by a conventional ultrasonic sensor as a final analysis, using the difference in the propagation characteristics of both modes. It is especially expected that measurement of the physical quantity which was not able to be conventionally measured can be performed by carrying out coincidence measurement of the ultrasonic wave in both modes. Therefore, in this research study, an ultrasonic probe, which can simultaneously transmit and receive a longitudinal wave and a traverse wave has been developed using an electromagnetic acoustic transducer (EMAT) because it has the advantage of measuring high temperature samples. In this study, two methods have been compared. The 1st method uses a traverse wave EMAT that travels in a vertical direction and a bar wave by which the low order mode is equivalent to longitudinal wave vibration. The other method is to carry out the mode conversion of the traverse wave by a traverse wave-EMAT. The longitudinal converted from the transverse wave are spread in the axis direction. As the experimental results of both optimizations of the drive conditions, it has been confirmed that the 2nd mode conversion method was promising. This paper reports about the trial process and the experimental results.展开更多
文摘BACKGROUND Despite the developments in the field of kidney transplantation,the already existing diagnostic techniques for patient monitoring are considered insufficient.Protein biomarkers that can be derived from modern approaches of proteomic analysis of liquid biopsies(serum,urine)represent a promising innovation in the monitoring of kidney transplant recipients.AIM To investigate the diagnostic utility of protein biomarkers derived from proteomics approaches in renal allograft assessment.METHODS A systematic review was conducted in accordance with PRISMA guidelines,based on research results from the PubMed and Scopus databases.The primary focus was on evaluating the role of biomarkers in the non-invasive diagnosis of transplant-related com-plications.Eligibility criteria included protein biomarkers and urine and blood samples,while exclusion criteria were language other than English and the use of low resolution and sensitivity methods.The selected research articles,were categorized based on the biological sample,condition and methodology and the significantly and reproducibly differentiated proteins were manually selected and extracted.Functional and network analysis of the selected proteins was performed.RESULTS In 17 included studies,58 proteins were studied,with the cytokine CXCL10 being the most investigated.Biological pathways related to immune response and fibrosis have shown to be enriched.Applications of biomarkers for the assessment of renal damage as well as the prediction of short-term and long-term function of the graft were reported.Overall,all studies have shown satisfactory diagnostic accuracy of proteins alone or in combination with conventional methods,as far as renal graft assessment is concerned.CONCLUSION Our review suggests that protein biomarkers,evaluated in specific biological fluids,can make a significant contribution to the timely,valid and non-invasive assessment of kidney graft.
基金the National Key Research and Development Program of China(2018YFA0606301)the National Natural Science Foundation of China(42025502,41991285,42088101).
文摘This article evaluates the performance of 20 Coupled Model Intercomparison Project phase 6(CMIP6)models in simulating temperature and precipitation over China through comparisons with gridded observation data for the period of 1995–2014,with a focus on spatial patterns and interannual variability.The evaluations show that the CMIP6 models perform well in reproducing the climatological spatial distribution of temperature and precipitation,with better performance for temperature than for precipitation.Their interannual variability can also be reasonably captured by most models,however,poor performance is noted regarding the interannual variability of winter precipitation.Based on the comprehensive performance for the above two factors,the“highest-ranked”models are selected as an ensemble(BMME).The BMME outperforms the ensemble of all models(AMME)in simulating annual and winter temperature and precipitation,particularly for those subregions with complex terrain but it shows little improvement for summer temperature and precipitation.The AMME and BMME projections indicate annual increases for both temperature and precipitation across China by the end of the 21st century,with larger increases under the scenario of the Shared Socioeconomic Pathway 5/Representative Concentration Pathway 8.5(SSP585)than under scenario of the Shared Socioeconomic Pathway 2/Representative Concentration Pathway 4.5(SSP245).The greatest increases of annual temperature are projected for higher latitudes and higher elevations and the largest percentage-based increases in annual precipitation are projected to occur in northern and western China,especially under SSP585.However,the BMME,which generally performs better in these regions,projects lower changes in annual temperature and larger variations in annual precipitation when compared to the AMME projections.
