This paper presents a non-linear simulation of the impact on a structure with different energy absorption systems using finite element models. Literature review on bistable structure, aluminum foam and expandable poly...This paper presents a non-linear simulation of the impact on a structure with different energy absorption systems using finite element models. Literature review on bistable structure, aluminum foam and expandable polystyrene is presented and taken as basis to propose energy absorption systems. Using a base structure, these systems are implemented by means of finite element modeling. A comparison of the damage caused to the structure in case of impact without implementing energy absorption system, and implementing energy absorption systems based on bistable structures, polystyrene foam and aluminum foam are shown here in. The results demonstrate the advantages of using energy absorption systems on structures under impact loads.展开更多
In recent years, numerous exploration activities of oil and gas industry have been conducted in ultra deep water. The global offshore industry is building systems today for drilling in even deeper water, progressively...In recent years, numerous exploration activities of oil and gas industry have been conducted in ultra deep water. The global offshore industry is building systems today for drilling in even deeper water, progressively using new technologies, and significantly extending existing technologies. This is the general trend in the offshore oil and gas industry. So the technology of ultra-deepwater risers, which is the main tool in drilling oil, is more and more standard. This paper manly focuses on the global analysis of the drilling risers. And it is divided into two parts, operability analysis and hang-off analysis that are used to check the design of the riser. In this paper, the rotation angle and stress of the riser in the drilling mode are calculated to determine the operability envelop. The number of the buoyancy modules has been determined and according to the API standard, all the worked out values have been checked out. From all the above, it is concluded that the operability envelop is relatively small under harsh condition and the number of the buoyancy modules is a little large. And above all, the design of this riser is successful.展开更多
In order to consider the influence of temperature and underground water movement, an elastoplastic model and a 2D FEM stress fields on the migration of radioactive nuclide with code for analysis of coupled thermo-hyd...In order to consider the influence of temperature and underground water movement, an elastoplastic model and a 2D FEM stress fields on the migration of radioactive nuclide with code for analysis of coupled thermo-hydro-mechanical (THM) processes in saturated and unsaturated porous media were extended and improved through introducing the percolation and migration equation, so that the code can be used for solving the temperature field, flow field, stress field and nuclide concentration field simultaneously. The states of temperatures, pore pressures and nuclide concentrations in the near field of a hypothetical nuclear waste repository were investigated. The influence of the half life of the radioactive nuclide on the temporal change of nuclide concentration was analyzed considering the thermo-hydro-mechanical-migratory coupling. The results show that, at the boundary of the vitrified waste, the concentration of radioactive nuclide with a half life of 10 a falls after a period of rising, with the maximum value of 0.182 mol/m3 and the minimum value of 0.181 mol/m^3 at the end of computation. For a half life of 1 000 a, the concentration of radioactive nuclide always increases with the increase of the time during the computation period; and the maximum value is 1.686 mol/m^3 at the end of the computation. Therefore, under the condition of THM coupling, the concentration of radioactive nuclide with a shorter half life will decrease more quickly with water flow; but for the radioactive nuclide with a longer half life, its concentration will keep at a higher level for a longer time in the migration process.展开更多
Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the st...Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.展开更多
For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracke...For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket.展开更多
The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was c...The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.展开更多
In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element ...In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element method(FEM) calculation result at the middle position of typical cross-sections where the concrete is relatively thin,and at the region close to turbine floor.If the ventilation barrel,floor slabs and columns above turbine floor are excluded from FEM model,the maximum rise difference of pedestal structure increases by about 24% compared with that of the whole model.It is indicated that different modeling ranges indeed affect FEM calculation result,and the structure above turbine floor in the FEM model should be included.展开更多
Since numeric simulation can save much costs, it is widely used in autombile design. Besides, noise, vibration and harshness(NVH) performance is one major target for engineer to design a competitive product. In this...Since numeric simulation can save much costs, it is widely used in autombile design. Besides, noise, vibration and harshness(NVH) performance is one major target for engineer to design a competitive product. In this paper, NVH performance of a lightweight auto-body prototype using alternative materials and gauge thickness were studied by finite element materials and boundary element method (BEM). In order to fred the most contributing panel to the peak value of response, the panel acoustic contribution analysis (PACA) was performed and the most effective modification area was located. Finally, the sound pressure was reduced by putting damping material on these parts.展开更多
