Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy...Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy intermediate-scale quantum(NISQ)era,noise presents in these systems and is too high for error correction to be beneficial.Quantum error mitigation is a set of alternative methods for minimizing errors,including error extrapolation,probabilistic error cancella-tion,measurement error mitigation,subspace expansion,symmetry verification,virtual distillation,etc.The requirement for these methods is usually less demanding than error correction.Quantum error mitigation is a promising way of reduc-ing errors on NISQ quantum computers.This paper gives a comprehensive introduction to quantum error mitigation.The state-of-art error mitigation methods are covered and formulated in a general form,which provides a basis for comparing,combining and optimizing different methods in future work.展开更多
In this paper, we report the observation and characterisation of a systematic error in the implementation of <em>U</em><sub>3</sub> gates in the IBM quantum computers. By measuring the effect o...In this paper, we report the observation and characterisation of a systematic error in the implementation of <em>U</em><sub>3</sub> gates in the IBM quantum computers. By measuring the effect of this gate for various rotation angles the error appears as an over-rotation, whose magnitude does not correlate with IBM’s cited errors calculated using Clifford randomized benchmarking. We propose a simple mitigation procedure to limit the effects of this error. We show that using a simple mitigation strategy one can obtain improved results in the observed value for the CHSH inequality, measured in a cloud-based quantum computer. This work highlights the utility of simple mitigation strategies for short-depth quantum circuits.展开更多
In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorith...In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorithm by utilizing scatterer information is proposed.The linearized region of the mobile station(MS)is obtained according to the base station(BS)coordinates and the TOA measurements.The candidate points(CPs)of the MS are generated from this region.Then,using the measured TOA and AOA measurements,the radius of each scatterer is computed.Compared with the prior scatterer information,true CPs are obtained among all the CPs.The adaptive fuzzy clustering(AFC)technology is adopted to estimate the position of the MS with true CPs.Finally,simulations are conducted to evaluate the performance of the algorithm.The results demonstrate that the proposed location algorithm can significantly mitigate the NLOS effect and efficiently estimate the MS position.展开更多
Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Altho...Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Although it has seen a major boost in the last decade,we are still a long way from reaching the maturity of a full-fledged quantum computer.That said,we will be in the noisy-intermediate scale quantum(NISQ)era for a long time,working on dozens or even thousands of qubits quantum computing systems.An outstanding challenge,then,is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise.To address this challenge,several near-term quantum computing techniques,including variational quantum algorithms,error mitigation,quantum circuit compilation and benchmarking protocols,have been proposed to characterize and mitigate errors,and to implement algorithms with a certain resistance to noise,so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications.Besides,the development of near-term quantum devices is inseparable from the efficient classical sim-ulation,which plays a vital role in quantum algorithm design and verification,error-tolerant verification and other applications.This review will provide a thorough introduction of these near-term quantum computing techniques,report on their progress,and finally discuss the future prospect of these techniques,which we hope will motivate researchers to undertake additional studies in this field.展开更多
Purpose The Space Environment Simulation and Research Infrastructure(SESRI)is a cluster of accelerators designed to simulate the cosmic radiation environment by generating particles of various types and energies.Among...Purpose The Space Environment Simulation and Research Infrastructure(SESRI)is a cluster of accelerators designed to simulate the cosmic radiation environment by generating particles of various types and energies.Among these accelerators,a synchrotron in the 300 MeV proton and heavy ion accelerator complex utilizes a multiturn injection scheme with four bump magnets to accumulate proton and heavy ion beams effectively.However,the bump magnetic field experiences a rapid drop rate of up to 1000 T/s,inevitably leading to a deviation(field tracking error)from the ideal magnetic field.The injection efficiency and particle distribution are significantly affected by this field tracking error,as evaluated by the ACCSIM code.Method During the device testing stage,the