A spectrophotometric approach for the detection of non-ionic surfactant (Triton X-100) has been proposed in this paper. This method does not involve extraction of the ion-associate with harmful solvents, but employs a...A spectrophotometric approach for the detection of non-ionic surfactant (Triton X-100) has been proposed in this paper. This method does not involve extraction of the ion-associate with harmful solvents, but employs adhesion of the ion-association of potassium/non-ionic surfactants complex and tetraphenylporphyrin tetrasulfonic acid obtained by vigorous shaking. The adhered ion-associate was dissolved with water and its absorbance was measured. The sensitivity for Triton X-100 was determined to be 0.146 (expressed as absorbance of 1 mg/L solution). The adhesion tendency of ion-associate was found to be dependent on the water contact angle, which in turn was influenced by a high adhesion of the ion-associate and by low blank values. In this respect, a tetrafluo-roethylene vessel was found to be the most suitable for the detection of non-ionic surfactants. This spectrophotometrical method is simply and rapidly performed by a procedure based on mechanical shaking and can be employed to detect non-ionic surfactants containing more than 7 polyethylene oxide units.展开更多
A simple and rapid method for the determination of polyethylene oxide-type non-ionic surfactants is reported herein. This method is based on the adhesion of calcium/non-ionic surfactant complexes with tetra phenyl por...A simple and rapid method for the determination of polyethylene oxide-type non-ionic surfactants is reported herein. This method is based on the adhesion of calcium/non-ionic surfactant complexes with tetra phenyl porphine sulfonic acid (TPPS) to the wall of reaction vessel upon vigorous shaking. The ion-associate adhering to the inner wall of the vessel was dissolved with water after discarding the solution and spectrophotometrically assayed at 412 nm. From the standard curve for Triton X-100, the order of the sensitivity for different ions was as follows: Ca^2+〉 K^+〉 NH4^+〉 Ba^2+. The proposed method does not involve extraction of the ion-associated with harmful solvents and can be simply performed by combining a procedure based on hand shaking and the use of a spectrophotometer.展开更多
Extraction behavior of chlorpromazine hydrochloride (CPZ) and procaine hydro- chloride (PCN) in the system described in the title was studied. Research shows that the extraction efficiency of CPZ can amount to 96% by...Extraction behavior of chlorpromazine hydrochloride (CPZ) and procaine hydro- chloride (PCN) in the system described in the title was studied. Research shows that the extraction efficiency of CPZ can amount to 96% by twice extraction, while that of PCN is 77%. This system produces the distribution coefficients (KD) of 12.3 and 2.6 respectively for CPZ and PCN. Extraction mechanism is deduced according to ultraviolet and molecular fluorescence spectra variation of the drugs in the system studied.展开更多
Modern medicine is expanding the possibilities of receiving "personalized" diagnosis and therapies,providing minimal invasiveness,technological solutions based on non-ionizing radiation,early detection of pa...Modern medicine is expanding the possibilities of receiving "personalized" diagnosis and therapies,providing minimal invasiveness,technological solutions based on non-ionizing radiation,early detection of pathologies with the main objectives of being operator independent and with low cost to society.Our research activities aim to strongly contribute to these trends by improving the capabilities of current diagnostic imaging systems,which are of key importance in possibly providing both optimal diagnosis and therapies to patients.In medical diagnostics,cellular imaging aims to develop new methods and technologies for the detection of specific metabolic processes in living organisms,in order to accurately identify and discriminate normal from pathological tissues.In fact,most diseases have a "molecular basis" that detected through these new diagnostic methodologies can provide enormous benefits to medicine.Nowadays,this possibility is mainly related to the use of Positron Emission Tomography,with an exposure to ionizing radiation for patients and operators and with extremely high medical diagnosticscosts.The future possible development of non-ionizing cellular imaging based on techniques such as Nuclear Magnetic Resonance or Ultrasound,would represent an important step towards modern and personalized therapies.During the last decade,the field of nanotechnology has made important progress and a wide range of organic and inorganic nanomaterials are now available with an incredible number of further combinations with other compounds for cellular targeting.The availability of these new advanced nanosystems allows new scenarios in diagnostic methodologies which are potentially capable of providing morphological and functional information together with metabolic and cellular indications.展开更多
The quantification of ionizing energy deposition and non-ionizing energy deposition plays a critical role in precision neutron dosimetry and in the separation of the displacement damage effects and ionizing effects in...The quantification of ionizing energy deposition and non-ionizing energy deposition plays a critical role in precision neutron dosimetry and in the separation of the displacement damage effects and ionizing effects induced by neutron radiation on semiconductor devices. In this report, neutrons generated by the newly built China Spallation Neutron Source (CSNS) are simulated by Geant4 in semiconductor material silicon to calculate the ionizing and non-ionizing kerma factors. Furthermore, the integral method is applied to calculate neutron-induced ionizing at the CSNS and non-ionizing kerma factors according to the standard neutron nuclear database and the incident neutron spectrum. In addition, thermoluminescence dosimeters are utilized to measure the ionizing energy deposition and six series of bipolar junction transistors are used to measure the non-ionizing energy deposition based on their neutron damage constants. The calibrated kerma factors that were experimentally measured agreed well with the simulation and integral calculation results. This report describes a complete set of methods and fundamental data for the analysis of neutron-induced radiation effects at the CSNS on silicon-based semiconductor devices.展开更多