基金supported by the National Natural Science Foundation of China(U21A2006)the National Key Research and Development Program of China(2019YFC0507401)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(XDA20100102)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0208)the Start-up Funds for Introduced Talent at Lanzhou University(561120217)the China Scholarship Council(201904910442,201906990037)。
文摘With its amplification simultaneously emerging in cryospheric regions,especially in the Tibetan Plateau,global warming is undoubtedly occurring.In this study,we utilized 28 global climate models to assess model performance regarding surface air temperature over the Tibetan Plateau from 1961 to 2014,reported spatiotemporal variability in surface air temperature in the future under four scenarios(SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5),and further quantified the timing of warming levels(1.5,2,and 3℃)in the region.The results show that the multimodel ensemble means depicted the spatiotemporal patterns of surface air temperature for the past decades well,although with differences across individual models.The projected surface air temperature,by 2099,would warm by 1.9,3.2,5.2,and 6.3℃relative to the reference period(1981–2010),with increasing rates of 0.11,0.31,0.53,and 0.70℃/decade under the SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5 scenarios for the period 2015–2099,respectively.Compared with the preindustrial periods(1850–1900),the mean annual surface air temperature over the Tibetan Plateau has hit the 1.5℃threshold and will break 2℃in the next decade,but there is still a chance to limit the temperature below 3℃in this century.Our study provides a new understanding of climate warming in high mountain areas and implies the urgent need to achieve carbon neutrality.
基金Supported by United Fund of Guizhou Province(QKH J LKN[2013]24)Key Special Project of Guizhou Province(QKHZDZX[2014]6017)High-level Innovative Talents Training of Guizhou Province(QKHRC[2016]4024)
文摘[Objective] The paper was to understand the physiological response of space flight mutation new strains of Festuca arundinacea to high temperature stress. [Method] The influence of high temperature stress on eco-physiological characteristics of 11 F. arundinacea materials was studied in a pot experiment.Physiological and biochemical indexes,including soluble protein content,superoxide dismutase( SOD),peroxidase( POD) and catalase( CAT) activities,were measured and analyzed once every 4 d for a total of three times. Subordinate function and grey rational analysis were used to comprehensively evaluate the heat resistance of 11 materials. [Result] The soluble protein content decreased with the extension of heat resistance stress,while SOD,POD and CAT activities showed an upward trend. The high temperature resistance of 11 F. arundinacea materials was evaluated by subordinate function method. The resistance order was SP5-85> SP5-60 > SP5-71 > SP5-42 > SP5-94 > SP5-7 > SP5-88 > F. arundinacea cv Shuicheng > SP5-5 > SP5-89 = F. arundinacea cv Qiancao No. 1. The relational order of various heat resistance indexes and heat resistance obtained by grey rational analysis was SOD > CAT > POD > soluble protein content. [Conclusion]The result provides a theoretical basis for stress physiology and stress breeding of cold season grass in southwest region.
基金Scientific and Technological Innovation and Management, a key project of meteorological foundation of Hunan province (HN2006ZD07)
文摘Based on the parallel air temperature data of automatic sounding and manual observations at 16 weather stations in Hainan province from 2004 to 2005, a comparative analysis and evaluation is made for validity according to relevant standards. The results indicate that there are daily and seasonal differences between temperature observations recorded by automatic weather stations (AWSs) and with conventional methods. The reasons for the differences are the systematic error, the sensitivity of the two types of instruments to the environmental temperature change, the difference of the observation time and the effect of solar radiation. Because the long-range data were obtained from manual observation, an empirical conversion formula between the temperature records obtained by the instruments is provided for continuous use of the climate data after the changes in instruments.