The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--...The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right comer of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796 × 10^4 cycles under the calculated conditions.展开更多
Stability is always the most important problem after high slope was excavated.The study analyzed the stress and strain inside the slope by Finite Element Method(FEM) and carried through stress distribution and failure...Stability is always the most important problem after high slope was excavated.The study analyzed the stress and strain inside the slope by Finite Element Method(FEM) and carried through stress distribution and failure zone,then analyzed the stability of the slope using three different methods and came to the conclusion that it is in unstable condition,so the designed retaining wall was put forward which makes the slope stable.展开更多
Background: Non-linear signal analysis has proven to be a technique that is capable of revealing qualitative and quan- titative differentiations between different dynamical systems (biological or otherwise). In the pr...Background: Non-linear signal analysis has proven to be a technique that is capable of revealing qualitative and quan- titative differentiations between different dynamical systems (biological or otherwise). In the present work it has been demonstrated that this capability reveals quantitative differences in the Magnetoencephalograms (MEG) received from patients with Idiopathic Generalized Epilepsy (IGE) and from healthy volunteers. Method: We present MEG record- ings of 10 epileptic patients with IGE and the corresponding ones from 10 healthy volunteers. A 122-channel SQUID biomagnetometer in an electromagnetically shielded room was used to record the MEG signals and the Grassber- ger-Procaccia method for the estimation of the correlation dimension was applied in the phase space reconstruction of the recorded signal from each patient. Results: The aforementioned analysis demonstrates the existence of spatially diffused low dimensionality in the MEG signals of patients with IGE. Conclusion: The obtained results provide support for the hypothesis that low dimensionality in MEG signals is linked to functional brain pathogeny.展开更多
The results of kinematic motion analysis were used for the structural analysis based on data that the load applied to each part. The problem of the fatigue strength estimation of materials or components containing nat...The results of kinematic motion analysis were used for the structural analysis based on data that the load applied to each part. The problem of the fatigue strength estimation of materials or components containing natural defects, inclusions or in homogeneities is of great importance for both a scientifically or industrial point of view. Fatigue behavior in components is often affected by the presence of residual stresses introduced by processes such as actuator system. Analysis can provide the estimation of the crack growth curves with sufficient accuracy, even in case of complicated bell crank structures which are crucial for preserving aileron integrity and which participate in transfer of load. Probability of crack detection or any other damage detection is a result of many factors. An endurance life prediction of bell crank is used finite element analyses. Endurance test data for slim test specimens were compared with the predicted fatigue life for verification.展开更多
Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in add...Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in addition, to make also a certain improvement on Smith's PIO definition and PIO types. These modified criteria are applied to predict PIO tendency of various different configurations on the variable stability aircraft NT-33 in case of supposed non-linearity, and predicted results are compared with the flight tests and analytical results in the case of linear hypothesis given in Ref. (4)展开更多
The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily con...The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily control the explicit buckling solutions, such as the computation time, loading function and dynamic relaxation, are investigated and suggested for the buckling analysis of thin-walled members. Three examples of different buckling modes, namely snap-through, overall and local buckling, are studied based on the implicit FEM, quasi-static explicit FEM and EFG method via the commercial software LS-DYNA. The convergence rate and accuracy of the explicit methods are compared with the conventional implicit arc-length method. It is drawn that EFG quasi-static explicit buckling analysis presents the same accurate results as implicit finite element solution, but is without convergence problem and of less-consumption of computing time than FEM.展开更多
In this paper,numerical non-linear analyses of the “Guglie” bridge,located in the historical city of Venice(Italy),are proposed.The focus is twofold:on the sensitivity of the realized shape of the bridge by referenc...In this paper,numerical non-linear analyses of the “Guglie” bridge,located in the historical city of Venice(Italy),are proposed.The focus is twofold:on the sensitivity of the realized shape of the bridge by reference to originally designed shape;and on sensitivity to mechanical parameters of constituent materials.The history of this bridge is very interesting,and the bridge actually built is different from the Marchesini’s project(1580).In fact,in the original design drawing,the shape of the arch is a perfect circle arch,while the shape of the actually built arch is not perfectly circular.Hence,in the aim to evaluate sensitivity of bridge behaviour to designed and realized shape,non-linear analyses are carried on by means of FEMs(Finite Element Models)under in-plane state hypothesis.Furthermore,parametric tests are also performed for evaluating the influence of masonry mechanical parameters on non-linear bridge behaviour.展开更多
Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters fo...Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation.展开更多
<p align="left"> <span style="font-family:Verdana;">The present study evaluates the effects of occlusal loading on an implant-supported dental implant with external hexagon dental impla...<p align="left"> <span style="font-family:Verdana;">The present study evaluates the effects of occlusal loading on an implant-supported dental implant with external hexagon dental implant-abutment systems, using the finite element method analysis. Tensile analyses were performed to simulate different axial and obliquous masticatory loads. The influence of the variations in the contouring conditions of the interfaces was analyzed to weigh the osseointegration with linear and non-linear cases, by means of a parametric design. The geometry selected to place the prostheses was a jaw section, considering the properties of the set of cortical and trabecular bones. The results show that for non-linear contour conditions, the stress presents smaller value distributions and signals a different place in the screw-implant interface as the factor of the greater weight in this study. The location indicated that von Mises stress concentrations are not exclusive to the contact regions studied, moving to an area that is not in direct contact with the non-linear contact interfaces. In addition, the direction of load with an angle of 15 degrees presented the highest values of von Mises stress.</span> </p>展开更多
In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The ...In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method.展开更多
This article describes a methodology for the non-linear analysis of existing masonry structures subjected to external yielding constraints, with particular attention to the historical and cultural heritage constructio...This article describes a methodology for the non-linear analysis of existing masonry structures subjected to external yielding constraints, with particular attention to the historical and cultural heritage constructions. It is well known, indeed, that most of the arch and wall damages are often due to settlement of abutments, in the former case, and to settlement of foundations, in the latter one. The ability to observe and correctly analyze the cracking failure pattern, visible on such structures, is the main “diagnostic tool” for identifying its origin: the modification of load conditions over time, foundation settlements and earthquakes. The objective of this work is to identify a numeric modelling of masonry structures (such as walls, arches, vaults, ruins) under any load condition and subjected to inelastic settlements impressed to some external constraints. The purpose of the numerical procedure is to interpret the behaviour of such structures in order to assess both the peak settlement value and their specific failure mode in correspondence to a geometry which is very often compromised. Therefore, this procedure allows one to estimate the degree of the structures’ vulnerability, in order to prevent any future damage, both local and global. The iterative algorithm proposed in this article, developed in a calculation software, processes the structure considering, not only the properties of constitutive material, non-homogeneous and anisotropic, but also the change of the structure’s shape during the settlements increase. In this way a non-linear analysis is performed both materically and geometrically. Through a direct comparison between numerical and experimental results, obtained by testing some simple structural models in a laboratory, it was ascertained, both from a qualitative and quantitative point of view, the correctness and the efficacy of the proposed procedure, which will be explained below. Therefore, this numerical procedure demonstrates to be a useful “diagnostic tool” by which, starting from the input of the masonry structure to be studied and simulating a presumable event, one can trace the source of the causes that have generated a certain failure, comparing the cracking pattern of real structure with that plotted by the software.展开更多
The longitudinal structure function with shadowing correction according to the nonlinear effects of the gluon density behavior at low x is considered. The solution of the GLR-MQ evolution equation for the gluon densit...The longitudinal structure function with shadowing correction according to the nonlinear effects of the gluon density behavior at low x is considered. The solution of the GLR-MQ evolution equation for the gluon density shows that the FL^g(x, Q2) behavior can be tamed by the singularity at low x values. Comparing our results with H1 data at R=4 GeV-1 shows that at very low x this behavior is completely tamed by taking shadowing correction into account.展开更多
文摘This paper presents a non-linear simulation of the impact on a structure with different energy absorption systems using finite element models. Literature review on bistable structure, aluminum foam and expandable polystyrene is presented and taken as basis to propose energy absorption systems. Using a base structure, these systems are implemented by means of finite element modeling. A comparison of the damage caused to the structure in case of impact without implementing energy absorption system, and implementing energy absorption systems based on bistable structures, polystyrene foam and aluminum foam are shown here in. The results demonstrate the advantages of using energy absorption systems on structures under impact loads.
