The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
Based on the entropy function, a two-dimensional phase field model of binary alloys was established. Meanwhile, an explicit difference method with uniform grid was adopted to solve the phase field and solute field con...Based on the entropy function, a two-dimensional phase field model of binary alloys was established. Meanwhile, an explicit difference method with uniform grid was adopted to solve the phase field and solute field controlled equations. And the alternating direction implicit(ADI) algorithm for solving temperature field controlled equation was also employed to avoid the restriction of time step. Some characteristics of the Ni-Cu alloy were captured in the process of non-isothermal solidification, and the comparative analysis of the isothermal and the non-isothermal solidification was investigated. The simulation results indicate that the non-isothermal model is favorable to simulate the real solidification process of binary alloys, and when the thermal diffusivity decreases, the non-isothermal phase-field model is gradually consistent with the isothermal phase-field model.展开更多
The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and...The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influencing mechanism of chromium on the oxidation resistance of Ti-Cr alloys was discussed. The results show that the oxidation resistance of the alloys decreases with Cr below a critical chromium content wC and increases above wC; above 1000 K, the oxidation kinetics obeys parabolic rule and titanium dominates the oxidation process; after oxidation, the oxygen-diffusing layer is present in the alloy matrix, the oxide scale is mainly composed of rutile whose internal layer is rich in chromium, and chromium oxides separated out from TiO2 near the alloy-oxide interface improve the oxidation resistance. Ignition of metals and alloys is a fast non-isothermal oxidation process and the oxidation mechanism of Ti-Cr alloys during ignition is predicted.展开更多
The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP...The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP obeys “LSW” theory, namely, the cube of GBP average size has a linear dependence relation to retrogression time, and the coarsening rate accelerates at the elevated retrogression temperature. The GBP coarsening activation energy Qo of (115.2±1.3) kJ/mol is obtained subsequently. Taking the retrogression treatment schedule of 190℃, 45 min derived from AA7055 thin plate as reference, the non-isothermal retrogression model for GBP coarsening behavior is established based on “LSW”theory and “iso-kinetics” solution, which includes an Arrhenius form equation. After that, the average size of GBP r(t) is predicted successfully at any non-isothermal process T(t) when the initial size of GBP r0 is given. Finally, the universal characterization method for the microstructure homogeneity along the thickness direction of TA55 aluminum alloy thick plate is also set up.展开更多
In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusio...In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusion mobility database, which can accurately predict the phase equilibrium, solute diffusion coefficients, specific heat capacity and latent heat release in the whole system. The results show that these parameters are not constants and their values depend on local concentration and temperature. Quantitative simulation of solidification in multicomponent alloys is almost impossible without such parameters available. In this model, the interfacial region is assumed to be a mixture of solid and liquid with the same chemical potentials, but with different composition. The anti-trapping current is also considered in the model. And this model was successfully applied to industrial A1-Cu-Mg alloy for the free equiaxed dendrite solidification process.展开更多
Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024,...Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu-Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 ℃ promotes the particle-free regions and also particle stimulated nucleation. Results show that through heating with the rate of 10 ℃/min up to 250 ℃, the ultimate shear strength and the hardness are maximum due to the presence of S'/S phases which have been detected during non-isothermal differential scanning calorimetry experiment. Also, recrystallization phenomenon occurs in temperature range which includes the dissolution of S'/S phases. The concurrent recrystallization and dissolution of S'/S phase at 380 ℃ have been verified by differential scanning calorimetry, mechanical properties, and optical microscope.展开更多
The evolution of microstructure and properties of Al−5.87Zn−2.07Mg−2.42Cu alloys during non-isothermal aging was studied.The mechanical properties of the alloy were tested by stretching at room temperature.The results...The evolution of microstructure and properties of Al−5.87Zn−2.07Mg−2.42Cu alloys during non-isothermal aging was studied.The mechanical properties of the alloy were tested by stretching at room temperature.The results show that in the non-isothermal aging process,when the alloy is cooled to 140℃,the ultimate tensile strength of the alloy reaches a maximum value of 582 MPa and the elongation is 11.9%.The microstructure was tested through a transmission electron microscope,and the experimental results show that the GP zones andη'phases are the main strengthening precipitates.At the cooling stage,when the temperature dropped to 180℃,the GP zones were precipitated again.Besides,the experimental results show that the main strengthening phase during non-isothermal aging isη'phases.展开更多
