The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this ...The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.展开更多
In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The ob...In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The obtained numerical results were presented in the form of tables and graphics. The difference between the exact solutions and the numerical solutions shows us the effectiveness of the solution using the Mabel program and that this method gave accurate results and was close to the exact solution, in addition to its ability to obtain the numerical solution quickly and efficiently using the Mabel program.展开更多
In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is cruci...In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is crucial for addressing challenges in fluid, chemical kinetics and population dynamics. We tackle this task by employing the Riccati equation and employing various function transformations to solve the Burgers-Fisher equation. By adopting different coefficients in the Riccati equation, we obtain a wide range of exact solutions, many of which have not been previously documented. These abundant solitary wave solutions serve as valuable tools for comprehending the Burgers-Fisher equation and contribute to expanding our knowledge in this field.展开更多
This paper deals with the Burgers equation which is the most common model used in the nonlinear conservation laws. Here the theoretical aspect of conservation law is discussed by using inviscid Burgers equation. At fi...This paper deals with the Burgers equation which is the most common model used in the nonlinear conservation laws. Here the theoretical aspect of conservation law is discussed by using inviscid Burgers equation. At first, we introduce the general non-linear conservation law as a partial differential equation and its solution procedure by the method of characteristic. Next, we present the weak solution of the problem with entropy condition. Taking into account shock wave and rarefaction wave, the Riemann problem has also been discussed. Finally, the finite volume method is considered to approximate the numerical solution of the inviscid Burgers equation with continuous and discontinuous initial data. An illustration of the problem is provided by some examples. Moreover, the Godunov method provides a good approximation for the problem.展开更多
Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers e...Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.展开更多
传统的数值求解方法面临维数灾难和效率与精度平衡问题,而基于数据驱动的神经网络求解方法又存在训练量冗余和不可解释性问题。针对此问题,物理信息神经网络(Physical Information Neural Networks,PINNs)关注了训练数据中隐含的物理先...传统的数值求解方法面临维数灾难和效率与精度平衡问题,而基于数据驱动的神经网络求解方法又存在训练量冗余和不可解释性问题。针对此问题,物理信息神经网络(Physical Information Neural Networks,PINNs)关注了训练数据中隐含的物理先验知识,融合了神经网络拟合复杂变量的能力,赋予了传统神经网络所缺乏的物理可解释性。应用该算法模型,提出了一种基于PINN的Burgers方程求解模型,该算法模型在训练中施加物理信息约束,因此能用少量的训练样本学习预测到分布在时空域上的偏微分方程模型。实验结果表明,在1+1维Burgers方程算例下,所提方法相比于经典的机器学习算法能有效捕抓到方程的变化并进行精确模拟,相比于有限差分法,可以大幅度缩短模拟时间。通过对不同的网络参数进行比较实验,所提方法在10%的噪声破坏下能产生合理的识别准确度,网络逼近方程的待定系数误差在0.001以内。展开更多
A class of generalized complex Burgers equation is considered. First, a set of equations of the complex value functions are solved by using the homotopic mapping method. The approximate solution for the original gener...A class of generalized complex Burgers equation is considered. First, a set of equations of the complex value functions are solved by using the homotopic mapping method. The approximate solution for the original generalized complex Burgers equation is obtained. This method can find the approximation of arbitrary order of precision simply and reliably.展开更多
In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational c...In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.展开更多
This paper is concerned with the stability of the rarefaction wave for the Burgers equationwhere 0 ≤ a < 1/4p (q is determined by (2.2)). Roughly speaking, under the assumption that u_ < u+, the authors prove t...This paper is concerned with the stability of the rarefaction wave for the Burgers equationwhere 0 ≤ a < 1/4p (q is determined by (2.2)). Roughly speaking, under the assumption that u_ < u+, the authors prove the existence of the global smooth solution to the Cauchy problem (I), also find the solution u(x, t) to the Cauchy problem (I) satisfying sup |u(x, t) -uR(x/t)| → 0 as t → ∞, where uR(x/t) is the rarefaction wave of the non-viscous Burgersequation ut + f(u)x = 0 with Riemann initial data u(x, 0) =展开更多
It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. M...It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. Meanwhile it is obtained the solution is exponential decay when the initial data has compact support.展开更多