基金Supported by the 111 Projects Foundation from State Administration of Foreign Experts Affairs of China and Ministry of Education of China under Grant No.B07019
文摘In recent years, numerous exploration activities of oil and gas industry have been conducted in ultra deep water. The global offshore industry is building systems today for drilling in even deeper water, progressively using new technologies, and significantly extending existing technologies. This is the general trend in the offshore oil and gas industry. So the technology of ultra-deepwater risers, which is the main tool in drilling oil, is more and more standard. This paper manly focuses on the global analysis of the drilling risers. And it is divided into two parts, operability analysis and hang-off analysis that are used to check the design of the riser. In this paper, the rotation angle and stress of the riser in the drilling mode are calculated to determine the operability envelop. The number of the buoyancy modules has been determined and according to the API standard, all the worked out values have been checked out. From all the above, it is concluded that the operability envelop is relatively small under harsh condition and the number of the buoyancy modules is a little large. And above all, the design of this riser is successful.
基金Project(2010CB732101) supported by the National Basic Research Program of China Project(SKLQ 008) supported by the Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering of China
文摘In order to consider the influence of temperature and underground water movement, an elastoplastic model and a 2D FEM stress fields on the migration of radioactive nuclide with code for analysis of coupled thermo-hydro-mechanical (THM) processes in saturated and unsaturated porous media were extended and improved through introducing the percolation and migration equation, so that the code can be used for solving the temperature field, flow field, stress field and nuclide concentration field simultaneously. The states of temperatures, pore pressures and nuclide concentrations in the near field of a hypothetical nuclear waste repository were investigated. The influence of the half life of the radioactive nuclide on the temporal change of nuclide concentration was analyzed considering the thermo-hydro-mechanical-migratory coupling. The results show that, at the boundary of the vitrified waste, the concentration of radioactive nuclide with a half life of 10 a falls after a period of rising, with the maximum value of 0.182 mol/m3 and the minimum value of 0.181 mol/m^3 at the end of computation. For a half life of 1 000 a, the concentration of radioactive nuclide always increases with the increase of the time during the computation period; and the maximum value is 1.686 mol/m^3 at the end of the computation. Therefore, under the condition of THM coupling, the concentration of radioactive nuclide with a shorter half life will decrease more quickly with water flow; but for the radioactive nuclide with a longer half life, its concentration will keep at a higher level for a longer time in the migration process.
基金Project(2013-KY-2) supported by the State Key Laboratory of Hydroscience and Engineering of Hydroscience, ChinaProject(50925931)supported by the National Funds for Distinguished Young Scientists, China
文摘Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Project No.[2016] 546)+1 种基金the Shanghai Sailing Program(Grant No.17YF1409700)the Open Foundation of State Key Laboratory of Ocean Engineering(Grant No.1716)
文摘For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket.
文摘The aim of this paper is to conduct experimental modal analysis and numerical simulation to verify the structural characteristics of a deployable-retractable wing for aircraft and spacecraft. A modal impact test was conducted in order to determine the free vibration characteristics. Natural frequencies and vibration mode shapes were obtained via measurement in LMS Test. Lab. The frequency response functions were identified and computed by force and acceleration signals, and then mode shapes of this morphing wing structure were subsequently identified by PolyMAX modal parameter estimation method. FEM modal analysis was also implemented and its numerical results convincingly presented the mode shape and natural frequency characteristics were in good agreement with those obtained from experimental modal analysis. Experimental study in this paper focuses on the transverse response of morphing wing as its moveable part is deploying or retreating. Vibration response to different rotation speeds have been collected, managed and analyzed through the use of comparison methodology with each other. Evident phenomena have been discovered including the resonance on which most analysis is focused because of its potential use to generate large amplitude vibration of specific frequency or to avoid such resonant frequencies from a wide spectrum of response. Manufactured deployable-retractable wings are studied in stage of experimental modal analysis, in which some nonlinear vibration resulted should be particularly noted because such wing structure displays a low resonant frequency which is always optimal to be avoided for structural safety and stability.
基金Supported by National Natural Science Foundation of China(No.50539010)
文摘In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element method(FEM) calculation result at the middle position of typical cross-sections where the concrete is relatively thin,and at the region close to turbine floor.If the ventilation barrel,floor slabs and columns above turbine floor are excluded from FEM model,the maximum rise difference of pedestal structure increases by about 24% compared with that of the whole model.It is indicated that different modeling ranges indeed affect FEM calculation result,and the structure above turbine floor in the FEM model should be included.