sources of field tracking errors were identified by analysis of the bump power supplies and the field of the magnets.Mitigation techniques were then implemented to reduce the field tracking error from[Math Processing Error]to[Math Processing Error]throughout the entire power supply,transmission cable,and magnet chain.Results Moreover,the successful injection and accumulation of beams during the operational phase of the synchrotron confirmed the effectiveness of the proposed mitigation methods.Additionally,a magnetic field measurement system was developed to monitor the magnetic field tracking error online.Conclusion The combination of the field tracking error mitigation methods and the measurement system provides valuable guidance for optimizing the magnetic fields with rapid drop rates.展开更多
The blue-green light in the 450 nm to 550 nm band is usually used in underwater wireless optical communication (UWOC). The blue-green light transmission in seawater is scattered by the seawater effect and can achieve ...The blue-green light in the 450 nm to 550 nm band is usually used in underwater wireless optical communication (UWOC). The blue-green light transmission in seawater is scattered by the seawater effect and can achieve communication in non-line-of-sight (NLOS) transmission mode. Compared to line-of-sight (LOS) transmission, NLOS transmission does not require alignment and can be adapted to various underwater environments. The scattering coefficients of seawater at different depths are different, which makes the scattering of light in different depths of seawater different. In this paper, the received optical power and bit error rate (BER) of the photodetector (PD) were calculated when the scattering coefficients of blue-green light in seawater vary from large to small with increasing depth for NLOS transmission. The results show that blue-green light in different depths of seawater in the same way NLOS communication at the same distance, the received optical power and BER at the receiver are different, and the received optical power of green light is greater than that of blue light. Increasing the forward scattering coverage of the laser will suppress the received optical power of the PD, so when performing NLOS communication, appropriate trade-offs should be made between the forward scattering coverage of the laser and the received optical power.展开更多
High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based...High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.展开更多
This article puts forward a scalar weighting information fusion (IF) smoother with modified biased Kalman filter (BKF) and maximum likelihood estimation (MLE) to mitigate the ranging errors in ultra wide band (...This article puts forward a scalar weighting information fusion (IF) smoother with modified biased Kalman filter (BKF) and maximum likelihood estimation (MLE) to mitigate the ranging errors in ultra wide band (UWB) systems. The information fusion algorithm uses both the time of arrival (TOA) and received signal strength (RSS) measurement data to improve the ranging accuracy. At first, the ranging protocol of IEEE 802.15.4a acts as a multi-sensor system with multi-scale sampling. Then the scalar-based IF smoother accurately estimates the range measurement in the line of sight (LOS) and non-line of sight (NLOS) condition of UWB sensor network, during which the effectiveness of the IF in mitigating errors is especially focused during the LOS/NLOS transitions. Simulation results show that the proposed hybrid TOA-RSS fusion approach indicates a performance improvement compared with the usual TOA-only and other IF method, and the estimated ranging metrics can be used for achieving higher accuracy in location estimation and target tracking.展开更多
为提高多输入多输出(MIMO)电力线通信系统对抗脉冲噪声的能力,基于稀疏贝叶斯学习的理论,利用脉冲噪声在电力线上的相关性,提出了一种消除MIMO电力线脉冲噪声的方案。方案使用全部子载波来联合估计脉冲噪声和可用子载波上的信号,无需训...为提高多输入多输出(MIMO)电力线通信系统对抗脉冲噪声的能力,基于稀疏贝叶斯学习的理论,利用脉冲噪声在电力线上的相关性,提出了一种消除MIMO电力线脉冲噪声的方案。方案使用全部子载波来联合估计脉冲噪声和可用子载波上的信号,无需训练脉冲噪声的统计信息。仿真中脉冲噪声拟合采用Bivariate Middleton Class A模型,结果表明该方案抗脉冲噪声性能比只使用空子载波的多观测向量稀疏贝叶斯学习(MSBL)方案提升了11dB。展开更多
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11875050 and 12088101)NSAF(Grant No.U1930403).
文摘Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy intermediate-scale quantum(NISQ)era,noise presents in these systems and is too high for error correction to be beneficial.Quantum error mitigation is a set of alternative methods for minimizing errors,including error extrapolation,probabilistic error cancella-tion,measurement error mitigation,subspace expansion,symmetry verification,virtual distillation,etc.The requirement for these methods is usually less demanding than error correction.Quantum error mitigation is a promising way of reduc-ing errors on NISQ quantum computers.This paper gives a comprehensive introduction to quantum error mitigation.The state-of-art error mitigation methods are covered and formulated in a general form,which provides a basis for comparing,combining and optimizing different methods in future work.