文摘The densification and the fractal dimensions of carbon-nickel films annealed at different temperatures 300, 500, 800, and 1000℃ with emphasis on porosity evaluation are investigated. For this purpose, the refractive index of films is determined from transmittance spectra. Three different regimes are identified, T 〈 500℃, 500℃ 〈 T 〈 800℃ and T 〉 800℃. The Rutherford baekscattering spectra show that with increasing the annealing temperature, the concentration of nickel atoms into films decreases. It is shown that the effect of annealing temperatures for increasing films densification at T 〈 500℃ and T 〉 800℃ is greater than the effect of nickel concentrations. It is observed that the effect of decreasing nickel atoms into films at 500℃ 〈 T 〈 800℃ strongly causes improving porosity and decreasing densification. The fractal dimensions of carbon-nickel films annealed from 300 to 500℃ are increased, while from 500 to 1000℃ these characteristics are decreased. It can be seen that at 800℃, films have maximum values of porosity and roughness.
文摘Training in acupuncture techniques has a long history of thousands of years. It has been individually handed down from person (teacher) to person (student). However, techniques and training have not been scientifically evaluated because individual differences may exist among evaluators. In animal studies, some researchers have reported that acupuncture stimulation dilates blood vessels of the skin and skeletal muscles. These studies also reveal an association between skin temperature (ST) and blood circulation volume on the skin. Our previous studies have reported that acupuncture stimulation, especially that of electroacupuncture (EA), can elevate ST. Therefore, we monitored the instructive effects and level of EA techniques with ST and propose that we can bring monitoring ST into training/education of EA as a new index of technical assessment. Moreover, ratio of changes might be used as new criteria for retraining. Healthy students (n = 14) were given with 10 minutes of EA stimulation on the tibialis anterior: Zusanli (ST36) and Tiaokou (ST38). Their ST was monitored before and during stimulation as well as for 30 minutes after stimulation. All subjects showed a nominal increase in ST. At the time, ratios of changes were also calculated. Two subjects did not reach the average of 1.3%. This suggests that the technical level of the therapist was inadequate. Thus, observation of ST elevation and calculation of the average ratio of ST change (elevation) could be applied to a new scientific index of technical assessment in acupuncture treatment training. However, further research (e.g., larger-scale studies, adjustment for gender differences, or other age subjects) is required to support these findings.
基金supported by the National Basic Key Project (also called 973 Project, Grant Nos. 2010CB950501 and 2010CB950102)the R&D Special Fund for Public Welfare Industry (meteorology) (Grant No. GYHY 201306019)the National Natural Science Foundation of China (Grant No. 41275078)
文摘Given that climate extremes in China might have serious regional and global consequences, an increasing number of studies are examining temperature extremes in China using the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. This paper investigates recent changes in temperature extremes in China using 25 state-of-the-art global climate models participating in CMIP5. Thirteen indices that represent extreme temperature events were chosen and derived by daily maximum and minimum temperatures, including those representing the intensity (absolute indices and threshold indices), duration (duration indices), and frequency (percentile indices) of extreme temperature. The overall performance of each model is summarized by a "portrait" diagram based on relative root-mean-square error, which is the RMSE relative to the median RMSE of all models, revealing the multi-model ensemble simulation to be better than individual model for most indices. Compared with observations, the models are able to capture the main features of the spatial distribution of extreme temperature during 1986-2005. Overall, the CMIP5 models are able to depict the observed indices well, and the spatial structure of the ensemble result is better for threshold indices than frequency indices. The spread amongst the CMIP5 models in different subregions for intensity indices is small and the median CMIP5 is close to observations; however, for the duration and frequency indices there can be wide disagreement regarding the change between models and observations in some regions. The model ensemble also performs well in reproducing the observational trend of temperature extremes. All absolute indices increase over China during 1961-2005.
