This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi...This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.展开更多
Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid na...Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect.展开更多
The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five differ...The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five different types of nanoparticle samples are accounted for in this current study,namely gold Au,silver Ag,molybdenum disulfide MoS_(2),aluminum oxide Al_(2)O_(3),and silicon dioxide SiO_(2).Blood,a micropolar fluid,serves as the common base fluid.An exact closed-form solution for this problem is derived for the first time in the literature.The results are particularly validated against those for the Newtonian fluid and show excellent agreement.It was found that increasing values of the spin boundary condition and micropolarity lead to a reduction in both the thermal and momentum boundary layers.A quantitative decay in the Nusselt number for a micropolar fluid,as compared to a Newtonian one for all the tested nanoparticles,is anticipated.Gold and silver nanoparticles(i)intensify in the flow parameter as the concentration of nanoparticles increases(ii)yield a higher thermal transfer rate,whereas molybdenum disulfide,aluminum oxide,and silicon dioxide exhibit a converse attitude for both Newtonian and micropolar fluids.The reduction in film thickness for fluid comprising gold particles,as compared to the rest of the nanoparticles,is remarkable.展开更多
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef...On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.展开更多
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t...Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.展开更多
The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow ...The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.展开更多
A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic s...A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.展开更多
This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have...This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have mixed in the Maxwell fluid(base fluid).Magnetic field influence has been employed to channel in normal direction.Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables.Homotopy analysis method is used for the solution of the resultant equations.In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects,thin film thickness,and unsteadiness factor.Temperature of fluid has grown up with upsurge in Brownian motion,radiation factor,and thermophoresis effects,while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film.Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.展开更多
The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted...The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.展开更多
Interstitial fluid plays a vital role in drug delivery and tumour treatment.However,few non-invasive measurement methods are available for measuring low-velocity biological fluid flow.Therefore,this study aimed to dev...Interstitial fluid plays a vital role in drug delivery and tumour treatment.However,few non-invasive measurement methods are available for measuring low-velocity biological fluid flow.Therefore,this study aimed to develop a novel technology called interstitial flow velocity-MRI.The interstitial flow velocity-MRI sequence consists of a dual inversion recovery preparation and an improved stimulated echo sequence(ISTE)combined with phase-contrast MRI.A homemade flow phantom was used to assess the feasibility and sensitivity of interstitial flow velocity-MRI.In addition,xenografts of female BALB/c mouse models of 4T1 breast cancer administered losartan(40 mg/kg)or saline(n?6)were subjected to imaging on a 7.0 T scanner to assess the in vivo interstitial fluid flow velocity.The results showed a significant correlation(P<0.001)between the theoretical velocities and velocities measured using the flow phantom.Interstitial flow velocity-MRI could detect a velocity as low as 10.21±2.65 mm/s with a spatial resolution of 0.313 mm.The losartan group had a lower mean interstitial fluid velocity than the control group(85±16 vs 113±24 mm/s).In addition,compared to the saline treatment,losartan treatment reduced the proportion of collagen fibres by 10%and 12%in the Masson and Sirius red staining groups,respectively.Interstitial flow velocity-MRI has the potential to determine interstitial fluid flow velocity non-invasively and exhibits an intuitive velocity map.展开更多
A collocated finite volume method on unstructured meshes is introduced to simulate the viscoelastic flow of the polymer melt with viscous dissipation past a confined cylinder.The constitutive equation for the simulati...A collocated finite volume method on unstructured meshes is introduced to simulate the viscoelastic flow of the polymer melt with viscous dissipation past a confined cylinder.The constitutive equation for the simulations is non-isothermal FENE-P model,which is derived from the molecular theories.The temperature effect on the macroscopic fields(e.g.,velocity,stress) and microscopic fields(e.g.,molecular orientation,deformation,stretch) is investigated by comparison of isothermal and non-isothermal situations.This investigation indicates that temperature rise caused by viscous dissipation should not be neglected since it has significant effect on the macroscopic and microscopic properties of the polymer melt.展开更多