In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equ...In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. Absolute error of the present method is compared to the absolute error of the two existing methods for two test problems. The method is also analyzed for a third test problem, nu-merical solutions as well as exact solutions for different values of viscosity are calculated and we find that the numerical solutions are very close to exact solution.展开更多
In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical e...In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.展开更多
In this paper, a symmetry analysis of the modified 2D Burgers vortex equation with a flow parameter is presented. A general form of classical and non-classical symmetries of the equation is derived. These are fundamen...In this paper, a symmetry analysis of the modified 2D Burgers vortex equation with a flow parameter is presented. A general form of classical and non-classical symmetries of the equation is derived. These are fundamental tools for obtaining exact solutions to the equation. In several physical cases of the parameter, the specific classical and non-classical symmetries of the equation are then obtained. In addition to rediscovering the existing solutions given by different methods, some new exact solutions are obtained with the symmetry method, showing that the symmetry method is powerful and more general for solving partial differential equations(PDEs).展开更多
This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton)...This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.展开更多
In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cell...In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.展开更多
文摘The Time Fractional Burger equation was solved in this study using the Mabel software and the Variational Iteration approach. where a number of instances of the Time Fractional Burger Equation were handled using this technique. Tables and images were used to present the collected numerical results. The difference between the exact and numerical solutions demonstrates the effectiveness of the Mabel program’s solution, as well as the accuracy and closeness of the results this method produced. It also demonstrates the Mabel program’s ability to quickly and effectively produce the numerical solution.
文摘In this paper, the Adomian decomposition method was used to solve the Time Fractional Burger equation using Mabel program. This method was applied to a number of examples of the Time Fractional Burger Equation. The obtained numerical results were presented in the form of tables and graphics. The difference between the exact solutions and the numerical solutions shows us the effectiveness of the solution using the Mabel program and that this method gave accurate results and was close to the exact solution, in addition to its ability to obtain the numerical solution quickly and efficiently using the Mabel program.
文摘In this paper, our objective is to explore novel solitary wave solutions of the Burgers-Fisher equation, which characterizes the interplay between diffusion and reaction phenomena. Understanding this equation is crucial for addressing challenges in fluid, chemical kinetics and population dynamics. We tackle this task by employing the Riccati equation and employing various function transformations to solve the Burgers-Fisher equation. By adopting different coefficients in the Riccati equation, we obtain a wide range of exact solutions, many of which have not been previously documented. These abundant solitary wave solutions serve as valuable tools for comprehending the Burgers-Fisher equation and contribute to expanding our knowledge in this field.
文摘This paper deals with the Burgers equation which is the most common model used in the nonlinear conservation laws. Here the theoretical aspect of conservation law is discussed by using inviscid Burgers equation. At first, we introduce the general non-linear conservation law as a partial differential equation and its solution procedure by the method of characteristic. Next, we present the weak solution of the problem with entropy condition. Taking into account shock wave and rarefaction wave, the Riemann problem has also been discussed. Finally, the finite volume method is considered to approximate the numerical solution of the inviscid Burgers equation with continuous and discontinuous initial data. An illustration of the problem is provided by some examples. Moreover, the Godunov method provides a good approximation for the problem.
文摘Burgers equation in random environment is studied. In order to give the exact solutions of random Burgers equation, we only consider the Wick-type stochastic Burgers equation which is the perturbation of the Burgers equation with variable coefficients by white noise W(t)=Bt, where Bt is a Brown motion. The auto-Baecklund transformation and stochastic soliton solutions of the Wick-type stochastic Burgers equation are shown by the homogeneous balance and Hermite transform. The generalization of the Wick-type stochastic Burgers equation is also studied.