基金supported by the National Key Research and Development Program of China grant number 2018YFC1509002the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) grant number GML2019ZD0601。
文摘Using the historical simulations from 27 models in phase 5 of the Coupled Model Intercomparison Project(CMIP5)and 27 models in phase 6(CMIP6),the authors evaluated the differences between CMIP5 and CMIP6 models in simulating the climate mean of extreme temperature over China through comparison with observations during 1979–2005.The CMIP6 models reproduce well the spatial distribution of annual maxima of daily maximum temperature(TXx),annual minima of daily minimum temperature(TNn),and frost days(FD).The model spread in CMIP6 is reduced relative to CMIP5 for some temperature indices,such as TXx,warm spell duration index(WSDI),and warm days(TX90 p).The multimodel median ensembles also capture the observed trend of extreme temperature.However,the CMIP6 models still have low skill in capturing TX90 p and cold nights(TN10 p)and have obvious cold biases or warm biases over the Tibetan Plateau.The ability of individual models varies for different indices,although some models outperform the others in terms of the average of all indices considered for different models.By comparing different version models from the same organization,the updated CMIP6 models show no significant difference from their counterparts from CMIP5 for some models.Compared with individual models,the median ensembles show better agreement with the observations for temperature indices and their means.
基金supported by the National Natural Science Foundation of China (Grant No. 41571516, 41471448)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA19040503, XDA19040504)
文摘The Grand Shangri-La(GSL) region has strong international tourist appeal. GSL has considerable international eco-tourist potential as well as being attractive for leisure, vacation, health, explorative, and scientific research activities in addition to high-end tourism experiences. These factors could promote the development of its regional tourism. GSL has been identified as a key area for tourism development in China. In this study, we investigated tourism climate conditions in GSL from 1980 to 2016 using a tourism climate index(TCI). We found that through global warming, the number of annual and monthly good-weather days, as assessed with the TCI, showed an increase over most of GSL;that trend was especially true for very good, excellent, and ideal days. The optimal travel period was May–October. We obtained the same result using cluster heat maps, in which we categorized 31 studied meteorological stations into eight types. However, heavy rainfall tended to occur during that optimal period, and it was concentrated at certain times. The annual total number of comfortable days greater than 300 was mainly located in southern GSL. We observed significant correlations between monthly and annual excellent and ideal days with latitude and elevation;in particular, we identified a significant nonlinear correlation between excellent(and ideal) days and elevation.
基金supported by the National Natural Science Foun-dation of China[grant number 41991284]。
文摘In this study,the authors evaluate the skill of 42 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6)in reproducing the climatological temperature and precipitation in Xinjiang during the period 1995–2014.The results indicate that the models can reliably capture the geographical distributions of the two variables.The regionally averaged bias of temperature is 0.1℃ for the annual mean,-1.6℃ in spring,0.5℃ in summer,-0.2℃ in autumn,and 1.3℃ in winter.Regionally averaged annual and seasonal precipitation in Xinjiang is generally overestimated by the CMIP6 models.The simulated annual precipitation is 89%more than the observation over Xinjiang,with a regionally averaged bias of 256%in spring,-3%in summer,84%in autumn,and 258%in winter.Quantitative analysis indicates that most models overestimate the spatial variability of both climatological temperature and precipitation.The models show smaller discrepancies in simulating the temperature than the precipitation in Xinjiang.In comparison,both the median and arithmetic mean of the 42 models have similar skills to those of 29 selected good models,and outperform most individual models.