Modern technology has witnessed milestone achievements in the telecommunication industry.However,the widespread application of telecommunication technology is believed to heighten electromagnetic field(EMF)‘pollution...Modern technology has witnessed milestone achievements in the telecommunication industry.However,the widespread application of telecommunication technology is believed to heighten electromagnetic field(EMF)‘pollution’in our environment[1]and subject living organisms to various sources of electromagnetic emissions.These emissions include;microwaves.展开更多
The lowest energies which make Cu,In,Ga,and Se atoms composing Cu(In,Ga)Se_2(CIGS) material displaced from their lattice sites are evaluated,respectively.The non-ionizing energy loss(NIEL) for electron in CIGS m...The lowest energies which make Cu,In,Ga,and Se atoms composing Cu(In,Ga)Se_2(CIGS) material displaced from their lattice sites are evaluated,respectively.The non-ionizing energy loss(NIEL) for electron in CIGS material is calculated analytically using the Mott differential cross section.The relation of the introduction rate(k) of the recombination centers to NIEL is modified,then the values of k at different electron energies are calculated.Degradation modeling of CIGS thin-film solar cells irradiated with various-energy electrons is performed according to the characterization of solar cells and the recombination centers.The validity of the modeling approach is verified by comparison with the experimental data.展开更多
Cellular senescence has emerged as an important contributor to aging and age-related diseases.Non-ionizing radiation(NIR),including ultraviolet radiation and electromagnetic fields,has been increasingly recognized as ...Cellular senescence has emerged as an important contributor to aging and age-related diseases.Non-ionizing radiation(NIR),including ultraviolet radiation and electromagnetic fields,has been increasingly recognized as a key inducer of premature senescence.In this review,we discuss the molecular mechanisms of NIR-induced cellular senescence and its effects on aging and age-related diseases.We also summarize the modulation strategies for NIR-induced cellular senescence.A better understanding of the complex relationship between nonionizing radiation,cellular senescence and age-related pathology may lead to interventions to ameliorate radiation damage and delay aging.Further research is still needed to elucidate the precise mechanisms,dose-response effects,and to develop protective strategies against radiation-induced senescence.展开更多
The effect of a non-ionic surfactant on particles removal in post-CMP cleaning was investigated. By changing the concentration of the non-ionic surfactant, a series of experiments were performed on the 12 inch Cu patt...The effect of a non-ionic surfactant on particles removal in post-CMP cleaning was investigated. By changing the concentration of the non-ionic surfactant, a series of experiments were performed on the 12 inch Cu pattern wafers in order to determine the best cleaning results. Then the effect of the surfactant on the reduction of defects and the removal of particles was discussed in this paper. What is more, the negative effect of a non-ionic surfactant was also discussed. Based on the experiment results, it is concluded that the non-ionic surfactant could cause good and ill effects at different concentrations in the post-CMP cleaning process. This understanding will serve as a guide to how much surfactant should be added in order to achieve excellent cleaning performance.展开更多
This paper presents a new cleaning process for particle and organic contaminants on polished silicon wafer surfaces.It combines a non-ionic surfactant with boron-doped diamond(BDD) film anode electrochemical oxidati...This paper presents a new cleaning process for particle and organic contaminants on polished silicon wafer surfaces.It combines a non-ionic surfactant with boron-doped diamond(BDD) film anode electrochemical oxidation. The non-ionic surfactant is used to remove particles on the polished wafer's surface,because it can form a protective film on the surface,which makes particles easy to remove.The effects of particle removal comparative experiments were observed by metallographic microscopy,which showed that the 1%v/v non-ionic surfactant achieved the best result. However,the surfactant film itself belongs to organic contamination,and it eventually needs to be removed.BDD film anode electrochemical oxidation(BDD-EO) is used to remove organic contaminants,because it can efficiently degrade organic matter.Three organic contaminant removal comparative experiments were carried out:the first one used the non-ionic surfactant in the first step and then used BDD-EO,the second one used BDD-EO only,and the last one used RCA cleaning technique.The XPS measurement result shows that the wafer's surface cleaned by BDD-EO has much less organic residue than that cleaned by RCA cleaning technique,and the non-ionic surfactant can be efficiently removed by BDD-EO.展开更多
文摘A spectrophotometric approach for the detection of non-ionic surfactant (Triton X-100) has been proposed in this paper. This method does not involve extraction of the ion-associate with harmful solvents, but employs adhesion of the ion-association of potassium/non-ionic surfactants complex and tetraphenylporphyrin tetrasulfonic acid obtained by vigorous shaking. The adhered ion-associate was dissolved with water and its absorbance was measured. The sensitivity for Triton X-100 was determined to be 0.146 (expressed as absorbance of 1 mg/L solution). The adhesion tendency of ion-associate was found to be dependent on the water contact angle, which in turn was influenced by a high adhesion of the ion-associate and by low blank values. In this respect, a tetrafluo-roethylene vessel was found to be the most suitable for the detection of non-ionic surfactants. This spectrophotometrical method is simply and rapidly performed by a procedure based on mechanical shaking and can be employed to detect non-ionic surfactants containing more than 7 polyethylene oxide units.