In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick pl...In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.展开更多
A quantitative multi-phase-field model for non-isothermal and polycrystalline solidification was developed and applied to dilute multicomponent alloys with hexagonal close-packed structures.The effects of Lewis coeffi...A quantitative multi-phase-field model for non-isothermal and polycrystalline solidification was developed and applied to dilute multicomponent alloys with hexagonal close-packed structures.The effects of Lewis coefficient and undercooling on dendrite growth were investigated systematically.Results show that large Lewis coefficients facilitate the release of the latent heat,which can accelerate the dendrite growth while suppress the dendrite tip radius.The greater the initial undercooling,the stronger the driving force for dendrite growth,the faster the growth rate of dendrites,the higher the solid fraction,and the more serious the solute microsegregation.The simulated dendrite growth dynamics are consistent with predictions from the phenomenological theory but significantly deviate from the classical JMAK theory which neglects the soft collision effect and mutual blocking among dendrites.Finally,taking the Mg-6Gd-2Zn(wt.%)alloy as an example,the simulated dendrite morphology shows good agreement with experimental results.展开更多
Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in th...Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of a-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room tem- perature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.展开更多
The failure of AA3003 aluminum alloy sheet metal was predicted for non-isothermal viscous pressure bulging (VPB). Utilizing the coupled thermo-mechanical finite element method combined with ductile fracture criterion,...The failure of AA3003 aluminum alloy sheet metal was predicted for non-isothermal viscous pressure bulging (VPB). Utilizing the coupled thermo-mechanical finite element method combined with ductile fracture criterion, the calculations were carried out for non-isotherm VPB at various temperatures and the influences of the initial temperature of viscous medium on failure mode of bulge specimens were investigated. The results show that the failure modes are different for the non-isothermal VPB with different initial temperatures of viscous medium. For the non-isothermal VPB of AA3003 aluminum alloy sheet with initial temperature of 250 ℃, when the initial temperature of viscous medium ranges from 150 to 180 ℃, the formability of sheet metal can be improved to a full extent. The validity of the predictions is examined by comparing with experimental results.展开更多
The low cycle fatigue behaviour of an Al-Zn-Mg-Cu alloy processed via non-isothermal ageing(NIA)was examined at different strain amplitudes.We showed that NIA improved the low cycle fatigue life(more than 7000 cycles)...The low cycle fatigue behaviour of an Al-Zn-Mg-Cu alloy processed via non-isothermal ageing(NIA)was examined at different strain amplitudes.We showed that NIA improved the low cycle fatigue life(more than 7000 cycles)by optimising the precipitate configuration within 5.5 h while maintaining comparable mechanical properties(570 MPa for tensile strength)and conductivity(nearly 39%IACS)to conventional isothermal ageing,simultaneously.Experimental observation combined with molecular dynamic simula-tion revealed that precipitation configuration manipulated by NIA had a crucial effect on fatigue resis-tance.A great number of repeatedly sheared and locally destructed GP zones enhanced co-planar slip and slip localisation in the under-aged alloy during the early stage of NIA,responsible for the dramatic displacement steps on the surface and resultant poor fatigue performance.As the NIA further proceeded,moderately coarsened precipitates with an average dimension of 6.0 nm and elevated number density ef-fectively impeded the dislocation movement and weaken the slip localisation to a great extent,improving the fatigue performance within a few hours.展开更多
Phase field method was used to simulate the effect of grains orientation angle θ_(11) and azimuth θ_A of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites. In the si...Phase field method was used to simulate the effect of grains orientation angle θ_(11) and azimuth θ_A of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites. In the simulation process, two single-factor influence experiments were designed for columnar crystal structures. The simulation results showed that, when θ_(11) < 45o and θ_A < 45o, as θ_(11) was enlarged, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging grain boundary(GB) presented an increasing inclination to that of preferentially growing dendrites; with increasing θ_A, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging GB exhibited greater deflection,and the secondary dendrites grew with branches; the secondary dendrites on the preferentially growing dendrites at diverging GBs grew along a direction vertical to the growth direction of the preferentially growing dendrites.When θ_A = 45o and θ_(11) = 45o, the secondary dendrites grew in a direction vertical to the growth direction of preferentially growing dendrites. The morphologies of the dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the effect of a grain's orientation angle and azimuth of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites does exist and frequently appears in the practical solidification process.展开更多
Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or grow...Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or growth function,which is utilized by the automaton in a probabilistic fashion.These simulations may provide an efficient method of discovering how the physical processes involved in solidification processes dynamically progress and how they interact with each other during solidification.The simulated results show that the final morphology during solidification is related with the cooling conditions.The established model can be used to evaluate the phase transformation of binary alloys during solidification.展开更多
Taking Al-2%mole-Cu binary alloy as an example, the influence of grain orientation on competitive growth of dendrites under different competitive modes was investigated by using the three-dimensional(3-D) phasefield m...Taking Al-2%mole-Cu binary alloy as an example, the influence of grain orientation on competitive growth of dendrites under different competitive modes was investigated by using the three-dimensional(3-D) phasefield method. The result of phase-field simulation was verified by applying cold spray and directional remelting. In the simulation process, two competitive modes were designed: in Scheme 1, the monolayer columnar grains in multilayer columnar crystals had different orientations; while in Scheme 2, they had the same orientation. The simulation result showed that in Scheme 1, the growth of the dendrites, whose orientation had a certain included angle with the direction of temperature gradient, was restrained by the growth of other dendrites whose direction was parallel to the direction of temperature gradient. Moreover, the larger the included angle between the grain orientation and temperature gradient, the earlier the cessation of dendrite growth. The secondary dendrites of dendrites whose grain orientation was parallel to the temperature gradient flourished with increasing included angles between the grain orientation and temperature gradient. In Scheme 2, the greater the included angle between grain orientation and temperature gradient, the easier the dendrites whose orientation showed a certain included angle with temperature gradient inserted between those grew parallel to the temperature gradient, and the better the growth condition thereafter. Some growing dendrites after intercalation were deflected to the temperature gradient, and the greater the included angle, the lower the deflection. The morphologies of the competitive growth dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the two modes of competitive growth of dendrites characterized in the simulation do exist and frequently appear in practical solidification processes.展开更多
The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%...The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.展开更多
The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 a...The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent.展开更多
This paper simulates the dendrite growth process during non-isothermal solidification in the Al-Cu binary alloy by using the phase-field model. The heat transfer equation is solved simultaneously. The thermodynamic an...This paper simulates the dendrite growth process during non-isothermal solidification in the Al-Cu binary alloy by using the phase-field model. The heat transfer equation is solved simultaneously. The thermodynamic and kinetic parameters are directly obtained from existing database by using the Calculation of Phase Diagram (CALPHAD) method. The effects of the latent heat and undercooling on the dendrite growth, solute and temperature profile during the solidification of binary alloy are investigated. The results indicate that the dendrite growing morphologies could be simulated realistically by linking the phase-field method to CALPHAD. The secondary arms of solidification dendritic are better developed with the increase of undercooling. Correspondingly, the tip speed and the solute segregation in solid-liquid interface increase, but the tip radius decreases.展开更多
Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary ...Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.展开更多
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
基金Projects(51161011,11364024)supported by the National Natural Science Foundation of China
文摘Based on the entropy function, a two-dimensional phase field model of binary alloys was established. Meanwhile, an explicit difference method with uniform grid was adopted to solve the phase field and solute field controlled equations. And the alternating direction implicit(ADI) algorithm for solving temperature field controlled equation was also employed to avoid the restriction of time step. Some characteristics of the Ni-Cu alloy were captured in the process of non-isothermal solidification, and the comparative analysis of the isothermal and the non-isothermal solidification was investigated. The simulation results indicate that the non-isothermal model is favorable to simulate the real solidification process of binary alloys, and when the thermal diffusivity decreases, the non-isothermal phase-field model is gradually consistent with the isothermal phase-field model.