文摘Since numeric simulation can save much costs, it is widely used in autombile design. Besides, noise, vibration and harshness(NVH) performance is one major target for engineer to design a competitive product. In this paper, NVH performance of a lightweight auto-body prototype using alternative materials and gauge thickness were studied by finite element materials and boundary element method (BEM). In order to fred the most contributing panel to the peak value of response, the panel acoustic contribution analysis (PACA) was performed and the most effective modification area was located. Finally, the sound pressure was reduced by putting damping material on these parts.
基金Project(50376076) supported by the National Natural Science Foundation of China
文摘The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right comer of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796 × 10^4 cycles under the calculated conditions.
文摘Stability is always the most important problem after high slope was excavated.The study analyzed the stress and strain inside the slope by Finite Element Method(FEM) and carried through stress distribution and failure zone,then analyzed the stability of the slope using three different methods and came to the conclusion that it is in unstable condition,so the designed retaining wall was put forward which makes the slope stable.
文摘Background: Non-linear signal analysis has proven to be a technique that is capable of revealing qualitative and quan- titative differentiations between different dynamical systems (biological or otherwise). In the present work it has been demonstrated that this capability reveals quantitative differences in the Magnetoencephalograms (MEG) received from patients with Idiopathic Generalized Epilepsy (IGE) and from healthy volunteers. Method: We present MEG record- ings of 10 epileptic patients with IGE and the corresponding ones from 10 healthy volunteers. A 122-channel SQUID biomagnetometer in an electromagnetically shielded room was used to record the MEG signals and the Grassber- ger-Procaccia method for the estimation of the correlation dimension was applied in the phase space reconstruction of the recorded signal from each patient. Results: The aforementioned analysis demonstrates the existence of spatially diffused low dimensionality in the MEG signals of patients with IGE. Conclusion: The obtained results provide support for the hypothesis that low dimensionality in MEG signals is linked to functional brain pathogeny.
文摘The results of kinematic motion analysis were used for the structural analysis based on data that the load applied to each part. The problem of the fatigue strength estimation of materials or components containing natural defects, inclusions or in homogeneities is of great importance for both a scientifically or industrial point of view. Fatigue behavior in components is often affected by the presence of residual stresses introduced by processes such as actuator system. Analysis can provide the estimation of the crack growth curves with sufficient accuracy, even in case of complicated bell crank structures which are crucial for preserving aileron integrity and which participate in transfer of load. Probability of crack detection or any other damage detection is a result of many factors. An endurance life prediction of bell crank is used finite element analyses. Endurance test data for slim test specimens were compared with the predicted fatigue life for verification.
文摘Some problems encountered in applying Smith's technique to predict the PIO tendency for non-linear pilot-vehicle loop, are thoroughly analyzed. Subsequently, modified PIO predictable criteria are developed, in addition, to make also a certain improvement on Smith's PIO definition and PIO types. These modified criteria are applied to predict PIO tendency of various different configurations on the variable stability aircraft NT-33 in case of supposed non-linearity, and predicted results are compared with the flight tests and analytical results in the case of linear hypothesis given in Ref. (4)
文摘The quasi-static explicit finite element method (FEM) and element free Galerkin (EFG) method are applied to trace the post-buckling equilibrium path of thin-walled members in this paper. The factors that primarily control the explicit buckling solutions, such as the computation time, loading function and dynamic relaxation, are investigated and suggested for the buckling analysis of thin-walled members. Three examples of different buckling modes, namely snap-through, overall and local buckling, are studied based on the implicit FEM, quasi-static explicit FEM and EFG method via the commercial software LS-DYNA. The convergence rate and accuracy of the explicit methods are compared with the conventional implicit arc-length method. It is drawn that EFG quasi-static explicit buckling analysis presents the same accurate results as implicit finite element solution, but is without convergence problem and of less-consumption of computing time than FEM.