基金Supported by the National Natural Science Foundation of China(10772029) the Ph.D Programs Foundation of Ministry of Education of China(20050007029) the Independent Research Subject of State Key Laboratory of Explosion Science and Technology(ZDKT08-02)
文摘In order to analyze the influence of vapor cloud shape on temperature field effect of unconfined vapor cloud explosion(UVCE)and obtain creditable prediction method of explosion temperature effect,the transient temperature fields of cylindrical and hemispherical UVCEs with same methane concentration and mass were numerically studied by computational fluid dynamics(CFD)technology.According to numerical simulation results, the concepts of UVCE’s temperature-near-field and temperature-far-field were proposed,the corresponding ranges were given,and the temperature attenuation laws and differences in corresponding regions with different vapor cloud shapes were presented.Through comparing with Baker fireball model,the accuracy and visualizability in acquisition of entire temperature effect based on numerical simulation were further validated.The functional relations among maximum temperature,horizontal distance,initial temperature and vapor cloud mass in temperature-near-field and temperature-far-field were deduced by means of data fitting,respectively.These conclusions provided quantitative basis for forecast and protection of UVCE disaster.
基金Supported by Youth Science Foundation from Henan University of Science and Technology(2013)
文摘The dynamic changes in the malondialdehyde(MDA), superoxide dismutase(SOD), soluble sugar, proline, and soluble protein contents, as well as the relative electrolyte conductivity and the corresponding cold resistance, of Cinnamomum bodinieri Level., C. camphora L., and C. caudiferum Kisterm were investigated during the winter months of October 2009 to April 2010. During the short period of temperature decline that lasted until mid-December, the changes in the relative electrolyte conductivity and MDA content with temperature were insignificant. In January, SOD activity continued to increase and then peaked as a result of rapid increases in soluble sugar, proline, soluble protein, as well as the inhibition of the relative electrolyte conductivity and decrease in MDA content. These physiological changes protected the camphor trees from cold damage during winter. From February to March, SOD activity and the soluble protein and proline contents increased with the increase in temperature. However, the relative electrolyte conductivity and MDA content decreased, indicating that the cell membrane damaged by low temperature was gradually being repaired. The cold dip in April led to slight increases in the relative electrolyte conductivity and MDA content. Using a fuzzy mathematics method, the cold resistance adaptability of the camphor trees was divided into three periods namely, the enhancement setting stage, the vigorous stage, and the reducing stage. The cold tolerance abilities were ranked as the following order: C. bodinieri Level〉C. camphora L.〉C. caudiferum Kisterm.
基金This work was supported by the External Cooperation Program of Bureau of International Co-operation,Chinese Academy of Sciences[grant number GJHZ1729]the Key Program of the Natural Science Foundation of Yunnan Province of China[grant number 2016FA041].
文摘The Lancang–Mekong River basin(LMRB) is under increasing threat from global warming. In this paper, the projection of future climate in the LMRB is explored by focusing on the temperature change and extreme temperature events. First, the authors evaluate the bias of temperature simulated by the Weather Research and Forecasting model. Then, correction is made for the simulation by comparing with observation based on the non-parametric quantile mapping using robust empirical quantiles(RQUANT) method. Furthermore, using the corrected model results, the future climate projections of temperature and extreme temperature events in this basin during 2016–35, 2046–65, and 2080–99 are analyzed. The study shows that RQUANT can effectively reduce the bias of simulation results. After correction, the simulation can capture the spatial features and trends of mean temperature over the LMRB, as well as the extreme temperature events. Besides, it can reproduce the spatial and temporal distributions of the major modes. In the future, the temperature will keep increasing, and the warming in the southern basin will be more intense in the wet season than the dry season. The number of extreme high-temperature days exhibits an increasing trend, while the number of extreme low-temperature days shows a decreasing trend. Based on empirical orthogonal function analysis, the dominant feature of temperature over this basin shows a consistent change. The second mode shows a seesaw pattern.
基金supported by the fund obtained from DAE-BARC(ⅫPlan)
文摘This work reports spectroscopic studies of uranium containing plasma generated in air and argon environments. The 532 nm Q-switched Nd:YAG laser generates the optical breakdown plasma, which was recorded by a spectrometer and an intensified charge coupled device having a resolution of 25 pm. Neutral and ionized uranium lines in the wavelength range of 385.8-391.9 nm indicate significant width and shift variations during the first few microseconds. Electron temperature and density of the plasma are determined using the Boltzmann plot and the Saha-Boltzmann equation at various time delay. The study reveals the power law decay pattern of electron temperature and density, which changes to exponential decay pattern if large gate- width is used to acquire the signal, due to an averaging effect.