文摘The non-isothermal oxidation behavior and oxide scale microstructure of Ti-Cr alloy (0≤w(Cr)≤25%) were studied from room temperature to 1723 K by thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influencing mechanism of chromium on the oxidation resistance of Ti-Cr alloys was discussed. The results show that the oxidation resistance of the alloys decreases with Cr below a critical chromium content wC and increases above wC; above 1000 K, the oxidation kinetics obeys parabolic rule and titanium dominates the oxidation process; after oxidation, the oxygen-diffusing layer is present in the alloy matrix, the oxide scale is mainly composed of rutile whose internal layer is rich in chromium, and chromium oxides separated out from TiO2 near the alloy-oxide interface improve the oxidation resistance. Ignition of metals and alloys is a fast non-isothermal oxidation process and the oxidation mechanism of Ti-Cr alloys during ignition is predicted.
基金Project(2012CB619505)supported by the National Basic Research Program of China
文摘The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP obeys “LSW” theory, namely, the cube of GBP average size has a linear dependence relation to retrogression time, and the coarsening rate accelerates at the elevated retrogression temperature. The GBP coarsening activation energy Qo of (115.2±1.3) kJ/mol is obtained subsequently. Taking the retrogression treatment schedule of 190℃, 45 min derived from AA7055 thin plate as reference, the non-isothermal retrogression model for GBP coarsening behavior is established based on “LSW”theory and “iso-kinetics” solution, which includes an Arrhenius form equation. After that, the average size of GBP r(t) is predicted successfully at any non-isothermal process T(t) when the initial size of GBP r0 is given. Finally, the universal characterization method for the microstructure homogeneity along the thickness direction of TA55 aluminum alloy thick plate is also set up.
基金Project(2011CB606306) supported by the National Basic Research Program of ChinaProject(51101014) supported by the National Natural Science Foundation of China
文摘In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusion mobility database, which can accurately predict the phase equilibrium, solute diffusion coefficients, specific heat capacity and latent heat release in the whole system. The results show that these parameters are not constants and their values depend on local concentration and temperature. Quantitative simulation of solidification in multicomponent alloys is almost impossible without such parameters available. In this model, the interfacial region is assumed to be a mixture of solid and liquid with the same chemical potentials, but with different composition. The anti-trapping current is also considered in the model. And this model was successfully applied to industrial A1-Cu-Mg alloy for the free equiaxed dendrite solidification process.
基金research board of Sharif University of Technology for the financial support and the provision of the research facilities used in this work
文摘Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu-Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 ℃ promotes the particle-free regions and also particle stimulated nucleation. Results show that through heating with the rate of 10 ℃/min up to 250 ℃, the ultimate shear strength and the hardness are maximum due to the presence of S'/S phases which have been detected during non-isothermal differential scanning calorimetry experiment. Also, recrystallization phenomenon occurs in temperature range which includes the dissolution of S'/S phases. The concurrent recrystallization and dissolution of S'/S phase at 380 ℃ have been verified by differential scanning calorimetry, mechanical properties, and optical microscope.
基金the National Key Research and Development Program of China(No.2018YFB2001801)the Postdoctoral Science Foundation of Central South University,China(No.220363)the National Natural Science Foundation of China(No.51601229).
文摘The evolution of microstructure and properties of Al−5.87Zn−2.07Mg−2.42Cu alloys during non-isothermal aging was studied.The mechanical properties of the alloy were tested by stretching at room temperature.The results show that in the non-isothermal aging process,when the alloy is cooled to 140℃,the ultimate tensile strength of the alloy reaches a maximum value of 582 MPa and the elongation is 11.9%.The microstructure was tested through a transmission electron microscope,and the experimental results show that the GP zones andη'phases are the main strengthening precipitates.At the cooling stage,when the temperature dropped to 180℃,the GP zones were precipitated again.Besides,the experimental results show that the main strengthening phase during non-isothermal aging isη'phases.
基金Project(51801082) supported by National Natural Science Foundation of ChinaProjects(GY2021003, GY2021020)supported by the Key Research and Development Program of Zhenjiang City,China+1 种基金Project(KYCX21_3453) supported by Graduate Research and Innovation Projects in Jiangsu Province,ChinaProject(202110289002Z) supported by Undergraduate Innovation and Entrepreneurship Training Program of Jiangsu Province,China。
文摘In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.