文摘A simple and rapid method for the determination of polyethylene oxide-type non-ionic surfactants is reported herein. This method is based on the adhesion of calcium/non-ionic surfactant complexes with tetra phenyl porphine sulfonic acid (TPPS) to the wall of reaction vessel upon vigorous shaking. The ion-associate adhering to the inner wall of the vessel was dissolved with water after discarding the solution and spectrophotometrically assayed at 412 nm. From the standard curve for Triton X-100, the order of the sensitivity for different ions was as follows: Ca^2+〉 K^+〉 NH4^+〉 Ba^2+. The proposed method does not involve extraction of the ion-associated with harmful solvents and can be simply performed by combining a procedure based on hand shaking and the use of a spectrophotometer.
文摘Extraction behavior of chlorpromazine hydrochloride (CPZ) and procaine hydro- chloride (PCN) in the system described in the title was studied. Research shows that the extraction efficiency of CPZ can amount to 96% by twice extraction, while that of PCN is 77%. This system produces the distribution coefficients (KD) of 12.3 and 2.6 respectively for CPZ and PCN. Extraction mechanism is deduced according to ultraviolet and molecular fluorescence spectra variation of the drugs in the system studied.
基金Supported by Italian Ministry of Research,Apulia Region,European Commission and National Council of Research
文摘Modern medicine is expanding the possibilities of receiving "personalized" diagnosis and therapies,providing minimal invasiveness,technological solutions based on non-ionizing radiation,early detection of pathologies with the main objectives of being operator independent and with low cost to society.Our research activities aim to strongly contribute to these trends by improving the capabilities of current diagnostic imaging systems,which are of key importance in possibly providing both optimal diagnosis and therapies to patients.In medical diagnostics,cellular imaging aims to develop new methods and technologies for the detection of specific metabolic processes in living organisms,in order to accurately identify and discriminate normal from pathological tissues.In fact,most diseases have a "molecular basis" that detected through these new diagnostic methodologies can provide enormous benefits to medicine.Nowadays,this possibility is mainly related to the use of Positron Emission Tomography,with an exposure to ionizing radiation for patients and operators and with extremely high medical diagnosticscosts.The future possible development of non-ionizing cellular imaging based on techniques such as Nuclear Magnetic Resonance or Ultrasound,would represent an important step towards modern and personalized therapies.During the last decade,the field of nanotechnology has made important progress and a wide range of organic and inorganic nanomaterials are now available with an incredible number of further combinations with other compounds for cellular targeting.The availability of these new advanced nanosystems allows new scenarios in diagnostic methodologies which are potentially capable of providing morphological and functional information together with metabolic and cellular indications.
基金supported by the National Natural Science Foundation of China(Nos.11690040 and 11690043)the Foundation of State Key Laboratory of China(Nos.SKLIPR1801Z and 6142802180304)
文摘The quantification of ionizing energy deposition and non-ionizing energy deposition plays a critical role in precision neutron dosimetry and in the separation of the displacement damage effects and ionizing effects induced by neutron radiation on semiconductor devices. In this report, neutrons generated by the newly built China Spallation Neutron Source (CSNS) are simulated by Geant4 in semiconductor material silicon to calculate the ionizing and non-ionizing kerma factors. Furthermore, the integral method is applied to calculate neutron-induced ionizing at the CSNS and non-ionizing kerma factors according to the standard neutron nuclear database and the incident neutron spectrum. In addition, thermoluminescence dosimeters are utilized to measure the ionizing energy deposition and six series of bipolar junction transistors are used to measure the non-ionizing energy deposition based on their neutron damage constants. The calibrated kerma factors that were experimentally measured agreed well with the simulation and integral calculation results. This report describes a complete set of methods and fundamental data for the analysis of neutron-induced radiation effects at the CSNS on silicon-based semiconductor devices.