文摘In this paper, we report the observation and characterisation of a systematic error in the implementation of <em>U</em><sub>3</sub> gates in the IBM quantum computers. By measuring the effect of this gate for various rotation angles the error appears as an over-rotation, whose magnitude does not correlate with IBM’s cited errors calculated using Clifford randomized benchmarking. We propose a simple mitigation procedure to limit the effects of this error. We show that using a simple mitigation strategy one can obtain improved results in the observed value for the CHSH inequality, measured in a cloud-based quantum computer. This work highlights the utility of simple mitigation strategies for short-depth quantum circuits.
基金The National High Technology Research and Development Program of China(863Program)(No.2008AA01Z227)the National Natural Science Foundation of China(No.60872075)
文摘In order to improve the performance of the traditional hybrid time-of-arrival(TOA)/angle-of-arrival(AOA)location algorithm in non-line-of-sight(NLOS)environments,a new hybrid TOA/AOA location estimation algorithm by utilizing scatterer information is proposed.The linearized region of the mobile station(MS)is obtained according to the base station(BS)coordinates and the TOA measurements.The candidate points(CPs)of the MS are generated from this region.Then,using the measured TOA and AOA measurements,the radius of each scatterer is computed.Compared with the prior scatterer information,true CPs are obtained among all the CPs.The adaptive fuzzy clustering(AFC)technology is adopted to estimate the position of the MS with true CPs.Finally,simulations are conducted to evaluate the performance of the algorithm.The results demonstrate that the proposed location algorithm can significantly mitigate the NLOS effect and efficiently estimate the MS position.
基金support from the Youth Talent Lifting Project(Grant No.2020-JCJQ-QT-030)the National Natural Science Foundation of China(Grant Nos.11905294,and 12274464)+7 种基金the China Postdoctoral Science Foundation,and the Open Research Fund from State Key Laboratory of High Performance Computing of China(Grant No.201901-01)support from the National Natural Science Foundation of China(Grant Nos.11805279,12074117,61833010,and 12061131011)support from the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the National Natural Science Foundation of China(Grant Nos.61832003,61872334,and 61801459)the National Natural Science Foundation of China(Grant No.12005015)the National Natural Science Foundation of China(Grant Nos.11974205,and 11774197)the National Key Research and Development Program of China(Grant No.2017YFA0303700)the Key Research and Development Program of Guangdong Province(Grant No.2018B030325002).
文摘Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Although it has seen a major boost in the last decade,we are still a long way from reaching the maturity of a full-fledged quantum computer.That said,we will be in the noisy-intermediate scale quantum(NISQ)era for a long time,working on dozens or even thousands of qubits quantum computing systems.An outstanding challenge,then,is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise.To address this challenge,several near-term quantum computing techniques,including variational quantum algorithms,error mitigation,quantum circuit compilation and benchmarking protocols,have been proposed to characterize and mitigate errors,and to implement algorithms with a certain resistance to noise,so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications.Besides,the development of near-term quantum devices is inseparable from the efficient classical sim-ulation,which plays a vital role in quantum algorithm design and verification,error-tolerant verification and other applications.This review will provide a thorough introduction of these near-term quantum computing techniques,report on their progress,and finally discuss the future prospect of these techniques,which we hope will motivate researchers to undertake additional studies in this field.
基金supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences program(No.2021417).The critical discussions with colleagues in the accelerator physics and hardware groups at IMP are also greatly appreciated.
文摘Purpose The Space Environment Simulation and Research Infrastructure(SESRI)is a cluster of accelerators designed to simulate the cosmic radiation environment by generating particles of various types and energies.Among these accelerators,a synchrotron in the 300 MeV proton and heavy ion accelerator complex utilizes a multiturn injection scheme with four bump magnets to accumulate proton and heavy ion beams effectively.However,the bump magnetic field experiences a rapid drop rate of up to 1000 T/s,inevitably leading to a deviation(field tracking error)from the ideal magnetic field.The injection efficiency and particle distribution are significantly affected by this field tracking error,as evaluated by the ACCSIM code.Method During the device testing stage,the sources of field tracking errors were identified by analysis of the bump power supplies and the field of the magnets.Mitigation techniques were then implemented to reduce the field tracking error from[Math Processing Error]to[Math Processing Error]throughout the entire power supply,transmission cable,and magnet chain.Results Moreover,the successful injection and accumulation of beams during the operational phase of the synchrotron confirmed the effectiveness of the proposed mitigation methods.Additionally,a magnetic field measurement system was developed to monitor the magnetic field tracking error online.Conclusion The combination of the field tracking error mitigation methods and the measurement system provides valuable guidance for optimizing the magnetic fields with rapid drop rates.