The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with inte...The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV).展开更多
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and...Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.展开更多
Multi-physics thermo-fluid modeling has been extensively used as an approach to understand melt pool dynamics and defect formation as well as optimizing the process-related parameters of laser powder-bed fusion(L-PBF)...Multi-physics thermo-fluid modeling has been extensively used as an approach to understand melt pool dynamics and defect formation as well as optimizing the process-related parameters of laser powder-bed fusion(L-PBF).However,its capabilities for being implemented as a reliable tool for material design,where minor changes in material-related parameters must be accurately captured,is still in question.In the present research,first,a thermo-fluid computational fluid dynamics(CFD)model is developed and validated against experimental data.Considering the predicted material properties of the pure Mg and commercial ZK60 and WE43 Mg alloys,parametric studies are done attempting to elucidate how the difference in some of the material properties,i.e.,saturated vapor pressure,viscosity,and solidification range,can influence the melt pool dynamics.It is found that a higher saturated vapor pressure,associated with the ZK60 alloy,leads to a deeper unstable keyhole,increasing the keyhole-induced porosity and evaporation mass loss.Higher viscosity and wider solidification range can increase the non-uniformity of temperature and velocity distribution on the keyhole walls,resulting in increased keyhole instability and formation of defects.Finally,the WE43 alloy showed the best behavior in terms of defect formation and evaporation mass loss,providing theoretical support to the extensive use of this alloy in L-PBF.In summary,this study suggests an approach to investigate the effect of materials-related parameters on L-PBF melting and solidification,which can be extremely helpful for future design of new alloys suitable for L-PBF.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ...A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.展开更多
Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate ...Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.展开更多
This article is intended to examine the fluid flow patterns and heat transfer in a rectangular channel embedded with three semi-circular cylinders comprised of steel at the boundaries.Such an organization is used to g...This article is intended to examine the fluid flow patterns and heat transfer in a rectangular channel embedded with three semi-circular cylinders comprised of steel at the boundaries.Such an organization is used to generate the heat exchangers with tube and shell because of the production of more turbulence due to zigzag path which is in favor of rapid heat transformation.Because of little maintenance,the heat exchanger of such type is extensively used.Here,we generate simulation of flow and heat transfer using nonisothermal flow interface in the Comsol multiphysics 5.4 which executes the Reynolds averaged Navier stokes equation(RANS)model of the turbulent flow together with heat equation.Simulation is tested with Prandtl number(Pr=0.7)with inlet velocity magnitude in the range from 1 to 2 m/sec which generates the Reynolds number in the range of 2.2×10^(5) to 4.4×10^(5) with turbulence kinetic energy and the dissipation rate in ranges(3.75×10^(−3) to 1.5×10^(−2))and(3.73×10^(−3)−3×10^(−2))respectively.Two correlations available in the literature are used in order to check validity.The results are displayed through streamlines,surface plots,contour plots,isothermal lines,and graphs.It is concluded that by retaining such an arrangement a quick distribution of the temperature over the domain can be seen and also the velocity magnitude is increasing from 333.15%to a maximum of 514%.The temperature at the middle shows the consistency in value but declines immediately at the end.This process becomes faster with the decrease in inlet velocity magnitude.展开更多
Processes of filtering two-phase media in filtration devices play an important role in various industries. Significant role in the process of filtering is the initial section of flow, which defines the basic parameter...Processes of filtering two-phase media in filtration devices play an important role in various industries. Significant role in the process of filtering is the initial section of flow, which defines the basic parameters: the profile and value of the velocity, pressure gradients, concentration and dispersion of sediment particles, etc.. The problem is solved by the method of surfaces of equal cost, the results enabled to establish the influence of the input section on the filtering process.展开更多