文摘Modern technology has witnessed milestone achievements in the telecommunication industry.However,the widespread application of telecommunication technology is believed to heighten electromagnetic field(EMF)‘pollution’in our environment[1]and subject living organisms to various sources of electromagnetic emissions.These emissions include;microwaves.
基金Project supported by the National Natural Science Foundation of China(Grant No.11547151)
文摘The lowest energies which make Cu,In,Ga,and Se atoms composing Cu(In,Ga)Se_2(CIGS) material displaced from their lattice sites are evaluated,respectively.The non-ionizing energy loss(NIEL) for electron in CIGS material is calculated analytically using the Mott differential cross section.The relation of the introduction rate(k) of the recombination centers to NIEL is modified,then the values of k at different electron energies are calculated.Degradation modeling of CIGS thin-film solar cells irradiated with various-energy electrons is performed according to the characterization of solar cells and the recombination centers.The validity of the modeling approach is verified by comparison with the experimental data.
文摘Cellular senescence has emerged as an important contributor to aging and age-related diseases.Non-ionizing radiation(NIR),including ultraviolet radiation and electromagnetic fields,has been increasingly recognized as a key inducer of premature senescence.In this review,we discuss the molecular mechanisms of NIR-induced cellular senescence and its effects on aging and age-related diseases.We also summarize the modulation strategies for NIR-induced cellular senescence.A better understanding of the complex relationship between nonionizing radiation,cellular senescence and age-related pathology may lead to interventions to ameliorate radiation damage and delay aging.Further research is still needed to elucidate the precise mechanisms,dose-response effects,and to develop protective strategies against radiation-induced senescence.
基金Project supported by the Specific Project Items No.2 in National Long-Term Technology Development Plan(No.2009zx02308-003)
文摘The effect of a non-ionic surfactant on particles removal in post-CMP cleaning was investigated. By changing the concentration of the non-ionic surfactant, a series of experiments were performed on the 12 inch Cu pattern wafers in order to determine the best cleaning results. Then the effect of the surfactant on the reduction of defects and the removal of particles was discussed in this paper. What is more, the negative effect of a non-ionic surfactant was also discussed. Based on the experiment results, it is concluded that the non-ionic surfactant could cause good and ill effects at different concentrations in the post-CMP cleaning process. This understanding will serve as a guide to how much surfactant should be added in order to achieve excellent cleaning performance.
文摘This paper presents a new cleaning process for particle and organic contaminants on polished silicon wafer surfaces.It combines a non-ionic surfactant with boron-doped diamond(BDD) film anode electrochemical oxidation. The non-ionic surfactant is used to remove particles on the polished wafer's surface,because it can form a protective film on the surface,which makes particles easy to remove.The effects of particle removal comparative experiments were observed by metallographic microscopy,which showed that the 1%v/v non-ionic surfactant achieved the best result. However,the surfactant film itself belongs to organic contamination,and it eventually needs to be removed.BDD film anode electrochemical oxidation(BDD-EO) is used to remove organic contaminants,because it can efficiently degrade organic matter.Three organic contaminant removal comparative experiments were carried out:the first one used the non-ionic surfactant in the first step and then used BDD-EO,the second one used BDD-EO only,and the last one used RCA cleaning technique.The XPS measurement result shows that the wafer's surface cleaned by BDD-EO has much less organic residue than that cleaned by RCA cleaning technique,and the non-ionic surfactant can be efficiently removed by BDD-EO.
文摘在自然界中,植物会遭受各种环境或内源因素导致的DNA损伤,其中DNA双链断裂(double strand breaks,DSBs)的影响最为严重,如果修复不当,将导致基因组不稳定、基因突变甚至细胞死亡。一方面,植物进化出了强大且有序的损伤修复机制,以确保其存活及正常繁衍;另一方面,基于修复过程的容错性及致突变性,T-DNA插入、基因编辑、物理诱变等技术广泛应用于动植物品种改良。相较于哺乳动物,植物DSBs修复通路及其分子机制报道较为有限。本文综述了植物对DSBs损伤的响应、主要修复途径及关键因子,介绍了通路机制尚未完全解析的替代末端连接(alternative end joining,Alt-EJ)的最新研究进展;此外,探讨了重离子束引起的植物DSBs修复特征和多途径选择,以及基于不同DSBs修复途径的基因编辑技术的研究进展,旨在为深入了解植物DSBs损伤响应及修复的分子机制和研发高效生物育种技术提供参考。