文摘The blue-green light in the 450 nm to 550 nm band is usually used in underwater wireless optical communication (UWOC). The blue-green light transmission in seawater is scattered by the seawater effect and can achieve communication in non-line-of-sight (NLOS) transmission mode. Compared to line-of-sight (LOS) transmission, NLOS transmission does not require alignment and can be adapted to various underwater environments. The scattering coefficients of seawater at different depths are different, which makes the scattering of light in different depths of seawater different. In this paper, the received optical power and bit error rate (BER) of the photodetector (PD) were calculated when the scattering coefficients of blue-green light in seawater vary from large to small with increasing depth for NLOS transmission. The results show that blue-green light in different depths of seawater in the same way NLOS communication at the same distance, the received optical power and BER at the receiver are different, and the received optical power of green light is greater than that of blue light. Increasing the forward scattering coverage of the laser will suppress the received optical power of the PD, so when performing NLOS communication, appropriate trade-offs should be made between the forward scattering coverage of the laser and the received optical power.
基金supported in part by the National Natural Science Foundation of China under Grant No.61771474in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.KYCX212243+2 种基金in part by the Young Talents of Xuzhou Science and Technology Plan Project under Grant No.KC19051in part by the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2021D02in part by the Open Fund of Information Photonics and Optical Communications (IPOC) (BUPT)。
文摘High-precision localization technology is attracting widespread attention in harsh indoor environments.In this paper,we present a fingerprint localization and tracking system to estimate the locations of the tag based on a deep belief network(DBN).In this system,we propose using coefficients as fingerprints to combine the ultra-wideband(UWB)and inertial measurement unit(IMU)estimation linearly,termed as a HUID system.In particular,the fingerprints are trained by a DBN and estimated by a radial basis function(RBF).However,UWB-based estimation via a trilateral method is severely affected by the non-line-of-sight(NLoS)problem,which limits the localization precision.To tackle this problem,we adopt the random forest classifier to identify line-of-sight(LoS)and NLoS conditions.Then,we adopt the random forest regressor to mitigate ranging errors based on the identification results for improving UWB localization precision.The experimental results show that the mean square error(MSE)of the localization error for the proposed HUID system reduces by 12.96%,50.16%,and 64.92%compared with that of the existing extended Kalman filter(EKF),single UWB,and single IMU estimation methods,respectively.
基金supported by the National Natural Science Foundation for Distinguished Young Scholars of China (60825304)the National Basic Research Development Program of China(2009cb320600)
文摘This article puts forward a scalar weighting information fusion (IF) smoother with modified biased Kalman filter (BKF) and maximum likelihood estimation (MLE) to mitigate the ranging errors in ultra wide band (UWB) systems. The information fusion algorithm uses both the time of arrival (TOA) and received signal strength (RSS) measurement data to improve the ranging accuracy. At first, the ranging protocol of IEEE 802.15.4a acts as a multi-sensor system with multi-scale sampling. Then the scalar-based IF smoother accurately estimates the range measurement in the line of sight (LOS) and non-line of sight (NLOS) condition of UWB sensor network, during which the effectiveness of the IF in mitigating errors is especially focused during the LOS/NLOS transitions. Simulation results show that the proposed hybrid TOA-RSS fusion approach indicates a performance improvement compared with the usual TOA-only and other IF method, and the estimated ranging metrics can be used for achieving higher accuracy in location estimation and target tracking.
文摘为提高多输入多输出(MIMO)电力线通信系统对抗脉冲噪声的能力,基于稀疏贝叶斯学习的理论,利用脉冲噪声在电力线上的相关性,提出了一种消除MIMO电力线脉冲噪声的方案。方案使用全部子载波来联合估计脉冲噪声和可用子载波上的信号,无需训练脉冲噪声的统计信息。仿真中脉冲噪声拟合采用Bivariate Middleton Class A模型,结果表明该方案抗脉冲噪声性能比只使用空子载波的多观测向量稀疏贝叶斯学习(MSBL)方案提升了11dB。