The present study aims at investigating the effect of temperature variation due to heat transfer between the formation and drilling fluids considering influx from the reservoir in the underbalanced drilling condition....The present study aims at investigating the effect of temperature variation due to heat transfer between the formation and drilling fluids considering influx from the reservoir in the underbalanced drilling condition. Gas-liquid-solid three-phase flow model considering transient thermal interaction with the formation was applied to simulate wellbore fluid to calculate the wellbore temperature and pressure and analyze the influence of different parameters on fluid pressure and temperature distribution in annulus. The results show that the non-isothermal three-phase flow model with thermal consideration gives more accurate prediction of bottom-hole pressure(BHP) compared to other models considering geothermal temperature. Viscous dissipation, the heat produced by friction between the rotating drilling-string and well wall and drill bit drilling, and influx of oil and gas from reservoir have significant impact on the distribution of fluid temperature in the wellbore, which in turn affects the BHP. Bottom-hole fluid temperature decreases with increasing liquid flow rate, circulation time, and specific heat of liquid and gas but it increases with increasing in gas flow rate. It was found that BHP is strongly depended on the gas and liquid flow rates but it has weak dependence on the circulation time and specific heat of liquid and gas. BHP increase with increasing liquid flow rate and decreases with increasing gas flow rate.展开更多
文摘This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications.
文摘Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect.
基金The authors did not receive any funding support from any source.It is self-financed solely.
文摘The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five different types of nanoparticle samples are accounted for in this current study,namely gold Au,silver Ag,molybdenum disulfide MoS_(2),aluminum oxide Al_(2)O_(3),and silicon dioxide SiO_(2).Blood,a micropolar fluid,serves as the common base fluid.An exact closed-form solution for this problem is derived for the first time in the literature.The results are particularly validated against those for the Newtonian fluid and show excellent agreement.It was found that increasing values of the spin boundary condition and micropolarity lead to a reduction in both the thermal and momentum boundary layers.A quantitative decay in the Nusselt number for a micropolar fluid,as compared to a Newtonian one for all the tested nanoparticles,is anticipated.Gold and silver nanoparticles(i)intensify in the flow parameter as the concentration of nanoparticles increases(ii)yield a higher thermal transfer rate,whereas molybdenum disulfide,aluminum oxide,and silicon dioxide exhibit a converse attitude for both Newtonian and micropolar fluids.The reduction in film thickness for fluid comprising gold particles,as compared to the rest of the nanoparticles,is remarkable.
基金supported by the National Natural Science Foundation of China(No.32002442)the National Key R&D Program(No.2019YFD0902101).
文摘On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.
文摘Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement.
基金the National Natural Science Foundation of China(Nos.51974065 and 52274257)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMMKJSKL-2020-13)the Fundamental Research Funds for the Central Universities(Nos.N2201008 and N2201004).
文摘The Euler-Euler model is less effective in capturing the free surface of flow film in the spiral separator,and thus a Eulerian multi-fluid volume of fluid(VOF)model was first proposed to describe the particulate flow in spiral separators.In order to improve the applicability of the model in the high solid concentration system,the Bagnold effect was incorporated into the modelling framework.The capability of the proposed model in terms of predicting the flow film shape in a LD9 spiral separator was evaluated via comparison with measured flow film thicknesses reported in literature.Results showed that sharp air–water and air-pulp interfaces can be obtained using the proposed model,and the shapes of the predicted flow films before and after particle addition were reasonably consistent with the observations reported in literature.Furthermore,the experimental and numerical simulation of the separation of quartz and hematite were performed in a laboratory-scale spiral separator.When the Bagnold lift force model was considered,predictions of the grade of iron and solid concentration by mass for different trough lengths were more consistent with experimental data.In the initial development stage,the quartz particles at the bottom of the flow layer were more possible to be lifted due to the Bagnold force.Thus,a better predicted vertical stratification between quartz and hematite particles was obtained,which provided favorable conditions for subsequent radial segregation.