文摘传统的数值求解方法面临维数灾难和效率与精度平衡问题,而基于数据驱动的神经网络求解方法又存在训练量冗余和不可解释性问题。针对此问题,物理信息神经网络(Physical Information Neural Networks,PINNs)关注了训练数据中隐含的物理先验知识,融合了神经网络拟合复杂变量的能力,赋予了传统神经网络所缺乏的物理可解释性。应用该算法模型,提出了一种基于PINN的Burgers方程求解模型,该算法模型在训练中施加物理信息约束,因此能用少量的训练样本学习预测到分布在时空域上的偏微分方程模型。实验结果表明,在1+1维Burgers方程算例下,所提方法相比于经典的机器学习算法能有效捕抓到方程的变化并进行精确模拟,相比于有限差分法,可以大幅度缩短模拟时间。通过对不同的网络参数进行比较实验,所提方法在10%的噪声破坏下能产生合理的识别准确度,网络逼近方程的待定系数误差在0.001以内。
基金Project supported by the National Natural Science Foundation of China (Grant No. 40876010), the Main Direction Program of the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q03-08), the R & D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200806010), the LASG State Key Laboratory Special Fund, the Foundation of E-Institutes of Shanghai Municipal Education Commission (Crant No. E03004) and the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090164).
文摘A class of generalized complex Burgers equation is considered. First, a set of equations of the complex value functions are solved by using the homotopic mapping method. The approximate solution for the original generalized complex Burgers equation is obtained. This method can find the approximation of arbitrary order of precision simply and reliably.
文摘In this paper, we study the existence of the transcendental meromorphic solution of the delay differential equations , where a(z) is a rational function, and are polynomials in w(z) with rational coefficients, k is a positive integer. Under the assumption when above equations own transcendental meromorphic solutions with minimal hyper-type, we derive the concrete conditions on the degree of the right side of them. Specially, when w(z)=0 is a root of , its multiplicity is at most k. Some examples are given here to illustrate that our results are accurate.
文摘This paper is concerned with the stability of the rarefaction wave for the Burgers equationwhere 0 ≤ a < 1/4p (q is determined by (2.2)). Roughly speaking, under the assumption that u_ < u+, the authors prove the existence of the global smooth solution to the Cauchy problem (I), also find the solution u(x, t) to the Cauchy problem (I) satisfying sup |u(x, t) -uR(x/t)| → 0 as t → ∞, where uR(x/t) is the rarefaction wave of the non-viscous Burgersequation ut + f(u)x = 0 with Riemann initial data u(x, 0) =
文摘It is obtained the existence of the weak solution for a degenerate generalized Burgers equation under the restriction u0 ∈ L∞. The main method is to add viscosity perturbation and obtain some estimates in L1 norm. Meanwhile it is obtained the solution is exponential decay when the initial data has compact support.
文摘In this work we generate the numerical solutions of the Burgers’ equation by applying the Crank-Nicolson method directly to the Burgers’ equation, i.e., we do not use Hopf-Cole transformation to reduce Burgers’ equation into the linear heat equation. Absolute error of the present method is compared to the absolute error of the two existing methods for two test problems. The method is also analyzed for a third test problem, nu-merical solutions as well as exact solutions for different values of viscosity are calculated and we find that the numerical solutions are very close to exact solution.
基金supported by the National Natural Science Foundation of China(Grant No.11171038)
文摘In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.
基金Project supported by the National Natural Science Foundation of China(No.11571008)
文摘In this paper, a symmetry analysis of the modified 2D Burgers vortex equation with a flow parameter is presented. A general form of classical and non-classical symmetries of the equation is derived. These are fundamental tools for obtaining exact solutions to the equation. In several physical cases of the parameter, the specific classical and non-classical symmetries of the equation are then obtained. In addition to rediscovering the existing solutions given by different methods, some new exact solutions are obtained with the symmetry method, showing that the symmetry method is powerful and more general for solving partial differential equations(PDEs).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10871117 and 10571110)
文摘This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61105130 and 61175124)
文摘In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.