基金the National Natural Science Foundation-Youth Science Foundation Project(No.51901208)the Henan University Key Scientific Research Project(No.20B430020)+1 种基金the Key Scientific and Technological Projects in Henan Province(Nos.202102210016,202102210272)the Major Innovation Project of Zhengzhou City(No.23101000010).
文摘A quantitative multi-phase-field model for non-isothermal and polycrystalline solidification was developed and applied to dilute multicomponent alloys with hexagonal close-packed structures.The effects of Lewis coefficient and undercooling on dendrite growth were investigated systematically.Results show that large Lewis coefficients facilitate the release of the latent heat,which can accelerate the dendrite growth while suppress the dendrite tip radius.The greater the initial undercooling,the stronger the driving force for dendrite growth,the faster the growth rate of dendrites,the higher the solid fraction,and the more serious the solute microsegregation.The simulated dendrite growth dynamics are consistent with predictions from the phenomenological theory but significantly deviate from the classical JMAK theory which neglects the soft collision effect and mutual blocking among dendrites.Finally,taking the Mg-6Gd-2Zn(wt.%)alloy as an example,the simulated dendrite morphology shows good agreement with experimental results.
文摘Al-12Zn-3Mg-2.5Cu alloy was prepared using a liquid metallurgy route under the optimized conditions. A sample cut from the ingot was rolled non-isothermally from 400℃ to 100℃ in 100℃ steps, with 15% reduction in thickness; it was then cold rolled isothermally at room temperature for 85% reduction. The cold-rolled alloys were characterized by electron microscopy, hardness test, and tensile test to elucidate their structural evolution and evaluate their mechanical behavior. In the results, the cast alloy consists of a-aluminum and various intermetallic compounds. These compounds are segregated along the grain boundaries, which makes the alloy difficult to roll at room tem- perature. The combined effect of non-isothermal step rolling and cold rolling results in the nano/microsized compounds distributed uniformly in the matrix. The hardness is substantially increased after rolling. This increase in hardness is attributed to the ultra-fine grain size, fine-scale intermetallic compounds, and structural defects (e.g., dislocations, stacking faults, and sub-grains). The ultimate tensile strength of the rolled alloy is approximately 628 MPa with 7% ductility.
基金Projects(50805034, 50275035) supported by the National Natural Science Foundation of China
文摘The failure of AA3003 aluminum alloy sheet metal was predicted for non-isothermal viscous pressure bulging (VPB). Utilizing the coupled thermo-mechanical finite element method combined with ductile fracture criterion, the calculations were carried out for non-isotherm VPB at various temperatures and the influences of the initial temperature of viscous medium on failure mode of bulge specimens were investigated. The results show that the failure modes are different for the non-isothermal VPB with different initial temperatures of viscous medium. For the non-isothermal VPB of AA3003 aluminum alloy sheet with initial temperature of 250 ℃, when the initial temperature of viscous medium ranges from 150 to 180 ℃, the formability of sheet metal can be improved to a full extent. The validity of the predictions is examined by comparing with experimental results.
基金supported by the State’s Key Project of Re-search and Development Plan(No.2021YFC1910505)the Key Research and Development Program of Guangdong Province(No.2020B010186002).
文摘The low cycle fatigue behaviour of an Al-Zn-Mg-Cu alloy processed via non-isothermal ageing(NIA)was examined at different strain amplitudes.We showed that NIA improved the low cycle fatigue life(more than 7000 cycles)by optimising the precipitate configuration within 5.5 h while maintaining comparable mechanical properties(570 MPa for tensile strength)and conductivity(nearly 39%IACS)to conventional isothermal ageing,simultaneously.Experimental observation combined with molecular dynamic simula-tion revealed that precipitation configuration manipulated by NIA had a crucial effect on fatigue resis-tance.A great number of repeatedly sheared and locally destructed GP zones enhanced co-planar slip and slip localisation in the under-aged alloy during the early stage of NIA,responsible for the dramatic displacement steps on the surface and resultant poor fatigue performance.As the NIA further proceeded,moderately coarsened precipitates with an average dimension of 6.0 nm and elevated number density ef-fectively impeded the dislocation movement and weaken the slip localisation to a great extent,improving the fatigue performance within a few hours.