基金Supported by the National Natural Science Foundation of China(10871159) the National Basic Research Program of China(2005CB321704)
文摘A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.
文摘This work explores the influence of double diffusion over thermally radiative flow of thin film hybrid nanofluid and irreversibility generation through a stretching channel.The nanoparticles of silver and alumina have mixed in the Maxwell fluid(base fluid).Magnetic field influence has been employed to channel in normal direction.Equations that are going to administer the fluid flow have been converted to dimension-free notations by using appropriate variables.Homotopy analysis method is used for the solution of the resultant equations.In this investigation it has pointed out that motion of fluid has declined with growth in magnetic effects,thin film thickness,and unsteadiness factor.Temperature of fluid has grown up with upsurge in Brownian motion,radiation factor,and thermophoresis effects,while it has declined with greater values of thermal Maxwell factor and thickness factor of the thin film.Concentration distribution has grown up with higher values of thermophoresis effects and has declined for augmentation in Brownian motion.
文摘The World Journal of Cardiology published an article written by Kuwahara et al that we take the pleasure to comment on.We focused our attention on venous congestion.In intensive care settings,it is now widely accepted that venous congestion is an important clinical feature worthy of investigation.Evaluating venous Doppler profile abnormalities at multiple sites could suggest adequate treatment and monitor its efficacy.Renal dysfunction could trigger or worsen fluid overload in heart disease,and cardio-renal syndrome is a well-characterized spectrum of disorders describing the complex interactions between heart and kidney diseases.Fluid overload and venous congestion,including renal venous hypertension,are major determinants of acute and chronic renal dysfunction arising in heart disease.Organ congestion from venous hypertension could be involved in the development of organ injury in several clinical situations,such as critical diseases,congestive heart failure,and chronic kidney disease.Ultrasonography and abnormal Doppler flow patterns diagnose clinically significant systemic venous congestion.Cardiologists and nephrologists might use this valuable,noninvasive,bedside diagnostic tool to establish fluid status and guide clinical choices.
文摘Interstitial fluid plays a vital role in drug delivery and tumour treatment.However,few non-invasive measurement methods are available for measuring low-velocity biological fluid flow.Therefore,this study aimed to develop a novel technology called interstitial flow velocity-MRI.The interstitial flow velocity-MRI sequence consists of a dual inversion recovery preparation and an improved stimulated echo sequence(ISTE)combined with phase-contrast MRI.A homemade flow phantom was used to assess the feasibility and sensitivity of interstitial flow velocity-MRI.In addition,xenografts of female BALB/c mouse models of 4T1 breast cancer administered losartan(40 mg/kg)or saline(n?6)were subjected to imaging on a 7.0 T scanner to assess the in vivo interstitial fluid flow velocity.The results showed a significant correlation(P<0.001)between the theoretical velocities and velocities measured using the flow phantom.Interstitial flow velocity-MRI could detect a velocity as low as 10.21±2.65 mm/s with a spatial resolution of 0.313 mm.The losartan group had a lower mean interstitial fluid velocity than the control group(85±16 vs 113±24 mm/s).In addition,compared to the saline treatment,losartan treatment reduced the proportion of collagen fibres by 10%and 12%in the Masson and Sirius red staining groups,respectively.Interstitial flow velocity-MRI has the potential to determine interstitial fluid flow velocity non-invasively and exhibits an intuitive velocity map.
基金Supported by the National Natural Science Foundation of China(10590353 10871159) the National Basic Research Program of China(2005CB321704) the Doctoral Foundation of Northwestern Polytechnical University(CX200817)
文摘A collocated finite volume method on unstructured meshes is introduced to simulate the viscoelastic flow of the polymer melt with viscous dissipation past a confined cylinder.The constitutive equation for the simulations is non-isothermal FENE-P model,which is derived from the molecular theories.The temperature effect on the macroscopic fields(e.g.,velocity,stress) and microscopic fields(e.g.,molecular orientation,deformation,stretch) is investigated by comparison of isothermal and non-isothermal situations.This investigation indicates that temperature rise caused by viscous dissipation should not be neglected since it has significant effect on the macroscopic and microscopic properties of the polymer melt.