文摘In this paper,numerical non-linear analyses of the “Guglie” bridge,located in the historical city of Venice(Italy),are proposed.The focus is twofold:on the sensitivity of the realized shape of the bridge by reference to originally designed shape;and on sensitivity to mechanical parameters of constituent materials.The history of this bridge is very interesting,and the bridge actually built is different from the Marchesini’s project(1580).In fact,in the original design drawing,the shape of the arch is a perfect circle arch,while the shape of the actually built arch is not perfectly circular.Hence,in the aim to evaluate sensitivity of bridge behaviour to designed and realized shape,non-linear analyses are carried on by means of FEMs(Finite Element Models)under in-plane state hypothesis.Furthermore,parametric tests are also performed for evaluating the influence of masonry mechanical parameters on non-linear bridge behaviour.
基金Supported by the National High Technology Research and Development Program of China (863 Program,No.2006AA010102)
文摘Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation.
文摘<p align="left"> <span style="font-family:Verdana;">The present study evaluates the effects of occlusal loading on an implant-supported dental implant with external hexagon dental implant-abutment systems, using the finite element method analysis. Tensile analyses were performed to simulate different axial and obliquous masticatory loads. The influence of the variations in the contouring conditions of the interfaces was analyzed to weigh the osseointegration with linear and non-linear cases, by means of a parametric design. The geometry selected to place the prostheses was a jaw section, considering the properties of the set of cortical and trabecular bones. The results show that for non-linear contour conditions, the stress presents smaller value distributions and signals a different place in the screw-implant interface as the factor of the greater weight in this study. The location indicated that von Mises stress concentrations are not exclusive to the contact regions studied, moving to an area that is not in direct contact with the non-linear contact interfaces. In addition, the direction of load with an angle of 15 degrees presented the highest values of von Mises stress.</span> </p>
文摘In the realization of mechanical structures, achieving stability and balance is a problem commonly encountered by engineers in the field of civil engineering, mechanics, aeronautics, biomechanics and many others. The study of plate behavior is a very sensitive subject because it is part of the structural elements. The study of the dynamic behavior of free vibration structures is done by modal analysis in order to calculate natural frequencies and modal deformations. In this paper, we present the modal analysis of a thin rectangular plate simply supported. The analytical solution of the differential equation is obtained by applying the method of separating the variables. We are talking about the exact solution of the problem to the limit values. However, numerical methods such as the finite element method allow us to approximate these functions with greater accuracy. It is one of the most powerful computational methods for predicting dynamic response in a complex structure subject to arbitrary boundary conditions. The results obtained by MEF through Ansys 15.0 are then compared with those obtained by the analytical method.
文摘This article describes a methodology for the non-linear analysis of existing masonry structures subjected to external yielding constraints, with particular attention to the historical and cultural heritage constructions. It is well known, indeed, that most of the arch and wall damages are often due to settlement of abutments, in the former case, and to settlement of foundations, in the latter one. The ability to observe and correctly analyze the cracking failure pattern, visible on such structures, is the main “diagnostic tool” for identifying its origin: the modification of load conditions over time, foundation settlements and earthquakes. The objective of this work is to identify a numeric modelling of masonry structures (such as walls, arches, vaults, ruins) under any load condition and subjected to inelastic settlements impressed to some external constraints. The purpose of the numerical procedure is to interpret the behaviour of such structures in order to assess both the peak settlement value and their specific failure mode in correspondence to a geometry which is very often compromised. Therefore, this procedure allows one to estimate the degree of the structures’ vulnerability, in order to prevent any future damage, both local and global. The iterative algorithm proposed in this article, developed in a calculation software, processes the structure considering, not only the properties of constitutive material, non-homogeneous and anisotropic, but also the change of the structure’s shape during the settlements increase. In this way a non-linear analysis is performed both materically and geometrically. Through a direct comparison between numerical and experimental results, obtained by testing some simple structural models in a laboratory, it was ascertained, both from a qualitative and quantitative point of view, the correctness and the efficacy of the proposed procedure, which will be explained below. Therefore, this numerical procedure demonstrates to be a useful “diagnostic tool” by which, starting from the input of the masonry structure to be studied and simulating a presumable event, one can trace the source of the causes that have generated a certain failure, comparing the cracking pattern of real structure with that plotted by the software.
文摘The longitudinal structure function with shadowing correction according to the nonlinear effects of the gluon density behavior at low x is considered. The solution of the GLR-MQ evolution equation for the gluon density shows that the FL^g(x, Q2) behavior can be tamed by the singularity at low x values. Comparing our results with H1 data at R=4 GeV-1 shows that at very low x this behavior is completely tamed by taking shadowing correction into account.