基金supported by the National Natural Science Foundation of China(Grant Nos.:11504149,11364024,and 51661020)
文摘Phase field method was used to simulate the effect of grains orientation angle θ_(11) and azimuth θ_A of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites. In the simulation process, two single-factor influence experiments were designed for columnar crystal structures. The simulation results showed that, when θ_(11) < 45o and θ_A < 45o, as θ_(11) was enlarged, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging grain boundary(GB) presented an increasing inclination to that of preferentially growing dendrites; with increasing θ_A, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging GB exhibited greater deflection,and the secondary dendrites grew with branches; the secondary dendrites on the preferentially growing dendrites at diverging GBs grew along a direction vertical to the growth direction of the preferentially growing dendrites.When θ_A = 45o and θ_(11) = 45o, the secondary dendrites grew in a direction vertical to the growth direction of preferentially growing dendrites. The morphologies of the dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the effect of a grain's orientation angle and azimuth of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites does exist and frequently appears in the practical solidification process.
基金Project(50572013) supported by the National Natural Science Foundation of ChinaProject(G2000067104) supported by the National Basic Research Program of China
文摘Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or growth function,which is utilized by the automaton in a probabilistic fashion.These simulations may provide an efficient method of discovering how the physical processes involved in solidification processes dynamically progress and how they interact with each other during solidification.The simulated results show that the final morphology during solidification is related with the cooling conditions.The established model can be used to evaluate the phase transformation of binary alloys during solidification.
基金funded by the National Natural Science Foundation of China(Grant Nos.:11504149,11364024,51661020)
文摘Taking Al-2%mole-Cu binary alloy as an example, the influence of grain orientation on competitive growth of dendrites under different competitive modes was investigated by using the three-dimensional(3-D) phasefield method. The result of phase-field simulation was verified by applying cold spray and directional remelting. In the simulation process, two competitive modes were designed: in Scheme 1, the monolayer columnar grains in multilayer columnar crystals had different orientations; while in Scheme 2, they had the same orientation. The simulation result showed that in Scheme 1, the growth of the dendrites, whose orientation had a certain included angle with the direction of temperature gradient, was restrained by the growth of other dendrites whose direction was parallel to the direction of temperature gradient. Moreover, the larger the included angle between the grain orientation and temperature gradient, the earlier the cessation of dendrite growth. The secondary dendrites of dendrites whose grain orientation was parallel to the temperature gradient flourished with increasing included angles between the grain orientation and temperature gradient. In Scheme 2, the greater the included angle between grain orientation and temperature gradient, the easier the dendrites whose orientation showed a certain included angle with temperature gradient inserted between those grew parallel to the temperature gradient, and the better the growth condition thereafter. Some growing dendrites after intercalation were deflected to the temperature gradient, and the greater the included angle, the lower the deflection. The morphologies of the competitive growth dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the two modes of competitive growth of dendrites characterized in the simulation do exist and frequently appear in practical solidification processes.
文摘The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.
文摘The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent.
基金Project supported by Research Center of Material Science and Engineering of Jiangxi Province,China(Grant No ZX200301017)
文摘This paper simulates the dendrite growth process during non-isothermal solidification in the Al-Cu binary alloy by using the phase-field model. The heat transfer equation is solved simultaneously. The thermodynamic and kinetic parameters are directly obtained from existing database by using the Calculation of Phase Diagram (CALPHAD) method. The effects of the latent heat and undercooling on the dendrite growth, solute and temperature profile during the solidification of binary alloy are investigated. The results indicate that the dendrite growing morphologies could be simulated realistically by linking the phase-field method to CALPHAD. The secondary arms of solidification dendritic are better developed with the increase of undercooling. Correspondingly, the tip speed and the solute segregation in solid-liquid interface increase, but the tip radius decreases.
基金supported by the Doctor Foundational Research Project in Shenyang Ligong University(Serial Number:0010).
文摘Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.