基金supported by the Ministry of Education of the Russian Federation(Project KPZU-2023-0002).
文摘The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied.The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem.We consider miscible(water and glycerol)and immiscible(water and high-viscosity silicone oil PMS-1000)fluids under subsonic oscillations perpendicular to the interface.Observations show that the interface shape depends on the amplitude and frequency of oscillations.The interface is undisturbed only in the absence of oscillations.Under small amplitudes,the interface between water and glycerol widens due to mixing.When the critical amplitude is reached,the interface becomes unstable to the fingering instability:Aqueous fingers penetrate the high-viscosity glycerol and induce intensive mixing of miscible fluids and associated decay of the instability.After the disappearance of the fingers,the interface takes a U-shape in the central part of the cell.A similar effect is observed for immiscible fluids:The oscillating interface tends to bend to the side of a high-viscosity fluid.Again,when the critical amplitude is reached,the fingering instability arises at the convex interface.This paper focuses on the causes of bending of the initially undisturbed interface between miscible or immiscible fluids.For this purpose,we measure the steady flow velocity near the interface and in the bulk of a high-viscosity fluid using Particle Image Velocimetry(PIV).
基金The authors would like to acknowledge financial support from NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003-04-03)National Natural Science Foundation of China(41930425)+2 种基金Beijing Natural Science Foundation(8222073),R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-01)Scientific Research and Technology Development Project of PetroChina(2021DJ1206)National Key Research and Development Program of China(2018YFA0702504).
文摘Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.
基金the financial supports received from Wenner-Gren foundation(UPD2021-0229),JernkontoretSTT(Stiftelsen för Tillämpad Termodynamik).
文摘Multi-physics thermo-fluid modeling has been extensively used as an approach to understand melt pool dynamics and defect formation as well as optimizing the process-related parameters of laser powder-bed fusion(L-PBF).However,its capabilities for being implemented as a reliable tool for material design,where minor changes in material-related parameters must be accurately captured,is still in question.In the present research,first,a thermo-fluid computational fluid dynamics(CFD)model is developed and validated against experimental data.Considering the predicted material properties of the pure Mg and commercial ZK60 and WE43 Mg alloys,parametric studies are done attempting to elucidate how the difference in some of the material properties,i.e.,saturated vapor pressure,viscosity,and solidification range,can influence the melt pool dynamics.It is found that a higher saturated vapor pressure,associated with the ZK60 alloy,leads to a deeper unstable keyhole,increasing the keyhole-induced porosity and evaporation mass loss.Higher viscosity and wider solidification range can increase the non-uniformity of temperature and velocity distribution on the keyhole walls,resulting in increased keyhole instability and formation of defects.Finally,the WE43 alloy showed the best behavior in terms of defect formation and evaporation mass loss,providing theoretical support to the extensive use of this alloy in L-PBF.In summary,this study suggests an approach to investigate the effect of materials-related parameters on L-PBF melting and solidification,which can be extremely helpful for future design of new alloys suitable for L-PBF.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金supported by the National Natural Science Foundation of China(Grant No.52078010)Beijing Natural Science Foundation(Grant No.JQ19029).
文摘A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.