基金Funded by the National Natural Science Foundation of China (No.50868003)Guangxi Key Laboratory of Architecture Engineering’s Detecting and Testing (No.07109005-9)
文摘Evaluation of high temperature performance of SBS-modified asphalt mixture was presented.Both wheel loaded method and creep method were adopted for two different mixtures and two kinds of specimens with different height,and corresponding indicators were measured.Meanwhile,the correlation between these indicators was thoroughly analyzed and two kinds of mixtures were compared.The experimental results show that there is a good linear relationship between LWT indicators and CT indicators for M-13,while a relatively poor relationship for M-25,especially that between dynamic stiffness and static stiffness and that between dynamic stability and static creep stiffness.Besides,logarithmic relationship between DS and RD has a higher determination coefficient than that for linear relationship.Thus,multi-index evaluation should be taken for synthetically assessing high temperature performance of asphalt mixture.
基金financially supported by National Key R&D Program of China(2022YFE0137300)National Natural Science Foundation of China(52078018).
文摘Low temperature cracking(LTC)distress on pavement seriously affects road life.This paper finished a literature review of the research on the mechanism of LTC of asphalt composites(asphalt composites refers to asphalt binder and asphalt mixture in this article),test methods,factors contributing to LTC,measures to prevent and control the distress,and prediction of LTC in asphalt pavements.The following conclusions were obtained:the cracking mechanism of asphalt mixtures needs to be further revealed by means of simulation at the micro level,the BBR and 4 mm plate test(by DSR)methods are currently optimal,and a correlation between asphalt and asphalt mixture evaluation indexes needs to be established.Sensitivity analyses are needed for the factors affecting LTC of asphalt mixtures.It is necessary to calculate the contribution of each factor to the LTC of asphalt mixtures.The aim is to propose targeted improvement measures for the most unfavourable factors,as well as to carry out research and development of key materials for anti-cracking.Measures for the prevention and control of LTC of asphalt pavement are analyzed and discussed.Existing researches on the prediction of LTC of asphalt pavements is discussed.It is necessary to analyse the mechanical response of asphalt pavement,the damage process and the sensitivity of anti-cracking parameters on the basis of considering the complex geometrical characteristics and material properties of asphalt pavement materials.Finally,the mechanism of LTC,evaluation methods,factors influencing LTC,and remedial measures for asphalt composites were summarized,and future research prospects were suggested.This paper provides theoretical support for the further solution of LTC distress of asphalt pavement,which is effective on the improvement of pavement life.