文摘Developing a novel drop counter by introducing the Internet of Things concept has been vigorously conducted in recent years. Understanding the newly introduced drop counter’s flow rate control accuracy and flow rate count feature is essential for improving safety in infusion management. This study aimed to verify if the new drop counters could secure accurate flow rate and drip count by conducting actual flow rate measurements using gravimetry and functional evaluation. A drop counter was attached to each drip chamber of the infusion set, and an IV drip was conducted at the 100 ml/h flow rate. The weight of discharged physiological saline was measured to plot trumpet curves. Next, three different types of drop counters were evaluated to determine if they maintained drip count accuracy according to the changes in their position angles. The flow rate errors in all conditions indicated trumpet-like curves, exhibiting an overall error range within ±10% in all observation windows. Although every drop counter successfully detected and measured dripping, it was challenging in some counters to detect dripping when the drip chamber was tilted. In comparing adult and pediatric IV sets, the adult IV set was found to be less likely to detect dripping in the angled position. No significant differences in results were confirmed between high and low flow rates, suggesting that the drop count function would not be affected by the flow rate in the ranges of typical infusion practices. Doppler sensors have a wide range of measurements and high sensitivity;the dripping was detected successfully even when the drip chamber was tilted, probably due to the advantages of these sensors. In contrast, miscounts occurred in those equipped with infrared sensors, which could not detect light intensity changes in tilted positions. Understanding the tendencies in flow rate errors in infusion can be valuable information for infusion management.
文摘This article is intended to examine the fluid flow patterns and heat transfer in a rectangular channel embedded with three semi-circular cylinders comprised of steel at the boundaries.Such an organization is used to generate the heat exchangers with tube and shell because of the production of more turbulence due to zigzag path which is in favor of rapid heat transformation.Because of little maintenance,the heat exchanger of such type is extensively used.Here,we generate simulation of flow and heat transfer using nonisothermal flow interface in the Comsol multiphysics 5.4 which executes the Reynolds averaged Navier stokes equation(RANS)model of the turbulent flow together with heat equation.Simulation is tested with Prandtl number(Pr=0.7)with inlet velocity magnitude in the range from 1 to 2 m/sec which generates the Reynolds number in the range of 2.2×10^(5) to 4.4×10^(5) with turbulence kinetic energy and the dissipation rate in ranges(3.75×10^(−3) to 1.5×10^(−2))and(3.73×10^(−3)−3×10^(−2))respectively.Two correlations available in the literature are used in order to check validity.The results are displayed through streamlines,surface plots,contour plots,isothermal lines,and graphs.It is concluded that by retaining such an arrangement a quick distribution of the temperature over the domain can be seen and also the velocity magnitude is increasing from 333.15%to a maximum of 514%.The temperature at the middle shows the consistency in value but declines immediately at the end.This process becomes faster with the decrease in inlet velocity magnitude.
文摘Processes of filtering two-phase media in filtration devices play an important role in various industries. Significant role in the process of filtering is the initial section of flow, which defines the basic parameters: the profile and value of the velocity, pressure gradients, concentration and dispersion of sediment particles, etc.. The problem is solved by the method of surfaces of equal cost, the results enabled to establish the influence of the input section on the filtering process.
文摘The present study aims at investigating the effect of temperature variation due to heat transfer between the formation and drilling fluids considering influx from the reservoir in the underbalanced drilling condition. Gas-liquid-solid three-phase flow model considering transient thermal interaction with the formation was applied to simulate wellbore fluid to calculate the wellbore temperature and pressure and analyze the influence of different parameters on fluid pressure and temperature distribution in annulus. The results show that the non-isothermal three-phase flow model with thermal consideration gives more accurate prediction of bottom-hole pressure(BHP) compared to other models considering geothermal temperature. Viscous dissipation, the heat produced by friction between the rotating drilling-string and well wall and drill bit drilling, and influx of oil and gas from reservoir have significant impact on the distribution of fluid temperature in the wellbore, which in turn affects the BHP. Bottom-hole fluid temperature decreases with increasing liquid flow rate, circulation time, and specific heat of liquid and gas but it increases with increasing in gas flow rate. It was found that BHP is strongly depended on the gas and liquid flow rates but it has weak dependence on the circulation time and specific heat of liquid and gas. BHP increase with increasing liquid flow rate and decreases with increasing gas flow rate.