文摘BACKGROUND: Olfactory ensheathing cell transplantation may transiently raise body temperature in some patients with old spinal cord injury. OBJECTIVE: To analyze the influence of olfactory ensheathing cell transplantation on body temperature changes and neurological functional recovery in patients with old spinal cord injury. DESIGN, TIME AND SETTING: A non-randomized self-controlled study, which was performed in the wards of the Department of Surgery, Taian Disabled Soldier's Hospital of Shandong Province, between June 2004 and July 2007. PARTICIPANTS: 119 inpatients with old spinal cord injury were selected for this study, including 110 males and 9 females, aged 5-58 years. METHODS: The olfactory bulb of an aborted fetus was digested into a single-cell suspension of olfactory ensheathing cells, which were then cultured and purified for 7-10 days, and once again made into a single-cell suspension. The olfactory ensheathing cell suspension was then transplanted in the juncture of the normal spinal cord and the abnormal spinal cord under surgical microscopy, with 1 × 10^6 cells per target point, with 2-5 target points in total. According to changes in postoperative temperature, 119 patients were divided into three groups: body temperature (T) ≤ 38.0 ℃ (n = 40), 38.0 ℃ 〈 T ≤ 39.0 ℃ (n = 67), T 〉 39.0℃ (n = 12). In particular, T 〉 38℃ (n = 79) patients were divided into two subgroups according to duration of fever: ≤3 days (n = 61) and ≥ 4 days (n = 18). MAIN OUTCOME MEASURES: Neurological function was evaluated by the American Spinal Cord Injury (ASIA) scale set by American Spinal Cord Injury Academy in 2000 one day prior to transplantation and one or two months after transplantation. RESULTS: 119 patients were included in the final analysis, without any loss. Following olfactory ensheathing cell transplantation, body temperatures changed as follows: T ≤ 38.0 ℃ (n = 40, 33.6%), 38.0 ℃ 〈 T ≤ 39.0 ℃ (n = 67, 56.3%), 〉 39.0 ℃ (n = 12, 10.1%). Moreover, among 79 patients (T 〉 38 ℃), the febrile time of 61 cases (77%) was ≤ 3 days, and that of 18 cases (23%) ≥ 4 days. ASIA scores increased after olfactory ensheathing cell transplantation (P 〈 0.05-0.01). CONCLUSION: Moderate febricity frequently occurred in patients that received olfactory ensheathing cell transplantation, and febrile time lasted for more than 3 days. Additionally, olfactory ensheathing cell transplantation can remarkably improve neurological functional recovery.
基金Botnia-Atlantica, an EU-programme financing cross border cooperation projects in Sweden, Finland and Norway, for their support of this work through the WindCoE project
文摘An accurate simulation of air temperature at local scales is crucial for the vast majority of weather and climate applications.In this work,a hybrid statistical–dynamical downscaling method and a high-resolution dynamical-only downscaling method are applied to daily mean,minimum and maximum air temperatures to investigate the quality of localscale estimates produced by downscaling.These two downscaling approaches are evaluated using station observation data obtained from the Finnish Meteorological Institute over a near-coastal region of western Finland.The dynamical downscaling is performed with the Weather Research and Forecasting(WRF)model,and the statistical downscaling method implemented is the Cumulative Distribution Function-transform(CDF-t).The CDF-t is trained using 20 years of WRF-downscaled Climate Forecast System Reanalysis data over the region at a 3-km spatial resolution for the central month of each season.The performance of the two methods is assessed qualitatively,by inspection of quantile-quantile plots,and quantitatively,through the Cramer-von Mises,mean absolute error,and root-mean-square error diagnostics.The hybrid approach is found to provide significantly more skillful forecasts of the observed daily mean and maximum air temperatures than those of the dynamical-only downscaling(for all seasons).The hybrid method proves to be less computationally expensive,and also to give more skillful temperature forecasts(at least for the Finnish near-coastal region).
文摘Transmitting a longitudinal wave and a traverse wave into a composite material in a molten state has been studied in the online control of the composite material which cannot be evaluated by a conventional ultrasonic sensor as a final analysis, using the difference in the propagation characteristics of both modes. It is especially expected that measurement of the physical quantity which was not able to be conventionally measured can be performed by carrying out coincidence measurement of the ultrasonic wave in both modes. Therefore, in this research study, an ultrasonic probe, which can simultaneously transmit and receive a longitudinal wave and a traverse wave has been developed using an electromagnetic acoustic transducer (EMAT) because it has the advantage of measuring high temperature samples. In this study, two methods have been compared. The 1st method uses a traverse wave EMAT that travels in a vertical direction and a bar wave by which the low order mode is equivalent to longitudinal wave vibration. The other method is to carry out the mode conversion of the traverse wave by a traverse wave-EMAT. The longitudinal converted from the transverse wave are spread in the axis direction. As the experimental results of both optimizations of the drive conditions, it has been confirmed that the 2nd mode conversion method was promising. This paper reports about the trial process and the experimental results.